Face and Predictive Validity of MI-RAT (Montreal Induction of Rat Arthritis Testing), a Surgical Model of Osteoarthritis Pain in Rodents Combined with Calibrated Exercise
Abstract
:1. Introduction
2. Results
2.1. Exercise Condition Attenuated Tactile Sensory Sensitivity (Allodynia) in the MI-RAT Model
2.2. Slight Exercise Increases Endogenous Inhibitory Nociceptive Control in the MI-RAT Model
2.3. Slight Exercise Exerts a Destructive Influence on Chondral Lesions in the MI-RAT Model
3. Discussion
- Will pain central sensitization be affected by exercise?
- Will the nociceptive responses to OA pain induction be affected by exercise? In which way?
- Will the structural damages be affected by slight exercise?
- How will exercise-induced analgesia compare to pharmacological multimodal analgesia?
- How will their combination affect responsiveness to treatment?
3.1. Effect of a Calibrated Slight Exercise Training Program on Tactile Sensory Sensitivity, Neuropeptidomics, and Structural Alterations Induced by the Surgical MI-RAT OA Model
3.2. Synergic Effect of Exercise and Analgesia on Pain in the MI-RAT Model
3.3. Validity of the MI-RAT OA Model Coupled to a Calibrated Slight Exercise Protocol
4. Materials and Methods
4.1. Animals
4.2. Experimental Protocol
4.2.1. Induction of OA
4.2.2. Analgesic Treatment and Exercise Protocols
4.3. Functional Assessment of Nociception
Static QST
4.4. Neuropeptidomic Analysis
4.4.1. Spinal Cord Sample Preparation
4.4.2. Chromatographic Conditions
4.4.3. Mass Spectrometry Conditions
4.5. Histological Analysis
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
I. Structural changes (0–10) | |
Normal | 0 |
Surface irregularities (Undulating articular surface but no fibrillation) | 1 |
Minimal mild superficial fibrillation (less than 10% of articular cartilage thickness) < 50% | 2 |
Minimal mild superficial fibrillation (less than 10% of articular cartilage thickness) > 50% | 3 |
Fibrillation/clefts/fissure/loss of articular cartilage involving superficial 1/3 of articular cartilage < 50% | 4 |
Fibrillation/clefts/fissure/loss of articular cartilage involving superficial 1/3 of articular cartilage > 50% | 5 |
Fibrillation/clefts/fissure/loss of articular cartilage involving superficial 1/3 to 2/3 of articular cartilage < 50% | 6 |
Fibrillation/clefts/fissure/loss of articular cartilage involving superficial 1/3 to 2/3 of articular cartilage > 50% | 7 |
Fibrillation/clefts/fissure/loss of articular cartilage involving superficial > 2/3 of articular cartilage < 50% | 8 |
Fibrillation/clefts/fissure/loss of articular cartilage involving superficial > 2/3 of articular cartilage > 50% | 9 |
Fibrillation/clefts/fissure/loss of articular cartilage to subchondral bone | 10 |
II. Safranin O staining (0–6) | |
Normal | 0 |
Loss of staining in superficial zone of articular cartilage involving < 50% | 1 |
Loss of staining in superficial zone of articular cartilage involving ≥ 50% | 2 |
Loss of staining in upper 2/3 of articular cartilage involving < 50% | 3 |
Loss of staining in upper 2/3 of articular cartilage involving ≥ 50% | 4 |
Loss of staining in all the articular cartilage involving < 50% | 5 |
Loss of staining in all the articular cartilage involving > 50% | 6 |
III. Cluster formation (0–3) | |
None | 0 |
<4 clusters | 1 |
≥4 but <8 clusters | 2 |
