Evaluation of Reference Genes for Normalizing RT-qPCR and Analysis of the Expression Patterns of WRKY1 Transcription Factor and Rhynchophylline Biosynthesis-Related Genes in Uncaria rhynchophylla
Abstract
:1. Introduction
2. Results
2.1. Screening for Candidate Reference Genes and Primer-Specific Analysis
2.2. Expression Abundance of the Candidate Reference Genes
2.3. Expression Stability Analysis of Candidate Reference Genes
2.3.1. GeNorm Analysis
2.3.2. NormFinder Analysis
2.3.3. BestKeeper Analysis
2.3.4. Delta Ct Analysis
2.3.5. RefFinder Analysis
2.4. Expression Patterns of WRKY1 and Selected Genes Involved in the TIA Pathway
3. Discussion
4. Methods and Materials
4.1. Plant Material and Stress Treatment
4.2. Total RNA Extraction and cDNA Synthesis
4.3. Selection of Candidate Genes, Primer Design, and RT-qPCR Conditions
4.4. Data Analysis of the Reference Gene Expression Stability
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ling, L.Z.; Zhang, S.D. The complete chloroplast genome of the traditional Chinese herb, Uncaria rhynchophylla (Rubiaceae). Mitochondrial DNA B Resour. 2020, 5, 424–425. [Google Scholar] [CrossRef] [PubMed]
- Loh, Y.C.; Ch’ng, Y.S.; Tan, C.S.; Ahmad, M.; Asmawi, M.Z.; Yam, M.F. Mechanisms of action of Uncaria rhynchophylla ethanolic extract for its vasodilatory effects. J. Med. Food 2017, 20, 895–911. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.Q.; Yao, C.L.; Yang, W.Z.; Yao, S.; Huang, Y.; Zhang, Y.B.; Wu, W.Y.; Guo, D. An enhanced strategy integrating offline two-dimensional separation and step-wise precursor ion list-based raster-mass defect filter: Characterization of indole alkaloids in five botanical origins of Uncariae Ramulus Cum Unicis as an exemplary application. J. Chromatogr. A 2018, 1563, 124–134. [Google Scholar] [CrossRef] [PubMed]
- Li, R.F.; Guo, Q.L.; Zhu, C.G.; Xu, C.B.; Wei, Y.Z.; Cai, J.; Wang, Y.; Sun, H.; Zhang, T.T.; Shi, J.G. Minor triterpenes from an aqueous extract of the hook-bearing stem of Uncaria rhynchophylla. J. Asian Nat. Prod. Res. 2021, 23, 307–317. [Google Scholar] [CrossRef]
- Li, R.X.; Cheng, J.T.; Jiao, M.J.; Li, L.; Guo, C.; Chen, S.; Liu, A. New phenylpropanoid-substituted flavan-3-ols and flavonols from the leaves of Uncaria rhynchophylla. Fitoterapia 2017, 116, 17–23. [Google Scholar] [CrossRef]
- Zeng, P.; Wang, X.M.; Ye, C.Y.; Su, H.F.; Tian, Q. The main alkaloids in Uncaria rhynchophylla and their anti-Alzheimer’s disease mechanism determined by a network pharmacology approach. Int. J. Mol. Sci. 2021, 22, 3612. [Google Scholar] [CrossRef]
- Xie, L.L.; Wang, T.Y.; Lin, S.; Lu, Z.Q.; Wang, Y.L.; Shen, Z.Q.; Cheng, Y.; Shen, A.L.; Peng, J.; Chu, J.F. Uncaria Rhynchophylla attenuates angiotensin Ⅱ-induced myocardial fibrosis via suppression of the RhoA/ROCK1 pathway. Biomed. Pharmacother. 2022, 146, 112607. [Google Scholar] [CrossRef]
- Qin, Q.J.; Cui, L.Q.; Li, P.; Wang, Y.B.; Zhang, X.Z.; Guo, M.L. Rhynchophylline ameliorates myocardial ischemia/reperfusion injury through the modulation of mitochondrial mechanisms to mediate myocardial apoptosis. Mol. Med. Rep. 2019, 19, 2581–2590. [Google Scholar] [CrossRef]
