Intravital Microscopy of Lipopolysaccharide-Induced Inflammatory Changes in Different Organ Systems—A Scoping Review
Abstract
:1. Introduction
2. Intravital Imaging of the Brain
2.1. Methods
2.2. Results
Animal Strain | Dosage of LPS | Readout | Result | References |
---|---|---|---|---|
C57BL/6J mice | 1 mg/kg, i.v. | Neutrophil and platelet recruitment in postcapillary venules. | LPS induced neutrophil and platelet recruitment in the brain. Both cell types were seen adhering to the vascular endothelium. | [24] |
C57BL/6J mice, male and female | 10 μg/mouse, i.p. | Leukocyte adherence, emigration, and rolling velocity in the cerebral vascular bed. | LPS significantly increased leukocyte adherence and rolling velocity. | [32] |
C57BL/6J mice, male | 7.5 mg/kg/h over two hours, i.v. | Leukocyte adherence and vascular permeability in cerebral venules at 0, 1, 2, 4, and 24 h. | LPS significantly increased leukocyte adherence by the 2 h timepoint. which did not recover by the 24 h timepoint. Additionally, LPS significantly increased vascular permeability. | [30] |
C57BL/6J mice, male | 2 μL of 2 μg LPS, intracerebroventricular injection | Leukocyte rolling flux and adhesion in postcapillary venules. | LPS significantly increased leukocyte rolling flux and adhesion compared to saline control. | [19] |
C57BL/6J mice, male | 2 μL of 2 μg LPS, intracerebroventricular injection | Leukocyte rolling flux and adhesion in postcapillary venules. | LPS significantly increased leukocyte rolling flux and adhesion compared to saline control. | [27] |
C57BL/6J mice, male | LPS 6 mg/kg, i.p. | Leukocyte adhesion in brain endothelium at 0, 4, and 24 h. | LPS increased leukocyte adhesion from baseline by ≈50-fold at 4 h, decreasing to a ≈35-fold increase by 24 h. | [28] |
C57BL/6J mice, male | LPS 6 mg/kg, i.p. | Leukocyte adhesion in brain endothelium at 0, 4, and 24 h. | LPS increased leukocyte adhesion from baseline by ≈30-fold increase, decreasing to an ≈18-fold increase by 24 h. | [29] |
Lewis rats, male | LPS 5 mg/kg, i.v. | Leukocyte adhesion, roller flow in pial vessels, and functional capillary density (FCD). | LPS administration significantly increased leukocyte adhesion. Furthermore, LPS significantly decreased roller flow and FCD. | [18] |
C57BL/6J mice | LPS 1 mg/kg, i.v. | Leukocyte margination in subpial vessels. | LPS significantly increased the density of marginated leukocytes. | [25] |
C57BL/6J mice | Three doses of LPS 10 μg/40 μL, i.n. | Neutrophil and blood–brain barrier permeability. | LPS signficantly increased neutrophil adhesion and extravastion into the parenchyma. | [31] |
3. Intravital Imagining of the Intestines
3.1. Methods
3.2. Results
Animal Strain | Dosage of LPS | Readout | Result | References |
---|---|---|---|---|
Male Wistar rats | i.v. infusion of LPS (E. coli), (5 mg/mL stock in saline) administered via the jugular vein at 4 mg/kg/h rate | Leukocyte adhesion, vascular leakage and venular wall shear rate. | LPS increased leukocyte adhesion. LPS infusion caused a significant increase in macromolecular leakage, decreased venular wall shear rate | [38] |