≥8 clusters | 3 |
IV. Loss of chondrocytes (0–6) | |
Normal | 0 |
Focal chondrocyte loss | 1 |
Loss of chondrocytes in superficial zone < 50% | 2 |
Loss of chondrocytes in superficial zone > 50% | 3 |
Loss of chondrocytes in mid-zone < 50% | 4 |
Loss of chondrocytes in mid-zone > 50% | 5 |
Diffuse loss of chondrocytes | 6 |
References
- Chen, D.; Shen, J.; Zhao, W.; Wang, T.; Han, L.; Hamilton, J.L.; Im, H.J. Osteoarthritis: Toward a comprehensive understanding of pathological mechanism. Bone Res. 2017, 5, 16044. [Google Scholar] [CrossRef]
- Vina, E.R.; Kwoh, C.K. Epidemiology of osteoarthritis: Literature update. Curr. Opin. Rheumatol. 2018, 30, 160–167. [Google Scholar] [CrossRef]
- Healey, J.H.; Vigorita, V.J.; Lane, J.M. The coexistence and characteristics of osteoarthritis and osteoporosis. J. Bone Joint Surg. Am. 1985, 67, 586–592. [Google Scholar] [CrossRef]
- Neogi, T. The epidemiology and impact of pain in osteoarthritis. Osteoarthr. Cartil. 2013, 21, 1145–1153. [Google Scholar] [CrossRef]
- Bannuru, R.R.; Osani, M.C.; Vaysbrot, E.E.; Arden, N.K.; Bennell, K.; Bierma-Zeinstra, S.M.A.; Kraus, V.B.; Lohmander, L.S.; Abbott, J.H.; Bhandari, M.; et al. OARSI guidelines for the non-surgical management of knee, hip, and polyarticular osteoarthritis. Osteoarthr. Cartil. 2019, 27, 1578–1589. [Google Scholar] [CrossRef]
- Kolasinski, S.L.; Neogi, T.; Hochberg, M.C.; Oatis, C.; Guyatt, G.; Block, J.; Callahan, L.; Copenhaver, C.; Dodge, C.; Felson, D.; et al. 2019 American College of Rheumatology/Arthritis Foundation Guideline for the Management of Osteoarthritis of the Hand, Hip, and Knee. Arthritis Rheumatol. 2020, 72, 220–233. [Google Scholar] [CrossRef]
- Lampropoulou-Adamidou, K.; Lelovas, P.; Karadimas, E.V.; Liakou, C.; Triantafillopoulos, I.K.; Dontas, I.; Papaioannou, N.A. Useful animal models for the research of osteoarthritis. Eur. J. Orthop. Surg. Traumatol. 2014, 24, 263–271. [Google Scholar] [CrossRef]
- Felson, D.T.; Zhang, Y. An update on the epidemiology of knee and hip osteoarthritis with a view to prevention. Arthritis Rheum. 1998, 41, 1343–1355. [Google Scholar] [CrossRef]
- Nguyen, C.; Lefevre-Colau, M.M.; Poiraudeau, S.; Rannou, F. Rehabilitation (exercise and strength training) and osteoarthritis: A critical narrative review. Ann. Phys. Rehabil. Med. 2016, 59, 190–195. [Google Scholar] [CrossRef]
- Goh, S.L.; Persson, M.S.M.; Stocks, J.; Hou, Y.; Lin, J.; Hall, M.C.; Doherty, M.; Zhang, W. Efficacy and potential determinants of exercise therapy in knee and hip osteoarthritis: A systematic review and meta-analysis. Ann. Phys. Rehabil. Med. 2019, 62, 356–365. [Google Scholar] [CrossRef]
- Huang, M.H.; Lin, Y.S.; Yang, R.C.; Lee, C.L. A comparison of various therapeutic exercises on the functional status of patients with knee osteoarthritis. Semin. Arthritis Rheum. 2003, 32, 398–406. [Google Scholar] [CrossRef]
- Leitzelar, B.N.; Koltyn, K.F. Exercise and Neuropathic Pain: A General Overview of Preclinical and Clinical Research. Sports Med. Open 2021, 7, 21. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.B.; Chen, B.L.; Wang, Y.; Zhu, Y.; Song, G.; Yang, Z.; Zheng, Y.L.; Wang, X.Q.; Chen, P.J. Meta-Analysis of the Effect of Exercise on Neuropathic Pain Induced by Peripheral Nerve Injury in Rat Models. Front. Neurol. 2019, 10, 636. [Google Scholar] [CrossRef]