- Soltani, N.; Nazarian-Firouzabadi, F.; Shafeinia, A.; Sadr, A.S.; Shirali, M. The expression of Terpenoid Indole Alkaloid (TIAs) pathway genes in Catharanthus roseus in response to salicylic acid treatment. Mol. Biol. Rep. 2020, 47, 7009–7016. [Google Scholar] [CrossRef]
- Thakur, M.; Sohal, B.S. Role of elicitors in inducing resistance in plants against pathogen infection: A review. ISRN Biochem. 2013, 2013, 762412. [Google Scholar] [CrossRef]
- Kumar, P.; Pal, T.; Sharma, N.; Kumar, V.; Sood, H.; Chauhan, R.S. Expression analysis of biosynthetic pathway genes vis-à-vis podophyllotoxin content in Podophyllum hexandrum royle. Protoplasma 2015, 252, 1253–1262. [Google Scholar] [CrossRef] [PubMed]
- Bustin, S.A. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): Trends and problems. J. Mol. Endocrinol. 2002, 29, 23–39. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhang, Y.; Mu, D.; Lu, Y.; Chen, W.; Zhang, Y.; Zhang, R.; Qin, Y.; Yuan, J.; Pan, L.; et al. Selection of Reference Genes in Evodia rutaecarpa var. officinalis and Expression Patterns of Genes Involved in Its Limonin Biosynthesis. Plants 2023, 12, 3197. [Google Scholar] [CrossRef]
- Zhang, Y.; Mu, D.; Wang, L.; Wang, X.; Wilson, I.W.; Chen, W.; Wang, J.; Liu, Z.; Qiu, D.; Tang, Q. Reference Genes Screening and Gene Expression Patterns Analysis Involved in Gelsenicine Biosynthesis under Different Hormone Treatments in Gelsemium elegans. Int. J. Mol. Sci. 2023, 24, 15973. [Google Scholar] [CrossRef]
- Bustin, S.A. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J. Mol. Endocrinol. 2000, 25, 169–193. [Google Scholar] [CrossRef]
- Mahoney, D.J.; Carey, K.; Fu, M.H.; Snow, R.; Cameron-Smith, D.; Parise, G.; Tarnopolsky, M.A. Real-time RT-PCR analysis of reference genes in human skeletal muscle following acute exercise. Physiol. Genom. 2004, 18, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Maroufi, A.; Van Bockstaele, E.; De Loose, M. Validation of reference genes for gene expression analysis in chicory (Cichorium intybus) using quantitative real-time PCR. BMC Mol. Biol. 2010, 11, 15. [Google Scholar] [CrossRef]
- Czechowski, T.; Stitt, M.; Altmann, T.; Udvardi, M.K.; Scheible, W.R. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol. 2005, 139, 5–17. [Google Scholar] [CrossRef]
- Remans, T.; Smeets, K.; Opdenakker, K.; Mathijsen, D.; Vangronsveld, J.; Cuypers, A. Normalisation of real-time RT-PCR gene expression measurements in Arabidopsis thaliana exposed to increased metal concentrations. Planta 2008, 227, 1343–1349. [Google Scholar] [CrossRef]
- Pan, Y.J.; Lin, Y.C.; Yu, B.F.; Zu, Y.G.; Yu, F.; Tang, Z.H. Transcriptomics comparison reveals the diversity of ethylene and methyl-jasmonate in roles of TIA metabolism in Catharanthus roseus. BMC Genom. 2018, 19, 508. [Google Scholar] [CrossRef]