Rats | LPS (E. coli) (5 mg/kg); i.v. | Leukocyte adhesion and FCD in the muscle layer and mucosa | LPS increased leukocyte adhesion. LPS decreased FCD in longitudinal muscle layer, circular muscle layer, and mucosa. | [36] |
Lewis rats | LPS (5 mg/kg), i.v. | Leukocyte adhesion and FCD in the muscle layer and mucosa | LPS increased leukocyte adhesion. LPS decreased FCD in the longitudinal muscle layer, circular muscle layer, and mucosa. LPS increased non-functional capillaries. | [37] |
Transgenic mice with 129/SvJ background | LPS (E. coli) (0.5 mg/kg); i.p. | Leukocyte adherence, rolling, and epithelial barrier permeability. | LPS increased adhesion but decreased number of rolling leukocytes and increased neutrophil infiltration into the intestinal tissue. LPS increased epithelial barrier permeability. | [42] |
C57BL/6J mice | LPS (E. coli) (0.5 mg/kg); i.p. | Leukocyte rolling and adhesion. | LPS increased rolling neutrophils and adherent neutrophils 4 h after administration. | [41] |
C57BL/6 mice | LPS (E. coli), (20 mg/kg); i.p. | Leukocyte rolling and adhesion. Intestinal permeability, vessel diameter, and blood flow. | LPS increased leukocyte adhesion and rolling. LPS increased intestinal permeability and vessel diameter. LPS decreased blood flow. | [40] |
Sprague ± Dawley rats | LPS (E. coli), 15 mg/kg via jugular vein | Leukocyte rolling velocity and adhesion. | LPS increased adhesion and migration of leukocytes. LPS decreased rolling velocity. | [43] |
Lewis rats | LPS (E. coli) (5 mg/kg); i.v. | Leukocyte adhesion and rolling. FCD in the muscle layer and mucosa. | LPS increased leukocyte adhesion and decreased rolling. LPS decreased FCD with an increase in number of dysfunctional capillaries in muscularis longitudinalis/circularis, and mucosa. | [44] |
C57BL/6 mice | LPS (E. coli or K. pneumoniae), (5 mg/kg); i.v. | Leukocyte adhesion and FCD in the muscle layer and mucosa. | LPS increased leukocyte adhesion and decreased FCD. | [35] |
Wistar Kyoto rats | LPS (E. coli), (2 mg/kg); i.v. | FCD of the muscle layer | LPS had no significant difference in FCD. | [45] |
Sprague-Dawley rats | endotoxin (S. abortus equi), (0.5–2.0 mg/kg); | Leukocyte rolling and adhesion in the mucosa, submuscosa, and muscularis. | LPS had no effect on adhesion or rolling of leukocytes in the mucosa. Low-level adhesion and significantly increased rolling leukocytes were found in submucosa and muscularis. | [39] |
Sprague-Dawley rats | LPS (E. coli), (10 mg/kg); i.v. | Leukocyte rolling and adhesion. Circulating platelets. | LPS increased rolling and firm adhesion of leukocytes. LPS decreased circulating platelets. | [46] |
4. Intravital Imaging of the Bladder
4.1. Methods
4.2. Results
Animal Strain | Dosage of LPS | Readout | Results | References |
---|---|---|---|---|
Female CD-1 (i.p.) Female BALB/c (intravesical) | 20 mg/kg i.p. 0.375 mg/kg intravesical held for 30 min | Leukocyte adhesion and functional capillary density | i.p. and intravesical LPS significantly increased adhesion and decreased FCD. | [49] |
Female BALB/c | 0.375 mg/kg intravesical held for 30 min | Leukocyte adhesion and functional capillary density | LPS significantly increased adhesion. LPS decreased FCD, but not significantly. | [6] |