- Galdino, G.S.; Duarte, I.D.; Perez, A.C. Participation of endogenous opioids in the antinociception induced by resistance exercise in rats. Braz. J. Med. Biol. Res. 2010, 43, 906–909. [Google Scholar] [CrossRef]
- Galdino, G.S.; Cortes, S.F.; Duarte, I.D.; Perez, A.C. Involvement of the nitric oxide/(C)GMP/K(ATP) pathway in antinociception induced by exercise in rats. Life Sci. 2010, 86, 505–509. [Google Scholar] [CrossRef]
- de Souza, G.G.; Duarte, I.D.; de Castro Perez, A. Differential involvement of central and peripheral alpha2 adrenoreceptors in the antinociception induced by aerobic and resistance exercise. Anesth. Analg. 2013, 116, 703–711. [Google Scholar] [CrossRef]
- Cobianchi, S.; Casals-Diaz, L.; Jaramillo, J.; Navarro, X. Differential effects of activity dependent treatments on axonal regeneration and neuropathic pain after peripheral nerve injury. Exp. Neurol. 2013, 240, 157–167. [Google Scholar] [CrossRef]
- Mercken, E.M.; Carboneau, B.A.; Krzysik-Walker, S.M.; de Cabo, R. Of mice and men: The benefits of caloric restriction, exercise, and mimetics. Ageing Res. Rev. 2012, 11, 390–398. [Google Scholar] [CrossRef]
- Griffin, T.M.; Huebner, J.L.; Kraus, V.B.; Yan, Z.; Guilak, F. Induction of osteoarthritis and metabolic inflammation by a very high-fat diet in mice: Effects of short-term exercise. Arthritis Rheum. 2012, 64, 443–453. [Google Scholar] [CrossRef]
- Iijima, H.; Aoyama, T.; Ito, A.; Yamaguchi, S.; Nagai, M.; Tajino, J.; Zhang, X.; Kuroki, H. Effects of short-term gentle treadmill walking on subchondral bone in a rat model of instability-induced osteoarthritis. Osteoarthr. Cartil. 2015, 23, 1563–1574. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Y.; Kong, Y.; Zhang, X.; Bai, L. The effects of different frequency treadmill exercise on lipoxin A4 and articular cartilage degeneration in an experimental model of monosodium iodoacetate-induced osteoarthritis in rats. PLoS ONE 2017, 12, e0179162. [Google Scholar] [CrossRef] [PubMed]
- Boudenot, A.; Presle, N.; Uzbekov, R.; Toumi, H.; Pallu, S.; Lespessailles, E. Effect of interval-training exercise on subchondral bone in a chemically-induced osteoarthritis model. Osteoarthr. Cartil. 2014, 22, 1176–1185. [Google Scholar] [CrossRef] [PubMed]
- Galois, L.; Etienne, S.; Grossin, L.; Watrin-Pinzano, A.; Cournil-Henrionnet, C.; Loeuille, D.; Netter, P.; Mainard, D.; Gillet, P. Dose-response relationship for exercise on severity of experimental osteoarthritis in rats: A pilot study. Osteoarthr. Cartil. 2004, 12, 779–786. [Google Scholar] [CrossRef] [PubMed]
- Brito, R.G.; Rasmussen, L.A.; Sluka, K.A. Regular physical activity prevents development of chronic muscle pain through modulation of supraspinal opioid and serotonergic mechanisms. Pain Rep. 2017, 2, e618. [Google Scholar] [CrossRef]
- Derue, H.; Ribeiro-da-Silva, A. Therapeutic exercise interventions in rat models of arthritis. Neurobiol. Pain 2023, 13, 100130. [Google Scholar] [CrossRef]
- Gervais, J.A.; Otis, C.; Lussier, B.; Guillot, M.; Martel-Pelletier, J.; Pelletier, J.P.; Beaudry, F.; Troncy, E. Osteoarthritic pain model influences functional outcomes and spinal neuropeptidomics: A pilot study in female rats. Can. J. Vet. 2019, 83, 133–141. [Google Scholar]