- Liu, W.H.; Chen, R.; Chen, M.; Zhang, H.X.; Peng, M.F.; Yang, C.X.; Ming, X.J.; Lan, X.Z.; Liao, Z.H. Tryptophan decarboxylase plays an important role in ajmalicine biosynthesis in Rauvolfia verticillata. Planta 2012, 236, 239–250. [Google Scholar] [CrossRef] [PubMed]
- Suttipanta, N.; Pattanaik, S.; Kulshrestha, M.; Patra, B.; Singh, S.K.; Yuan, L. The transcription factor CrWRKY1 positively regulates the terpenoid indole alkaloid biosynthesis in Catharanthus roseus. Plant Physiol. 2011, 157, 2081–2093. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zeng, L.; Wei, Y.; Zhang, M.; Pan, W.; Sword, G.A.; Yang, F.; Chen, F.; Wan, G. Reliable reference genes for gene expression analyses under the hypomagnetic field in a migratory insect. Front Physiol. 2022, 13, 954228. [Google Scholar] [CrossRef]
- Pfaffl, M.W.; Tichopad, A.; Prgomet, C.; Neuvians, T.P. Determination of stable reference genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations. Biotechnol. Lett. 2004, 26, 509–515. [Google Scholar] [CrossRef]
- Tang, Q.; Ma, X.J.; Mo, C.M.; Wilson, I.W.; Song, C.; Zhao, H.; Yang, Y.F.; Fu, W.; Qiu, D.Y. An efficient approach to finding Siraitia grosvenorii triterpene biosynthetic genes by RNA-seq and digital gene expression analysis. BMC Genom. 2011, 12, 343. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.H.; Liu, C.; Zhu, Y.M.; Zhang, J.S.; Men, Y.; Zeng, Y.; Sun, Y.X. Functional characterization of cucurbitadienol synthase and triterpene glycosyltransferase involved in biosynthesis of mogrosides from Siraitia grosvenorii. Plant Cell Physiol. 2015, 56, 1172–1182. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.S.; Dai, L.H.; Yang, J.G.; Liu, C.; Men, Y.; Zeng, Y.; Cai, Y.; Zhu, Y.M.; Sun, Y.X. Oxidation of cucurbitadienol catalyzed by CYP87D18 in the biosynthesis of mogrosides from Siraitia grosvenorii. Plant Cell Physiol. 2016, 57, 1000–1007. [Google Scholar] [CrossRef]
- Yang, W.; Ip, S.P.; Liu, L.; Xian, Y.F.; Lin, Z.X. Uncaria rhynchophylla and its major constituents on central nervous system: A review on their pharmacological actions. Curr. Vasc. Pharmacol. 2020, 18, 346–357. [Google Scholar] [CrossRef]
- Zhang, J.G.; Geng, C.A.; Huang, X.Y.; Chen, X.L.; Ma, Y.B.; Zhang, X.M.; Chen, J.J. Chemical and biological comparison of different sections of Uncaria rhynchophylla (Gou-Teng). Eur. J. Mass Spectrom. 2017, 23, 11–21. [Google Scholar] [CrossRef]
- Guo, Q.Q.; Ma, X.J.; Wei, S.G.; Qiu, D.Y.; Wilson, I.W.; Wu, P.; Tang, Q.; Liu, L.J.; Dong, S.K.; Zu, W. De novo transcriptome sequencing and digital gene expression analysis predict biosynthetic pathway of rhynchophylline and isorhynchophylline from Uncaria rhynchophylla, a non-model plant with potent anti-Alzheimer’s properties. BMC Genom. 2014, 15, 676. [Google Scholar] [CrossRef]
- Wang, J.J.; Ji, L.L.; Deng, X.H.; Lyu, L.T.; Yu, L.F.; Guan, P. Effects of light intensity on growth and content of active components of Uncaria rhynchophyll. Zhongguo Zhong Yao Za Zhi 2019, 44, 5118–5123. [Google Scholar] [PubMed]