Female C57BL/6 | 0.1, 1.0, 5.0, or 7.0 mg/kg intravesical held for 15 min | Leukocyte adhesion and rolling | 5 and 7 mg/kg LPS significantly increased adhesion and rolling after 5 h. LPS from P. aeruginosa took longer to increase adhesion when compared to LPS from E. coli and did not significantly increase rolling. | [47] |
5. Intravital Imaging of the Lungs
5.1. Methods
5.2. Results
Animal Strain | Dosage of LPS | Readout | Results | References |
---|---|---|---|---|
C57BL/6 mice | 2 mg/kg, i.v. or i.t. | Leukocyte rolling and trapping | Local LPS significantly increased leukocyte rolling but only marginally increased after systemic LPS. Systemic LPS significantly increased leukocyte trapping in capillaries. | [59] |
Hamsters | 10 mg/kg, i.t. | Leukocyte rolling adhesion | LPS significantly increased leukocyte rolling and adhesion on the endothelium. | [60] |
C57BL/6 mice | 5 mg/kg, i.n. | Leukocyte adhesion, rolling and FCD | LPS significantly increased venular leukocyte adhesion. No significant change was seen in leukocyte rolling or FCD. | [34] |
BALB/c mice | 10 μg/mouse, i.n. | Leukocyte adhesion and rolling | LPS significantly increased leukocyte rolling and adhesion to the vascular wall. | [61] |
BALB/c mice | 5 mg/kg, i.n. | Platelet adhesion | LPS significantly increased platelet adhesion in the lung microvascualture, | [62] |
C57BL/6 | 500 μg/mL LPS inhaled for 30 min at a flow rate of 15 mL/min | Glcocalyx width | LPS significantly decreased the width of vascular glycocalyx. | [64] |
6. Limitations and Recommendations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lindon, J.C.; Tranter, G.E.; Koppenaal, D.W. Encyclopedia of Spectroscopy and Spectrometry; Elsevier/AP: Amsterdam, The Netherlands, 2016; Volume 3. [Google Scholar]
- Vaghela, R.; Arkudas, A.; Horch, R.E.; Hessenauer, M. Actually Seeing What Is Going on—Intravital Microscopy in Tissue Engineering. Front. Bioeng. Biotechnol. 2021, 9, 627462. [Google Scholar] [CrossRef] [PubMed]
- Sanderson, M.J.; Smith, I.; Parker, I.; Bootman, M.D. Fluorescence microscopy. Cold Spring Harb. Protoc. 2014, 2014, pdb-top071795. [Google Scholar] [CrossRef] [PubMed]
- Pittet, M.J.; Weissleder, R. Intravital Imaging. Cell 2011, 147, 983–991. [Google Scholar] [CrossRef] [PubMed]
- Baatz, H.; Pleyer, U.; Thiel, H.J.; Hammer, C. In vivo study of leukocyte-endothelium interaction in endotoxin-induced uveitis. Investig. Ophthalmol. Vis. Sci. 1995, 36, 1960–1967. [Google Scholar]
- Hagn, G.; Holbein, B.; Zhou, J.; Lehmann, C. Anti-inflammatory iron chelator, DIBI, reduces leukocyte-endothelial adhesion and clinical symptoms of LPS-induced interstitial cystitis in mice. Clin. Hemorheol. Microcirc. 2021, 79, 395–406. [Google Scholar] [CrossRef] [PubMed]
- Dickson, K.; Lehmann, C. Inflammatory response to different toxins in experimental sepsis models. Int. J. Mol. Sci. 2019, 20, 4341. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh-Tabrizi, N.; Hall, S.; Lehmann, C. Intravital Imaging of Pulmonary Immune Response in Inflammation and Infection. Front. Cell Dev. Biol. 2021, 8, 620471. [Google Scholar] [CrossRef]
- Bertani, B.; Ruiz, N. Function and Biogenesis of Lipopolysaccharides. EcoSal Plus 2018, 8. [Google Scholar] [CrossRef]