- Keita-Alassane, S.; Otis, C.; Bouet, E.; Guillot, M.; Frezier, M.; Delsart, A.; Moreau, M.; Bedard, A.; Gaumond, I.; Pelletier, J.P.; et al. Estrogenic impregnation alters pain expression: Analysis through functional neuropeptidomics in a surgical rat model of osteoarthritis. Naunyn Schmiedebergs Arch. Pharmacol. 2022, 395, 703–715. [Google Scholar] [CrossRef]
- Otis, C.; Gervais, J.; Guillot, M.; Gervais, J.A.; Gauvin, D.; Pethel, C.; Authier, S.; Dansereau, M.A.; Sarret, P.; Martel-Pelletier, J.; et al. Concurrent validity of different functional and neuroproteomic pain assessment methods in the rat osteoarthritis monosodium iodoacetate (MIA) model. Arthritis Res. Ther. 2016, 18, 150. [Google Scholar] [CrossRef]
- Otis, C.; Guillot, M.; Moreau, M.; Martel-Pelletier, J.; Pelletier, J.P.; Beaudry, F.; Troncy, E. Spinal neuropeptide modulation, functional assessment and cartilage lesions in a monosodium iodoacetate rat model of osteoarthritis. Neuropeptides 2017, 65, 56–62. [Google Scholar] [CrossRef]
- Otis, C.; Guillot, M.; Moreau, M.; Pelletier, J.P.; Beaudry, F.; Troncy, E. Sensitivity of functional targeted neuropeptide evaluation in testing pregabalin analgesic efficacy in a rat model of osteoarthritis pain. Clin. Exp. Pharmacol. Physiol. 2019, 46, 723–733. [Google Scholar] [CrossRef]
- Staud, R.; Craggs, J.G.; Robinson, M.E.; Perlstein, W.M.; Price, D.D. Brain activity related to temporal summation of C-fiber evoked pain. Pain 2007, 129, 130–142. [Google Scholar] [CrossRef] [PubMed]
- Meeus, M.; Nijs, J.; Van de Wauwer, N.; Toeback, L.; Truijen, S. Diffuse noxious inhibitory control is delayed in chronic fatigue syndrome: An experimental study. Pain 2008, 139, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Carlson, C.S.; Guilak, F.; Vail, T.P.; Gardin, J.F.; Kraus, V.B. Synovial fluid biomarker levels predict articular cartilage damage following complete medial meniscectomy in the canine knee. J. Orthop. Res. 2002, 20, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Latremoliere, A.; Woolf, C.J. Central sensitization: A generator of pain hypersensitivity by central neural plasticity. J. Pain 2009, 10, 895–926. [Google Scholar] [CrossRef]
- Bar, K.J.; Schurigt, U.; Scholze, A.; Segond Von Banchet, G.; Stopfel, N.; Brauer, R.; Halbhuber, K.J.; Schaible, H.G. The expression and localization of somatostatin receptors in dorsal root ganglion neurons of normal and monoarthritic rats. Neuroscience 2004, 127, 197–206. [Google Scholar] [CrossRef]
- Pinter, E.; Helyes, Z.; Szolcsanyi, J. Inhibitory effect of somatostatin on inflammation and nociception. Pharmacol. Ther. 2006, 112, 440–456. [Google Scholar] [CrossRef]
- Gatenholm, B.; Brittberg, M. Neuropeptides: Important regulators of joint homeostasis. Knee Surg. Sports Traumatol. Arthrosc. 2018, 27, 942–949. [Google Scholar] [CrossRef]
- Abd El-Aleem, S.A.; Morales-Aza, B.M.; McQueen, D.S.; Donaldson, L.F. Inflammation alters somatostatin mRNA expression in sensory neurons in the rat. Eur. J. Neurosci. 2005, 21, 135–141. [Google Scholar] [CrossRef]
- Calixto, J.B.; Cabrini, D.A.; Ferreira, J.; Campos, M.M. Kinins in pain and inflammation. Pain 2000, 87, 1–5. [Google Scholar] [CrossRef]
- Dray, A.; Perkins, M. Bradykinin and inflammatory pain. Trends Neurosci. 1993, 16, 99–104. [Google Scholar] [CrossRef]
- Meini, S.; Maggi, C.A. Knee osteoarthritis: A role for bradykinin? Inflamm. Res. 2008, 57, 351–361. [Google Scholar] [CrossRef]