- Wang, J.; Mao, S.; Wu, Q.; Yuan, Y.; Liang, M.; Wang, S.; Huang, K.; Wu, Q. Effects of LED illumination spectra on glucosinolate and sulforaphane accumulation in broccoli seedlings. Food Chem. 2021, 356, 129550. [Google Scholar] [CrossRef] [PubMed]
- Albertos, P.; Wagner, K.; Poppenberger, B. Cold stress signalling in female reproductive tissues. Plant Cell Environ. 2019, 42, 846–853. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Li, X.; Niu, L.; Jameson, P.E.; Zhou, W. Transcription-associated metabolomic adjustments in maize occur during combined drought and cold stress. Plant Physiol. 2021, 186, 677–695. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Cai, Q.Z.; Liu, L.; Yang, Q.; Zhou, L.Y. Reference gene screening for real-time quantitative PCR in Polygonum multiflorum. Zhongguo Zhong Yao Za Zhi 2021, 46, 80–85. [Google Scholar] [PubMed]
- De Sousa, F.C.B.; Do Nascimento, C.S.; Macário, M.D.S.; Araújo, R.D.S.; Barbosa, L.T.; Bayão, G.F.V.; Sousa, K.R.S. Selection of reference genes for quantitative real-time PCR normalization in European quail tissues. Mol. Biol. Rep. 2021, 48, 67–76. [Google Scholar] [CrossRef]
- Shukla, P.; Reddy, R.A.; Ponnuvel, K.M.; Rohela, G.K.; Shabnam, A.A.; Ghosh, M.K.; Mishra, R.K. Selection of suitable reference genes for quantitative real-time PCR gene expression analysis in Mulberry (Morus alba L.) under different abiotic stresses. Mol. Biol. Rep. 2019, 46, 1809–1817. [Google Scholar] [CrossRef]
- Li, C.; Hu, L.; Wang, X.; Liu, H.; Tian, H.; Wang, J. Selection of reliable reference genes for gene expression analysis in seeds at different developmental stages and across various tissues in Paeonia ostii. Mol. Biol. Rep. 2019, 46, 6003–6011. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, R.; Zhou, Z. Identification and Validation of Reference Genes for Gene Expression Analysis in Schima superba. Genes 2021, 12, 732. [Google Scholar] [CrossRef]
- Huang, L.K.; Yan, H.D.; Jiang, X.M.; Zhang, Y.; Zhang, X.Q.; Ji, Y.; Zeng, B.; Xu, B.; Yin, G.H.; Lee, S.; et al. Reference gene selection for quantitative real-time reverse-transcriptase PCR in orchardgrass subjected to various abiotic stresses. Gene 2014, 553, 158–165. [Google Scholar] [CrossRef]
- Cai, J.; Li, P.F.; Luo, X.; Chang, T.L.; Li, J.X.; Zhao, Y.W.; Xu, Y. Selection of appropriate reference genes for the detection of rhythmic gene expression via quantitative real-time PCR in Tibetan hulless barley. PLoS ONE 2018, 13, e0190559. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.X.; Tan, H.X.; Yu, J.; Chen, Y.; Guo, Z.Y.; Wang, G.Q.; Zhang, Q.L.; Chen, J.F.; Zhang, L.; Diao, Y. Stable internal reference genes for normalizing real-time quantitative PCR in Baphicacanthus cusia under hormonal stimuli and UV irradiation, and in different plant organs. Front. Plant Sci. 2017, 8, 668. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.Y.; Xie, D.J.; Rong, J.D.; He, T.Y.; Zheng, Y.S. Screening of qRT-PCR internal reference genes for four leaf color phenotypes of Sinobambusa tootsik f. luteoloalbostriata. Mol. Plant Breed. 2019, 17, 4592–4599. (In Chinese) [Google Scholar]