- Chow, J.C.; Young, D.W.; Golenbock, D.T.; Christ, W.J.; Gusovsky, F. Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J. Biol. Chem. 1999, 274, 10689–10692. [Google Scholar] [CrossRef]
- Kirschning, C.J.; Wesche, H.; Merrill Ayres, T.; Rothe, M. Human toll-like receptor 2 confers responsiveness to bacterial lipopolysaccharide. J. Exp. Med. 1998, 188, 2091–2097. [Google Scholar] [CrossRef]
- Pålsson-McDermott, E.M.; O’Neill, L.A.J. Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. Immunology 2004, 113, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, T.; Kawai, T. Toll-like receptor signaling pathways. Front. Immunol. 2014, 5, 461. [Google Scholar] [CrossRef] [PubMed]
- Dziarski, R.; Gupta, D. Role of MD-2 in TLR2- and TLR4-mediated recognition of Gram-negative and Gram-positive bacteria and activation of chemokine genes. J. Endotoxin Res. 2000, 6, 401–405. [Google Scholar] [CrossRef] [PubMed]
- Wong, D.; Dorovini-Zis, K. Upregulation of intercellular adhesion molecule-1 (ICAM-1) expression in primary cultures of human brain microvessel endothelial cells by cytokines and lipopolysaccharide. J. Neuroimmunol. 1992, 39, 11–21. [Google Scholar] [CrossRef]
- El-Zayat, S.R.; Sibaii, H.; Mannaa, F.A. Toll-like receptors activation, signaling, and targeting: An overview. Bull. Natl. Res. Cent. 2019, 43, 187. [Google Scholar] [CrossRef]
- Bourne, R.; Bourne, R. ImageJ. Fundam. Digit. Imaging Med. 2010, 9, 185–188. [Google Scholar] [CrossRef]
- Zhou, J.; Pavlovic, D.; Willecke, J.; Friedel, C.; Whynot, S.; Hung, O.; Cerny, V.; Schroeder, H.; Wendt, M.; Shukla, R.; et al. Activated protein C improves pial microcirculation in experimental endotoxemia in rats. Microvasc. Res. 2012, 83, 276–280. [Google Scholar] [CrossRef]
- Wu, F.; Zou, Q.; Ding, X.; Shi, D.; Zhu, X.; Hu, W.; Liu, L.; Zhou, H. Complement component C3a plays a critical role in endothelial activation and leukocyte recruitment into the brain. J. Neuroinflamm. 2016, 13, 23. [Google Scholar] [CrossRef]
- Liebner, S.; Dijkhuizen, R.M.; Reiss, Y.; Plate, K.H.; Agalliu, D.; Constantin, G. Functional morphology of the blood–brain barrier in health and disease. Acta Neuropathol. 2018, 135, 311–336. [Google Scholar] [CrossRef]
- Peng, X.; Luo, Z.; He, S.; Zhang, L.; Li, Y. Blood-Brain Barrier Disruption by Lipopolysaccharide and Sepsis-Associated Encephalopathy. Front. Cell. Infect. Microbiol. 2021, 11, 1083. [Google Scholar] [CrossRef]
- Haileselassie, B.; Joshi, A.U.; Minhas, P.S.; Mukherjee, R.; Andreasson, K.I.; Mochly-Rosen, D. Mitochondrial dysfunction mediated through dynamin-related protein 1 (Drp1) propagates impairment in blood brain barrier in septic encephalopathy. J. Neuroinflamm. 2020, 17, 36. [Google Scholar] [CrossRef] [PubMed]
- Cramer, S.W.; Carter, R.E.; Aronson, J.D.; Kodandaramaiah, S.B.; Ebner, T.J.; Chen, C.C. Through the looking glass: A review of cranial window technology for optical access to the brain. J. Neurosci. Methods 2021, 354, 109100. [Google Scholar] [CrossRef] [PubMed]
