ERVK13-1/miR-873-5p/GNMT Axis Promotes Metastatic Potential in Human Bladder Cancer though Sarcosine Production
Abstract
:1. Introduction
2. Results
2.1. Effect of SAM on BUC Cell Malignancy
2.2. Effect of Sarcosine on BUC Cell Malignancy
2.3. Effect of GNMT on BUC Cell Malignancy
2.4. Epigenetic Regulation of GNMT Expression by miRNAs and lncRNAs
2.5. Effects of Altered GNMT Expression on Tumor Growth and Metastasis in BUC Cells
2.6. Significance of GNMT Expression in Human BUC Cases
3. Discussion
4. Materials and Methods
4.1. Cells and Reagents
4.2. Sphere Formation Assay
4.3. Reverse Transcription–Polymerase Chain Reaction (RT–PCR)
4.4. Quantitative Reverse Transcription-Polymerase Chain Reaction
4.5. Small Interfering RNA
4.6. Mouse Models
4.7. Patients
4.8. Immunohistochemistry
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- American Cancer Society Key Statistics for Bladder Cancer. Available online: http://www.cancer.org/cancer/bladdercancer/detailedguide/bladder-cancer-key-statistics (accessed on 10 April 2023).
- National Cancer Research Center Ganjoho.jp. Available online: https://ganjoho.jp/reg_stat/statistics/stat/cancer/21_bladder.html (accessed on 10 April 2023).
- Sugano, K.; Kakizoe, T. Genetic alterations in bladder cancer and their clinical applications in molecular tumor staging. Nat. Clin. Pract. Urol. 2006, 3, 642–652. [Google Scholar] [CrossRef] [PubMed]
- Aparicio, A.M.; Elkhouiery, A.B.; Quinn, D.I. The current and future application of adjuvant systemic chemotherapy in patients with bladder cancer following cystectomy. Urol. Clin. N. Am. 2005, 32, 217–230. [Google Scholar] [CrossRef] [PubMed]
- Lenis, A.T.; Lec, P.M.; Chamie, K.; Mshs, M.D. Bladder Cancer: A Review. JAMA 2020, 324, 1980–1991. [Google Scholar] [CrossRef] [PubMed]
- Garg, M.; Singh, R. Epithelial-to-mesenchymal transition: Event and core associates in bladder cancer. Front. Biosci. 2019, 11, 150–165. [Google Scholar] [CrossRef] [PubMed]
- Aghaalikhani, N.; Rashtchizadeh, N.; Shadpour, P.; Allameh, A.; Mahmoodi, M. Cancer stem cells as a therapeutic target in bladder cancer. J. Cell. Physiol. 2019, 234, 3197–3206. [Google Scholar] [CrossRef]
- Fujiwara-Tani, R.; Mori, S.; Ogata, R.; Sasaki, R.; Ikemoto, A.; Kishi, S.; Kondoh, M.; Kuniyasu, H. Claudin-4: A New Molecular Target for Epithelial Cancer Therapy. Int. J. Mol. Sci. 2023, 24, 5494. [Google Scholar] [CrossRef] [PubMed]
- Maesaka, F.; Kuwada, M.; Horii, S.; Kishi, S.; Fujiwara-Tani, R.; Mori, S.; Fujii, K.; Mori, T.; Ohmori, H.; Owari, T.; et al. Hypomethylation of CLDN4 Gene Promoter Is Associated with Malignant Phenotype in Urinary Bladder Cancer. Int. J. Mol. Sci. 2022, 23, 6516. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xu, Y.; Feng, L.; Li, F.; Sun, Z.; Wu, T.; Shi, X.; Li, J.; Li, X. Comprehensive characterization of lncRNA-mRNA related ceRNA network across 12 major cancers. Oncotarget 2016, 7, 64148–64167. [Google Scholar] [CrossRef]
- Wang, L.; Luo, Y.; Zheng, Y.; Zheng, L.; Lin, W.; Chen, Z.; Wu, S.; Chen, J.; Xie, Y. Long non-coding RNA LINC00426 contributes to doxorubicin resistance by sponging miR-4319 in osteosarcoma. Biol. Direct. 2020, 15, 11. [Google Scholar] [CrossRef]
- Zhao, Z.; Sun, W.; Guo, Z.; Zhang, J.; Yu, H.; Liu, B. Mechanisms of lncRNA/microRNA interactions in angiogenesis. Life Sci. 2020, 254, 116900. [Google Scholar] [CrossRef]