- Wang, G.L.; Tian, C.; Wang, Y.P.; Wan, F.X.; Hu, L.B.; Xiong, A.S.; Tian, J. Selection of reliable reference genes for quantitative RT-PCR in garlic under salt stress. PeerJ 2019, 7, e7319. [Google Scholar] [CrossRef]
- Sun, H.P.; Jiang, X.F.; Sun, M.L.; Cong, H.Q.; Qiao, F. Evaluation of reference genes for normalizing RT-qPCR in leaves and suspension cells of Cephalotaxus hainanensis under various stimuli. Plant Methods 2019, 15, 31. [Google Scholar] [CrossRef]
- De Spiegelaere, W.; Dern-Wieloch, J.; Weigel, R.; Schumacher, V.; Schorle, H.; Nettersheim, D.; Bergmann, M.; Brehm, R.; Kliesch, S.; Vandekerckhove, L.; et al. Reference gene validation for RT-qPCR, a note on different available software packages. PLoS ONE 2015, 10, e0122515. [Google Scholar] [CrossRef]
- De Carvalho, K.; Filho, J.C.B.; Dos Santos, T.B.; De Souza, S.G.H.; Vieira, L.G.E.; Pereira, L.F.P.; Domingues, D.S. Nitrogen starvation, salt and heat stress in coffee (Coffea arabica L.): Identification and validation of new genes for qPCR normalization. Mol. Biotechnol. 2013, 53, 315–325. [Google Scholar] [CrossRef]
- Couto, C.C.; Santos, T.F.; Mamede, A.M.G.N.; Oliveira, T.C.; Souza, A.M.; Freitas-Silva, O.; Oliveira, E.M.M. Coffea arabica and C. canephora discrimination in roasted and ground coffee from reference material candidates by real-time PCR. Food Res. Int. 2019, 115, 227–233. [Google Scholar] [CrossRef]
- Selvarajah, G.T.; Bonestroo, F.A.S.; Timmermans, S.E.; Kirpensteijn, J.; Mol, J. Reference gene validation for gene expression normalization in canine osteosarcoma: A geNorm algorithm approach. BMC Vet. Res. 2017, 13, 354. [Google Scholar] [CrossRef]
- Mao, M.Q.; Xue, Y.B.; He, Y.H.; Zhou, X.; Hu, H.; Liu, J.W.; Feng, L.J.; Yang, W.; Luo, J.H.; Zhang, H.L.; et al. Validation of reference genes for quantitative real-time PCR normalization in Ananas comosus var. bracteatus during chimeric leaf development and response to hormone stimuli. Front. Genet. 2021, 12, 716137. [Google Scholar] [CrossRef]
- Li, G.; Ma, J.W.; Yin, J.L.; Guo, F.L.; Xi, K.Y.; Yang, P.H.; Cai, X.D.; Jia, Q.; Li, L.; Liu, Y.Q.; et al. Identification of reference genes for reverse transcription-quantitative PCR analysis of ginger under abiotic stress and for postharvest biology studies. Front. Plant Sci. 2022, 13, 893495. [Google Scholar] [CrossRef] [PubMed]
- Roepke, J.; Salim, V.; Wu, M.; Thamm, A.M.K.; Murata, J.; Ploss, K.; Boland, W.; De Luca, V. Vinca drug components accumulate exclusively in leaf exudates of Madagascar periwinkle. Proc. Natl. Acad. Sci. USA 2010, 107, 15287–15292. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Hao, X.L.; Wang, Y.; Maoz, I.; Zhou, W.; Zhou, Z.G.; Kai, G.Y. Identification of WRKY transcription factors involved in regulating the biosynthesis of the anti-cancer drug camptothecin in Ophiorrhiza pumila. Hortic. Res. 2022, 9, uhac099. [Google Scholar] [CrossRef] [PubMed]
- Cao, N.; Wang, C.H. Strictosidine synthase, an indispensable enzyme involved in the biosynthesis of terpenoid indole and belta-carboline alkaloids. Chin. J. Nat. Med. 2021, 19, 591–607. [Google Scholar] [PubMed]