- Jenne, C.N.; Wong, C.H.Y.; Petri, B.; Kubes, P. The use of spinning-disk confocal microscopy for the intravital analysis of platelet dynamics in response to systemic and local inflammation. PLoS ONE 2011, 6, e25109. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Valdepeñas, L.; Martínez-Orgado, J.A.; Benito, C.; Millán, Á.; Tolón, R.M.; Romero, J. Cannabidiol reduces lipopolysaccharide-induced vascular changes and inflammation in the mouse brain: An intravital microscopy study. J. Neuroinflamm. 2011, 8, 5. [Google Scholar] [CrossRef]
- Kim, Y.R.; Kim, Y.M.; Lee, J.; Park, J.; Lee, J.E.; Hyun, Y.M. Neutrophils Return to Bloodstream Through the Brain Blood Vessel After Crosstalk With Microglia During LPS-Induced Neuroinflammation. Front. Cell Dev. Biol. 2020, 8, 613733. [Google Scholar] [CrossRef]
- Hall, S.; Faridi, S.; Euodia, I.; Tanner, S.; Chojnacki, A.K.; Patel, K.D.; Zhou, J.; Lehmann, C. Intravital Widefield Fluorescence Microscopy of Pulmonary Microcirculation in Experimental Acute Lung Injury using a Vacuum-Stabilized Imaging System. J. Vis. Exp. 2022, 182, e63733. [Google Scholar] [CrossRef]
- Cao, K.; Liao, X.; Lu, J.; Yao, S.; Wu, F.; Zhu, X.; Shi, D.; Wen, S.; Liu, L.; Zhou, H. IL-33/ST2 plays a critical role in endothelial cell activation and microglia-mediated neuroinflammation modulation. J. Neuroinflamm. 2018, 15, 136. [Google Scholar] [CrossRef]
- Ramirez, S.H.; Fan, S.; Zhang, M.; Papugani, A.; Reichenbach, N.; Dykstra, H.; Mercer, A.J.; Tuma, R.F.; Persidsky, Y. Inhibition of glycogen synthase kinase 3β (GSK3β) decreases inflammatory responses in brain endothelial cells. Am. J. Pathol. 2010, 176, 881–892. [Google Scholar] [CrossRef]
- Ramirez, S.H.; Haskó, J.; Skuba, A.; Fan, S.; Dykstra, H.; McCormick, R.; Reichenbach, N.; Krizbai, I.; Mahadevan, A.; Zhang, M.; et al. Activation of cannabinoid receptor 2 attenuates leukocyte-endothelial cell interactions and blood-brain barrier dysfunction under inflammatory conditions. J. Neurosci. 2012, 32, 4004–4016. [Google Scholar] [CrossRef]
- Wang, H.M.; Huang, P.; Li, Q.; Yan, L.L.; Sun, K.; Yan, L.; Pan, C.S.; Wei, X.H.; Liu, Y.Y.; Hu, B.H.; et al. Post-treatment With Qing-Ying-Tang, a Compound Chinese Medicine Relives Lipopolysaccharide-Induced Cerebral Microcirculation Disturbance in Mice. Front. Physiol. 2019, 10, 1320. [Google Scholar] [CrossRef]
- Li, H.; Le, L.; Marrero, M.; David-bercholz, J.; Caceres, A.I.; Lim, C.; Chiang, W.; Majewska, A.K.; Gelbard, H.A.; States, U.; et al. Neutrophilia with damage to the blood-brain barrier and neurovascular unit following acute lung injury. bioRxiv 2023. [Preprint]. [Google Scholar] [CrossRef]
- Hughes, E.L.; Cover, P.O.; Buckingham, J.C.; Gavins, F.N.E. Role and interactions of annexin A1 and oestrogens in the manifestation of sexual dimorphisms in cerebral and systemic inflammation. Br. J. Pharmacol. 2013, 169, 539–553. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Lapointe, B.M.; Clark, S.R.; Zbytnuik, L.; Kubes, P. A Requirement for Microglial TLR4 in Leukocyte Recruitment into Brain in Response to Lipopolysaccharide. J. Immunol. 2006, 177, 8103–8110. [Google Scholar] [CrossRef] [PubMed]
- Hall, S.; Faridi, S.; Trivedi, P.; Sultana, S.; Ray, B.; Myers, T.; Euodia, I.; Vlatten, D.; Castonguay, M.; Zhou, J.; et al. Selective CB2 Receptor Agonist, HU-308, Reduces Systemic Inflammation in Endotoxin Model of Pneumonia-Induced Acute Lung Injury. Int. J. Mol. Sci. 2022, 23, 15857. [Google Scholar] [CrossRef] [PubMed]