- Dalmolin, G.D.; Silva, C.R.; Belle, N.A.; Rubin, M.A.; Mello, C.F.; Calixto, J.B.; Ferreira, J. Bradykinin into amygdala induces thermal hyperalgesia in rats. Neuropeptides 2007, 41, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Todd, A.J.; Polgar, E.; Watt, C.; Bailey, M.E.; Watanabe, M. Neurokinin 1 receptor-expressing projection neurons in laminae III and IV of the rat spinal cord have synaptic AMPA receptors that contain GluR2, GluR3 and GluR4 subunits. Eur. J. Neurosci. 2009, 29, 718–726. [Google Scholar] [CrossRef] [PubMed]
- Cesare, P.; Dekker, L.V.; Sardini, A.; Parker, P.J.; McNaughton, P.A. Specific involvement of PKC-epsilon in sensitization of the neuronal response to painful heat. Neuron 1999, 23, 617–624. [Google Scholar] [CrossRef] [PubMed]
- Jeftinija, S. Bradykinin excites tetrodotoxin-resistant primary afferent fibers. Brain Res. 1994, 665, 69–76. [Google Scholar] [CrossRef]
- Wang, H.; Kohno, T.; Amaya, F.; Brenner, G.J.; Ito, N.; Allchorne, A.; Ji, R.R.; Woolf, C.J. Bradykinin produces pain hypersensitivity by potentiating spinal cord glutamatergic synaptic transmission. J. Neurosci. 2005, 25, 7986–7992. [Google Scholar] [CrossRef] [PubMed]
- Appleton, C.T.; McErlain, D.D.; Pitelka, V.; Schwartz, N.; Bernier, S.M.; Henry, J.L.; Holdsworth, D.W.; Beier, F. Forced mobilization accelerates pathogenesis: Characterization of a preclinical surgical model of osteoarthritis. Arthritis Res. Ther. 2007, 9, R13. [Google Scholar] [CrossRef]
- Kohno, T.; Wang, H.; Amaya, F.; Brenner, G.J.; Cheng, J.K.; Ji, R.R.; Woolf, C.J. Bradykinin enhances AMPA and NMDA receptor activity in spinal cord dorsal horn neurons by activating multiple kinases to produce pain hypersensitivity. J. Neurosci. 2008, 28, 4533–4540. [Google Scholar] [CrossRef]
- Janal, M.N. Pain sensitivity, exercise and stoicism. J. R. Soc. Med. 1996, 89, 376–381. [Google Scholar] [CrossRef]
- Koltyn, K.F. Analgesia following exercise: A review. Sports Med. 2000, 29, 85–98. [Google Scholar] [CrossRef]
- O’Connor, P.J.; Cook, D.B. Exercise and pain: The neurobiology, measurement, and laboratory study of pain in relation to exercise in humans. Exerc. Sport Sci. Rev. 1999, 27, 119–166. [Google Scholar] [PubMed]
- Droste, C.; Greenlee, M.W.; Schreck, M.; Roskamm, H. Experimental pain thresholds and plasma beta-endorphin levels during exercise. Med. Sci. Sports Exerc. 1991, 23, 334–342. [Google Scholar] [CrossRef] [PubMed]
- Haier, R.J.; Quaid, K.; Mills, J.C. Naloxone alters pain perception after jogging. Psychiatry Res. 1981, 5, 231–232. [Google Scholar] [CrossRef]
- Shyu, B.C.; Andersson, S.A.; Thoren, P. Endorphin mediated increase in pain threshold induced by long-lasting exercise in rats. Life Sci. 1982, 30, 833–840. [Google Scholar] [CrossRef] [PubMed]
- Na, S.S.; Kim, S.G.; Yong, M.S.; Hwangbo, G. Study of treadmill exercise effect on rats with osteoarthritis using proteomic analysis. J. Phys. Ther. Sci. 2014, 26, 487–490. [Google Scholar] [CrossRef] [PubMed]
- Nam, J.; Perera, P.; Liu, J.; Wu, L.C.; Rath, B.; Butterfield, T.A.; Agarwal, S. Transcriptome-wide gene regulation by gentle treadmill walking during the progression of monoiodoacetate-induced arthritis. Arthritis Rheum. 2011, 63, 1613–1625. [Google Scholar] [CrossRef] [PubMed]