- Wang, C.; Wu, C.; Wang, Y.; Xie, C.H.; Shi, M.; Nile, S.; Zhou, Z.G.; Kai, G.Y. Transcription Factor OpWRKY3 is involved in the development and biosynthesis of camptothecin and its precursors in Ophiorrhiza pumila hairy roots. Int. J. Mol. Sci. 2019, 20, 3996. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Wang, J.; Lu, M.; Zhang, T.Y.; Qu, X.Y.; Wang, Z.Z. Selection and validation of appropriate reference genes for qRT-PCR analysis in Isatis indigotica fort. Front. Plant Sci. 2017, 8, 1139. [Google Scholar] [CrossRef]
- Wang, Z.L.; Xu, J.Y.; Liu, Y.H.; Chen, J.Y.; Lin, H.F.; Huang, Y.L.; Bian, X.H.; Zhao, Y.C. Selection and validation of appropriate reference genes for real-time quantitative PCR analysis in Momordica charantia. Phytochemistry 2019, 164, 1–11. [Google Scholar] [CrossRef]
- Wang, Q.; Ishikawa, T.; Michiue, T.; Zhu, B.L.; Guan, D.W.; Maeda, H. Stability of endogenous reference genes in postmortem human brains for normalization of quantitative real-time PCR data: Comprehensive evaluation using geNorm, NormFinder, and BestKeeper. Int. J. Legal Med. 2012, 126, 943–952. [Google Scholar] [CrossRef]
- Yang, J.; Han, F.; Yang, L.; Wang, J.; Jin, F.; Luo, A.; Zhao, F. Identification of Reference Genes for RT-qPCR Analysis in Gleditsia microphylla under Abiotic Stress and Hormone Treatment. Genes 2022, 13, 1227. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−△△Ct method. In Methods; Elsevier: Amsterdam, The Netherlands, 2001; Volume 25, pp. 402–408. [Google Scholar]
Gene Abbreviation | Gene Name | Primer Sequence 5′-3′ (F/R) | Amplification Efficiency (%) | R2 |
---|---|---|---|---|
GAPDH | Glyceraldehyde-3-phosphate dehydrogenase | TACCACCAACTGTCTTGCTCTT CGCCTCTCCAGTCCTTCATT | 99.7 | 0.991 |
CYP | Cyclophilin | CGAGAAAGGCGTGGGAAAG TGAGACCCGTTGGTGTTGG | 102.7 | 0.998 |
PP2A | Protein phosphatase 2A | CGCTGATGTTCTACGTCTACCTAAT AGTAGTAACGGTCCTCGGCTATA | 99.8 | 0.996 |
SAM | S-adenosylmethionine decarboxylase | CACAATCTGGCATACGAAA AACTCACTTGGCTGGAAAC | 102.8 | 0.998 |
TUA | α-Tubulin | TCCCTTCTTGAGCACACTGAT CCATCAAACCTCAAAGACGCA | 101.7 | 0.995 |
ACT6 | Actin 6 | ACCGAGCGTGGTTATTCTT TTCCTGCTGCTTCCATTCC | 99.3 | 0.995 |
PAL | Phenylalanine Ammonia lyase | ATCGCTGAATCCTCCAATA CCACCCTACTCCACAATACTT | 102.8 | 0.993 |
EF1-β | Elongation factor 1 beta | AAGGCATCCACCAAGAAGA AAGGCAACAATGTCACAGC | 105.0 | 0.996 |
cdc73 | Cell division control protein 73 | TGGTGGCTGTTTTCGTGTT TGATGCCGCTTATTCTTGC | 100.2 | 0.995 |
18S | 18S Ribosomal RNA | CTTCGGGATCGGAGTAATGA GCGGAGTCCTAGAAGCAACA | 102.4 | 0.999 |
Rank | MeJA | ETH | Low Temperature | Control | Total |
---|---|---|---|---|---|
1 | SAM 0.291 | SAM 0.203 | PP2A 0.104 | SAM 0.145 | SAM 0.507 |
2 | PP2A 0.303 | ACT6 0.282 | SAM 0.260 | PP2A 0.210 | cdc73 0.605 |
3 | ACT6 0.310 | cdc73 0.427 | ACT6 0.290 | CYP 0.212 | CYP 0.722 |
4 | cdc73 0.334 | EF1-β 0.443 | cdc73 0.346 | 18S 0.237 | ACT6 0.745 |
5 | 18S 0.434 | CYP 0.547 | GAPDH 0.541 | GAPDH 0.253 | PAL 0.813 |