- Fokam, D.; Dickson, K.; Kamali, K.; Holbein, B.; Colp, P.; Stueck, A.; Zhou, J.; Lehmann, C. Iron chelation in murine models of systemic inflammation induced by gram-positive and gram-negative toxins. Antibiotics 2020, 9, 283. [Google Scholar] [CrossRef] [PubMed]
- Kianian, M.; Al-Banna, N.A.; Kelly, M.E.M.; Lehmann, C. Inhibition of endocannabinoid degradation in experimental endotoxemia reduces leukocyte adhesion and improves capillary perfusion in the gut. J. Basic Clin. Physiol. Pharmacol. 2013, 24, 27–33. [Google Scholar] [CrossRef]
- Lehmann, C.; Pavlovic, D.; Zhou, J.; Wuttke, U.; Saeger, D.; Spassov, A.; Hung, O.; Cerny, V.; Witter, T.; Whynot, S.; et al. Intravenous free and dipeptide-bound glutamine maintains intestinal microcirculation in experimental endotoxemia. Nutrition 2012, 28, 588–593. [Google Scholar] [CrossRef]
- Schmidt, K.; Hernekamp, J.F.; Doerr, M.; Zivkovic, A.R.; Brenner, T.; Walther, A.; Weigand, M.A.; Hofer, S. Cytidine-5-diphosphocholine reduces microvascular permeability during experimental endotoxemia. BMC Anesthesiol. 2015, 15, 114. [Google Scholar] [CrossRef] [PubMed]
- Perry, M.A.; Phillipson, M.; Holm, L. Transmural gradient of leukocyte-endothelial interaction in the rat gastrointestinal tract. Am. J. Physiol.-Gastrointest. Liver Physiol. 2005, 289, G852–G859. [Google Scholar] [CrossRef]
- Mangell, P.; Mihaescu, A.; Wang, Y.; Schramm, R.; Jeppsson, B.; Thorlacius, H. Critical role of P-selectin-dependent leukocyte recruitment in endotoxin-induced intestinal barrier dysfunction in mice. Inflamm. Res. 2007, 56, 189–194. [Google Scholar] [CrossRef]
- Kamp, M.E.; Shim, R.; Nicholls, A.J.; Oliveira, A.C.; Mason, L.J.; Binge, L.; Mackay, C.R.; Wong, C.H.Y. G protein-coupled receptor 43 modulates neutrophil recruitment during acute inflammation. PLoS ONE 2016, 11, e0163750. [Google Scholar] [CrossRef]
- Qi, W.; Ebbert, K.V.J.; Craig, A.W.B.; Greer, P.A.; McCafferty, D.M. Absence of Fer protein tyrosine kinase exacerbates endotoxin induced intestinal epithelial barrier dysfunction in vivo. Gut 2005, 54, 1091–1097. [Google Scholar] [CrossRef]
- Chen, G.; Kelly, C.; Chen, H.; Leahy, A.; Bouchier-Hayes, D. Thermotolerance protects against endotoxin-mediated microvascular injury. J. Surg. Res. 2001, 95, 79–84. [Google Scholar] [CrossRef]
- Wafa, K.; Lehmann, C.; Wagner, L.; Drzymulski, I.; Wegner, A.; Pavlovic, D. Desmopressin improves intestinal functional capillary density and decreases leukocyte activation in experimental endotoxemia. Microvasc. Res. 2015, 97, 98–104. [Google Scholar] [CrossRef]
- Nacul, F.E.; Guia, I.L.; Lessa, M.A.; Tibiriçá, E. The effects of vasoactive drugs on intestinal functional capillary density in endotoxemic rats: Intravital video-microscopy analysis. Anesth. Analg. 2010, 110, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Nevière, R.; Tournoys, A.; Mordon, S.; Maréchal, X.; Song, F.L.; Jourdain, M.; Fourrier, F. Antithrombin reduces mesenteric venular leukocyte interactions and small intestine injury in endotoxemic rats. Shock 2001, 15, 220–225. [Google Scholar] [CrossRef] [PubMed]