- Cifuentes, D.J.; Rocha, L.G.; Silva, L.A.; Brito, A.C.; Rueff-Barroso, C.R.; Porto, L.C.; Pinho, R.A. Decrease in oxidative stress and histological changes induced by physical exercise calibrated in rats with osteoarthritis induced by monosodium iodoacetate. Osteoarthr. Cartil. 2010, 18, 1088–1095. [Google Scholar] [CrossRef]
- Allen, J.; Imbert, I.; Havelin, J.; Henderson, T.; Stevenson, G.; Liaw, L.; King, T. Effects of Treadmill Exercise on Advanced Osteoarthritis Pain in Rats. Arthritis Rheumatol. 2017, 69, 1407–1417. [Google Scholar] [CrossRef]
- Elsaid, K.A.; Zhang, L.; Waller, K.; Tofte, J.; Teeple, E.; Fleming, B.C.; Jay, G.D. The impact of forced joint exercise on lubricin biosynthesis from articular cartilage following ACL transection and intra-articular lubricin’s effect in exercised joints following ACL transection. Osteoarthr. Cartil. 2012, 20, 940–948. [Google Scholar] [CrossRef]
- Iijima, H.; Aoyama, T.; Ito, A.; Tajino, J.; Yamaguchi, S.; Nagai, M.; Kiyan, W.; Zhang, X.; Kuroki, H. Exercise intervention increases expression of bone morphogenetic proteins and prevents the progression of cartilage-subchondral bone lesions in a post-traumatic rat knee model. Osteoarthr. Cartil. 2016, 24, 1092–1102. [Google Scholar] [CrossRef]
- Iijima, H.; Aoyama, T.; Tajino, J.; Ito, A.; Nagai, M.; Yamaguchi, S.; Zhang, X.; Kiyan, W.; Kuroki, H. Subchondral plate porosity colocalizes with the point of mechanical load during ambulation in a rat knee model of post-traumatic osteoarthritis. Osteoarthr. Cartil. 2016, 24, 354–363. [Google Scholar] [CrossRef]
- Iijima, H.; Ito, A.; Nagai, M.; Tajino, J.; Yamaguchi, S.; Kiyan, W.; Nakahata, A.; Zhang, J.; Wang, T.; Aoyama, T.; et al. Physiological exercise loading suppresses post-traumatic osteoarthritis progression via an increase in bone morphogenetic proteins expression in an experimental rat knee model. Osteoarthr. Cartil. 2017, 25, 964–975. [Google Scholar] [CrossRef]
- Lozoya, K.A.; Flores, J.B. A novel rat osteoarthrosis model to assess apoptosis and matrix degradation. Pathol. Res. Pract. 2000, 196, 729–745. [Google Scholar] [CrossRef]
- Galois, L. Moderate-impact exercise is associated with decreased severity of experimental osteoarthritis in rats. Rheumatology 2003, 42, 692–693. [Google Scholar] [CrossRef] [PubMed]
- Assis, L.; Milares, L.P.; Almeida, T.; Tim, C.; Magri, A.; Fernandes, K.R.; Medalha, C.; Renno, A.C. Aerobic exercise training and low-level laser therapy modulate inflammatory response and degenerative process in an experimental model of knee osteoarthritis in rats. Osteoarthr. Cartil. 2016, 24, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Sandell, L.J.; Aigner, T. Articular cartilage and changes in arthritis. An introduction: Cell biology of osteoarthritis. Arthritis Res. 2001, 3, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Ferland, C.E.; Laverty, S.; Beaudry, F.; Vachon, P. Gait analysis and pain response of two rodent models of osteoarthritis. Pharmacol. Biochem. Behav. 2011, 97, 603–610. [Google Scholar] [CrossRef] [PubMed]
- Hayami, T.; Pickarski, M.; Zhuo, Y.; Wesolowski, G.A.; Rodan, G.A.; Duong, L.T. Characterization of articular cartilage and subchondral bone changes in the rat anterior cruciate ligament transection and meniscectomized models of osteoarthritis. Bone 2006, 38, 234–243. [Google Scholar] [CrossRef]