6 | PAL 0.513 | PP2A 0.653 | 18S 0.542 | TUA 0.273 | PP2A 0.816 |
7 | EF1-β 0.573 | GAPDH 0.665 | CYP 0.807 | PAL 0.277 | EF1-β 0.965 |
8 | CYP 0.621 | PAL 0.674 | PAL 0.865 | cdc73 0.333 | GAPDH 0.965 |
9 | GAPDH 0.753 | 18S 0.958 | EF1-β 1.097 | ACT6 0.341 | 18S 1.289 |
10 | TUA 1.194 | TUA 0.967 | TUA 1.413 | EF1-β 0.521 | TUA 1.403 |
Rank | MeJA | ETH | Low Temperature | Control | Total |
---|---|---|---|---|---|
1 | ACT6 1.32 ± 0.31 | SAM 1.55 ± 0.35 | SAM 1.95 ± 0.50 | SAM 0.62 ± 0.14 | SAM 1.98 ± 0.46 |
2 | cdc73 1.40 ± 0.35 | ACT6 2.01 ± 0.44 | PP2A 2.06 ± 0.51 | PP2A 0.87 ± 0.22 | cdc73 2.17 ± 0.54 |
3 | SAM 1.48 ± 0.33 | cdc73 2.28 ± 0.57 | cdc73 2.29 ± 0.53 | CYP 0.88 ± 0.18 | ACT6 3.03 ± 0.69 |
4 | PP2A 1.55 ± 0.36 | PAL 2.36 ± 0.55 | ACT6 2.45 ± 0.55 | PAL 0.94 ± 0.22 | PP2A 3.38 ± 0.78 |
5 | EF1-β 1.67 ± 0.25 | PP2A 3.09 ± 0.51 | GAPDH 2.66 ± 0.42 | TUA 1.02 ± 0.22 | EF1-β 3.40 ± 0.75 |
6 | PAL 1.70 ± 0.38 | GAPDH 3.16 ± 0.77 | 18S 2.95 ± 0.27 | cdc73 1.04 ± 0.26 | CYP 3.80 ± 0.75 |
7 | GAPDH 2.67 ± 0.65 | CYP 3.20 ± 0.62 | EF1-β 2.97 ± 0.68 | GAPDH 1.12 ± 0.17 | GAPDH 3.82 ± 0.96 |
8 | CYP 3.15 ± 0.63 | EF1-β 3.25 ± 0.69 | PAL 3.12 ± 0.75 | ACT6 1.26 ± 0.29 | PAL 4.26 ± 0.67 |
9 | 18S 3.27 ± 0.30 | TUA 3.74 ± 0.76 | CYP 3.66 ± 0.74 | EF1-β 1.85 ± 0.42 | TUA 5.36 ± 1.15 |
10 | TUA 4.24 ± 0.94 | 18S 7.96 ± 0.87 | TUA 5.23 ± 1.14 | 18S 2.02 ± 0.18 | 18S 9.17 ± 0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mu, D.; Shao, Y.; He, J.; Zhu, L.; Qiu, D.; Wilson, I.W.; Zhang, Y.; Pan, L.; Zhou, Y.; Lu, Y.; et al. Evaluation of Reference Genes for Normalizing RT-qPCR and Analysis of the Expression Patterns of WRKY1 Transcription Factor and Rhynchophylline Biosynthesis-Related Genes in Uncaria rhynchophylla. Int. J. Mol. Sci. 2023, 24, 16330. https://doi.org/10.3390/ijms242216330
Mu D, Shao Y, He J, Zhu L, Qiu D, Wilson IW, Zhang Y, Pan L, Zhou Y, Lu Y, et al. Evaluation of Reference Genes for Normalizing RT-qPCR and Analysis of the Expression Patterns of WRKY1 Transcription Factor and Rhynchophylline Biosynthesis-Related Genes in Uncaria rhynchophylla. International Journal of Molecular Sciences. 2023; 24(22):16330. https://doi.org/10.3390/ijms242216330
Chicago/Turabian StyleMu, Detian, Yingying Shao, Jialong He, Lina Zhu, Deyou Qiu, Iain W. Wilson, Yao Zhang, Limei Pan, Yu Zhou, Ying Lu, and et al. 2023. "Evaluation of Reference Genes for Normalizing RT-qPCR and Analysis of the Expression Patterns of WRKY1 Transcription Factor and Rhynchophylline Biosynthesis-Related Genes in Uncaria rhynchophylla" International Journal of Molecular Sciences 24, no. 22: 16330. https://doi.org/10.3390/ijms242216330
APA StyleMu, D., Shao, Y., He, J., Zhu, L., Qiu, D., Wilson, I. W., Zhang, Y., Pan, L., Zhou, Y., Lu, Y., & Tang, Q. (2023). Evaluation of Reference Genes for Normalizing RT-qPCR and Analysis of the Expression Patterns of WRKY1 Transcription Factor and Rhynchophylline Biosynthesis-Related Genes in Uncaria rhynchophylla. International Journal of Molecular Sciences, 24(22), 16330. https://doi.org/10.3390/ijms242216330