- Kowalewska, P.M.; Burrows, L.L.; Fox-Robichaud, A.E. Intravital Microscopy of the Murine Urinary Bladder Microcirculation. Microcirculation 2011, 18, 613–622. [Google Scholar] [CrossRef] [PubMed]
- Thai, K.H.; Thathireddy, A.; Hsieh, M.H. Transurethral induction of mouse urinary tract infection. J. Vis. Exp. 2010, 42, e2070. [Google Scholar] [CrossRef]
- Berger, G.; Arora, N.; Burkovskiy, I.; Xia, Y.; Chinnadurai, A.; Westhofen, R.; Hagn, G.; Cox, A.; Kelly, M.; Zhou, J.; et al. Experimental cannabinoid 2 receptor activation by phyto-derived and synthetic cannabinoid ligands in LPS-Induced interstitial cystitis in mice. Molecules 2019, 24, 4239. [Google Scholar] [CrossRef]
- Harris, A.G.; Sinitsina, I.; Messmer, K. Intravital fluorescence microscopy and phototocicity: Effects on leukocytes. Eur. J. Med. Res. 2002, 7, 117–124. [Google Scholar]
- Olsson, L.E.; Wheeler, M.A.; Sessa, W.C.; Weiss, R.M. Bladder instillation and intraperitoneal injection of Escherichia coli lipopolysaccharide up-regulate cytokines and iNOS in rat urinary bladder. J. Pharmacol. Exp. Ther. 1998, 284, 1203–1208. [Google Scholar] [PubMed]
- Migale, R.; Herbert, B.R.; Lee, Y.S.; Sykes, L.; Waddington, S.N.; Peebles, D.; Hagberg, H.; Johnson, M.R.; Bennett, P.R.; MacIntyre, D.A. Specific Lipopolysaccharide Serotypes Induce Differential Maternal and Neonatal Inflammatory Responses in a Murine Model of Preterm Labor. Am. J. Pathol. 2015, 185, 2390–2401. [Google Scholar] [CrossRef] [PubMed]
- Mosmann, T.R.; Coffman, R.L. TH1 and TH2 cells: Different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol. 1989, 7, 145–173. [Google Scholar] [CrossRef] [PubMed]
- Rudick, C.N.; Pavlov, V.I.; Chen, M.C.; Klumpp, D.J. Gender specific pelvic pain severity in neurogenic cystitis. J. Urol. 2012, 187, 715–724. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, H.; Numata, K.; Ito, T.; Takagi, K.; Matsukawa, A. Innate immune response in Th1- and Th2-dominant mouse strains. Shock 2004, 22, 460–466. [Google Scholar] [CrossRef]
- Szarka, R.J.; Wang, N.; Gordon, L.; Nation, P.N.; Smith, R.H. A murine model of pulmonary damage induced by lipopolysaccharide via intranasal instillation. J. Immunol. Methods 1997, 202, 49–57. [Google Scholar] [CrossRef]
- Liu, L.; Gao, Z.; Xia, C.; Xu, Y.; Ma, Z.; Dong, C.; Li, B. Comparative Study of Trans-Oral and Trans-Tracheal Intratracheal Instillations in a Murine Model of Acute Lung Injury. Anat. Rec. 2012, 295, 1513–1519. [Google Scholar] [CrossRef]
- Wang, Y.; Roller, J.; Slotta, J.E.; Zhang, S.; Luo, L.; Rahman, M.; Syk, I.; Menger, M.D.; Thorlacius, H. Distinct patterns of leukocyte recruitment in the pulmonary microvasculature in response to local and systemic inflammation. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2013, 304, L298-305. [Google Scholar] [CrossRef]
- Iba, T.; Kidokoro, A.; Fukunaga, M.; Takuhiro, K.; Yoshikawa, S.; Sugimotoa, K. Pretreatment of sivelestat sodium hydrate improves the lung microcirculation and alveolar damage in lipopolysaccharide-induced acute lung inflammation in hamsters. Shock 2006, 26, 95–98. [Google Scholar] [CrossRef]
- Riffo-Vasquez, Y.; Man, F.; Page, C.P. Doxofylline, a novofylline inhibits lung inflammation induced by lipopolysacharide in the mouse. Pulm. Pharmacol. Ther. 2014, 27, 170–178. [Google Scholar] [CrossRef]