- Appleton, C.T.; McErlain, D.D.; Henry, J.L.; Holdsworth, D.W.; Beier, F. Molecular and histological analysis of a new rat model of experimental knee osteoarthritis. Ann. N. Y. Acad. Sci. 2007, 1117, 165–174. [Google Scholar] [CrossRef]
- Kim, J.L.; Moon, C.W.; Son, Y.S.; Kim, S.J. Combined Effect of Bilateral Ovariectomy and Anterior Cruciate Ligament Transection With Medial Meniscectomy on the Development of Osteoarthritis Model. Ann. Rehabil. Med. 2016, 40, 583–591. [Google Scholar] [CrossRef]
- van der Kraan, P.M.; van den Berg, W.B. Chondrocyte hypertrophy and osteoarthritis: Role in initiation and progression of cartilage degeneration? Osteoarthr. Cartil. 2012, 20, 223–232. [Google Scholar] [CrossRef]
- Klinck, M.P.; Mogil, J.S.; Moreau, M.; Lascelles, B.D.X.; Flecknell, P.A.; Poitte, T.; Troncy, E. Translational pain assessment: Could natural animal models be the missing link? Pain 2017, 158, 1633–1646. [Google Scholar] [CrossRef]
- Badley, E.M.; Wilfong, J.M.; Zahid, S.; Perruccio, A.V. The Status of Arthritis in Canada: National Report; The Canadian Arthritis Society, Arthritis Community Research and Evaluation Unit: Toronto, ON, Canada, 2021; pp. 1–34. [Google Scholar]
- Mogil, J.S. Qualitative sex differences in pain processing: Emerging evidence of a biased literature. Nat. Rev. Neurosci. 2020, 21, 353–365. [Google Scholar] [CrossRef]
- Paige, C.; Plasencia-Fernandez, I.; Kume, M.; Papalampropoulou-Tsiridou, M.; Lorenzo, L.E.; David, E.T.; He, L.; Mejia, G.L.; Driskill, C.; Ferrini, F.; et al. A Female-Specific Role for Calcitonin Gene-Related Peptide (CGRP) in Rodent Pain Models. J. Neurosci. 2022, 42, 1930–1944. [Google Scholar] [CrossRef]
- Tokumoto, M.; Nakasa, T.; Nekomoto, A.; Ishikawa, M.; Ikuta, Y.; Miyaki, S.; Adachi, N. Expression of calcitonin gene-related peptide induces ligament degeneration through endochondral ossification in osteoarthritis. Int. J. Rheum. Dis. 2023. online ahead of print. [Google Scholar] [CrossRef]
- Rahman, W.; Bauer, C.S.; Bannister, K.; Vonsy, J.L.; Dolphin, A.C.; Dickenson, A.H. Descending serotonergic facilitation and the antinociceptive effects of pregabalin in a rat model of osteoarthritic pain. Mol. Pain 2009, 5, 45. [Google Scholar] [CrossRef]
- Poole, D.C.; Copp, S.W.; Colburn, T.D.; Craig, J.C.; Allen, D.L.; Sturek, M.; O’Leary, D.S.; Zucker, I.H.; Musch, T.I. Guidelines for animal exercise and training protocols for cardiovascular studies. Am. J. Physiol. Heart Circ. Physiol. 2020, 318, H1100–H1138. [Google Scholar] [CrossRef]
- Cruz-Almeida, Y.; Fillingim, R.B. Can Quantitative Sensory Testing Move Us Closer to Mechanism-Based Pain Management? Pain Med. 2013, 15, 61–72. [Google Scholar] [CrossRef]
- Colombo, C.; Butler, M.; Hickman, L.; Selwyn, M.; Chart, J.; Steinetz, B. A new model of osteoarthritis in rabbits. II. Evaluation of anti-osteoarthritic effects of selected antirheumatic drugs administered systemically. Arthritis Rheum. 1983, 26, 1132–1139. [Google Scholar] [CrossRef]
- Gerwin, N.; Bendele, A.M.; Glasson, S.; Carlson, C.S. The OARSI histopathology initiative—recommendations for histological assessments of osteoarthritis in the rat. Osteoarthr. Cartil. 2010, 18 (Suppl. 3), S24–S34. [Google Scholar] [CrossRef]
Experimental Groups a | Neuropeptides (fmol/mg) | |||||
---|---|---|---|---|---|---|
SP | CGRP | BK | SST | Met-ENK | Leu-ENK | |