- Cleary, S.J.; Hobbs, C.; Amison, R.T.; Arnold, S.; O’Shaughnessy, B.G.; Lefrançais, E.; Mallavia, B.; Looney, M.R.; Page, C.P.; Pitchford, S.C. LPS-induced Lung Platelet Recruitment Occurs Independently from Neutrophils, PSGL-1, and P-Selectin. Am. J. Respir. Cell Mol. Biol. 2019, 61, 232–243. [Google Scholar] [CrossRef] [PubMed]
- Carestia, A.; Davis, R.P.; Davis, L.; Jenne, C.N. Inhibition of immunothrombosis does not affect pathogen capture and does not promote bacterial dissemination in a mouse model of sepsis. Platelets 2020, 31, 925–931. [Google Scholar] [CrossRef] [PubMed]
- Margraf, A.; Herter, J.M.; Kühne, K.; Stadtmann, A.; Ermert, T.; Wenk, M.; Meersch, M.; Van Aken, H.; Zarbock, A.; Rossaint, J. 6% Hydroxyethyl starch (HES 130/0.4) diminishes glycocalyx degradation and decreases vascular permeability during systemic and pulmonary inflammation in mice. Crit. Care 2018, 22, 111. [Google Scholar] [CrossRef] [PubMed]
- Mempel, T.R.; Scimone, M.L.; Mora, J.R.; Von Andrian, U.H. In vivo imaging of leukocyte trafficking in blood vessels and tissues. Curr. Opin. Immunol. 2004, 16, 406–417. [Google Scholar] [CrossRef] [PubMed]
- Masedunskas, A.; Milberg, O.; Porat-Shliom, N.; Sramkova, M.; Wigand, T.; Amornphimoltham, P.; Weigert, R. Intravital microscopy: A practical guide on imaging intracellular structures in live animals. Bioarchitecture 2012, 2, 143–157. [Google Scholar] [CrossRef] [PubMed]
- Cahalan, M.D.; Parker, I.; Wei, S.H.; Miller, M.J. Two-photon tissue imaging: Seeing the immune system in a fresh light. Nat. Rev. Immunol. 2002, 2, 872–880. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, N.D.; Kyaw, W.; Mcdonald, M.M.; Dhenni, R.; Grootveld, A.K.; Xiao, Y.; Chai, R.; Khoo, W.H.; Danserau, L.C.; Sergio, C.M.; et al. Minimally invasive longitudinal intravital imaging of cellular dynamics in intact long bone. Nat. Protoc. 2023, 2023, 1–25. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scott, C.; Neira Agonh, D.; White, H.; Sultana, S.; Lehmann, C. Intravital Microscopy of Lipopolysaccharide-Induced Inflammatory Changes in Different Organ Systems—A Scoping Review. Int. J. Mol. Sci. 2023, 24, 16345. https://doi.org/10.3390/ijms242216345
Scott C, Neira Agonh D, White H, Sultana S, Lehmann C. Intravital Microscopy of Lipopolysaccharide-Induced Inflammatory Changes in Different Organ Systems—A Scoping Review. International Journal of Molecular Sciences. 2023; 24(22):16345. https://doi.org/10.3390/ijms242216345
Chicago/Turabian StyleScott, Cassidy, Daniel Neira Agonh, Hannah White, Saki Sultana, and Christian Lehmann. 2023. "Intravital Microscopy of Lipopolysaccharide-Induced Inflammatory Changes in Different Organ Systems—A Scoping Review" International Journal of Molecular Sciences 24, no. 22: 16345. https://doi.org/10.3390/ijms242216345
APA StyleScott, C., Neira Agonh, D., White, H., Sultana, S., & Lehmann, C. (2023). Intravital Microscopy of Lipopolysaccharide-Induced Inflammatory Changes in Different Organ Systems—A Scoping Review. International Journal of Molecular Sciences, 24(22), 16345. https://doi.org/10.3390/ijms242216345