Naïve–OVX | 79.9 | 451.7 | 237.9 | 324.6 | 73.2 | 55.2 |
(75.0; 83.0) | (370.3; 532.4) | (187.3; 262.3) | (295.5; 466.1) | (62.3; 78.1) | (51.5; 61.7) | |
Sedentary–Placebo | 123.9 * | 596.1 * | 199.1 | 352.5 | 68.0 | 46.8 |
(98.5; 209.0) | (464.5; 679.0) | (162.7; 240.5) | (286.2; 439.2) | (45.1; 90.7) | (30.4; 63.2) | |
Exercise–Placebo | 102.4 *,** | 498.0 | 312.78 *,** | 419.9 | 97.5 *,** | 74.9 *,** |
(91.9; 115.3) | (447.4; 664.8) | (273.0; 354.3) | (345.9; 429.4) | (93.1; 108.8) | (68.6; 79.9) | |
Sedentary–PA | 88.6 *** | 576.4 * | 254.8 *** | 347.0 | 62.9 * | 62.2 |
(58.5; 119.6) | (488.2; 620.0) | (195.0; 349.0) | (286.4; 489.0) | (42.3; 70.1) | (40.0; 81.4) | |
Exercise–PA | 77.2 ¥,§ | 399.9 ¥,§,Ŧ | 263.0 ¥ | 334.1 § | 82.3 ¥,§,Ŧ | 59.6 ¥,§ |
(54.7; 81.3) | (364.6; 469.9) | (204.0; 322.4) | (305.6; 344.4) | (72.8; 90.6) | (48.2; 67.4) |
a Experimental Groups | b mMs (%) | |
---|---|---|
Mean (%) | SD (%) | |
Total cartilage alterations (%) | ||
Exercise–Placebo | 35.7 | 10.9 |
Exercise–PA | 31.0 | 6.0 |
Mean Exercise groups | 33.3 | 4.4 |
Sedentary–Placebo | 11.2 | 7.5 |
Sedentary–PA | 13.0 | 9.7 |
Mean Sedentary groups | 12.0 | 4.2 |
Cartilage alterations (%) for each criteria | ||
Exercise groups | ||
Chondral lesions | 41.5 | 12.8 |
Proteoglycan loss | 46.2 | 12.8 |
Cluster formation | 36.1 | 10.6 |
Chondrocyte loss | 5.6 | 7.6 |
Sedentary groups | ||
Chondral lesions | 10.4 | 8.1 |
Proteoglycan loss | 13.9 | 9.7 |
Cluster formation | 1.4 | 4.7 |
Chondrocyte loss | 18.1 | 13.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Otis, C.; Bouet, E.; Keita-Alassane, S.; Frezier, M.; Delsart, A.; Guillot, M.; Bédard, A.; Pelletier, J.-P.; Martel-Pelletier, J.; Lussier, B.; et al. Face and Predictive Validity of MI-RAT (Montreal Induction of Rat Arthritis Testing), a Surgical Model of Osteoarthritis Pain in Rodents Combined with Calibrated Exercise. Int. J. Mol. Sci. 2023, 24, 16341. https://doi.org/10.3390/ijms242216341
Otis C, Bouet E, Keita-Alassane S, Frezier M, Delsart A, Guillot M, Bédard A, Pelletier J-P, Martel-Pelletier J, Lussier B, et al. Face and Predictive Validity of MI-RAT (Montreal Induction of Rat Arthritis Testing), a Surgical Model of Osteoarthritis Pain in Rodents Combined with Calibrated Exercise. International Journal of Molecular Sciences. 2023; 24(22):16341. https://doi.org/10.3390/ijms242216341
Chicago/Turabian StyleOtis, Colombe, Emilie Bouet, Sokhna Keita-Alassane, Marilyn Frezier, Aliénor Delsart, Martin Guillot, Agathe Bédard, Jean-Pierre Pelletier, Johanne Martel-Pelletier, Bertrand Lussier, and et al. 2023. "Face and Predictive Validity of MI-RAT (Montreal Induction of Rat Arthritis Testing), a Surgical Model of Osteoarthritis Pain in Rodents Combined with Calibrated Exercise" International Journal of Molecular Sciences 24, no. 22: 16341. https://doi.org/10.3390/ijms242216341
APA StyleOtis, C., Bouet, E., Keita-Alassane, S., Frezier, M., Delsart, A., Guillot, M., Bédard, A., Pelletier, J. -P., Martel-Pelletier, J., Lussier, B., Beaudry, F., & Troncy, E. (2023). Face and Predictive Validity of MI-RAT (Montreal Induction of Rat Arthritis Testing), a Surgical Model of Osteoarthritis Pain in Rodents Combined with Calibrated Exercise. International Journal of Molecular Sciences, 24(22), 16341. https://doi.org/10.3390/ijms242216341