- Nakashima, C.; Fujiwara-Tani, R.; Mori, S.; Kishi, S.; Ohmori, H.; Fujii, K.; Mori, T.; Miyagawa, Y.; Yamamoto, K.; Kirita, T.; et al. An Axis between the Long Non-Coding RNA HOXA11-AS and NQOs Enhances Metastatic Ability in Oral Squamous Cell Carcinoma. Int. J. Mol. Sci. 2022, 23, 10704. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, G.; Guo, X.; Yao, H.; Wang, G.; Li, C. Non-coding RNA in bladder cancer. Cancer Lett. 2020, 485, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Quan, J.; Pan, X.; Zhao, L.; Li, Z.; Dai, K.; Yan, F.; Liu, S.; Ma, H.; Lai, Y. LncRNA as a diagnostic and prognostic biomarker in bladder cancer: A systematic review and meta-analysis. OncoTargets Ther. 2018, 11, 6415–6424. [Google Scholar] [CrossRef] [PubMed]
- Beyoğlu, D.; Idle, J.R. Metabolic Rewiring and the Characterization of Oncometabolites. Cancers 2021, 13, 2900. [Google Scholar] [CrossRef] [PubMed]
- Chu, P.Y.; Wu, H.J.; Wang, S.M.; Chen, P.M.; Tang, F.Y.; Chiang, E.I. MAT2A Localization and Its Independently Prognostic Relevance in Breast Cancer Patients. Int. J. Mol. Sci. 2021, 22, 5382. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.A.; Cuellar, T.L. Glycine and aging: Evidence and mechanisms. Aging Res. Rev. 2023, 87, 101922. [Google Scholar] [CrossRef] [PubMed]
- Cernei, N.; Heger, Z.; Gumulec, J.; Zitka, O.; Masarik, M.; Babula, P.; Eckschlager, T.; Stiborova, M.; Kizek, R.; Adam, V. Sarcosine as a potential prostate cancer biomarker--a review. Int. J. Mol. Sci. 2013, 14, 13893–13908. [Google Scholar] [CrossRef] [PubMed]
- Sreekumar, A.; Poisson, L.M.; Rajendiran, T.M.; Khan, A.P.; Cao, Q.; Yu, J.; Laxman, B.; Mehra, R.; Lonigro, R.J.; Li, Y.; et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 2009, 457, 910–914. [Google Scholar] [CrossRef]
- Xie, H.; Dai, L.; Ye, B.; Chen, R.; Wang, B.; Zhang, N.; Miao, H.; Liang, W. Long non-coding RNA ERVK13-1 aggravates osteosarcoma through the involvement of microRNA-873-5p/KLF5 axis. Acta Biochim. Pol. 2022, 69, 703–710. [Google Scholar] [CrossRef]
- Yang, F.; Wang, M.; Shi, J.; Xu, G. IncRNA MALAT1 Regulates the Proliferation, Apoptosis, Migration, and Invasion of Osteosarcoma Cells by Targeting miR-873-5p/ROCK1. Crit. Rev. Eukaryot. Gene Expr. 2023, 33, 67–79. [Google Scholar] [CrossRef]
- Ren, Z.; Liu, X.; Si, Y.; Yang, D. Long non-coding RNA DDX11-AS1 facilitates gastric cancer progression by regulating miR-873-5p/SPC18 axis. Artif. Cells Nanomed. Biotechnol. 2020, 48, 572–583. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Lin, J.; Chen, J.; Gu, W.; Mao, Y.; Wang, H.; Zhang, Y.; Liu, W. DDX11-AS1 contributes to osteosarcoma progression via stabilizing DDX11. Life Sci. 2020, 254, 117392. [Google Scholar] [CrossRef] [PubMed]
- Edge, S.; Byrd, D.R.; Compton, C.C.; Fritz, A.G.; Greene, F.L.; Trotti, A. AJCC Cancer Staging Manual, 7th ed.; Springer: New York, NY, USA, 2010. [Google Scholar]
- Bai, X.; Ni, J.; Beretov, J.; Graham, P.; Li, Y. Cancer stem cell in breast cancer therapeutic resistance. Cancer Treat. Rev. 2018, 69, 152–163. [Google Scholar] [CrossRef] [PubMed]
- Kratochvilova, M.; Raudenska, M.; Heger, Z.; Richtera, L.; Cernei, N.; Adam, V.; Babula, P.; Novakova, M.; Masarik, M.; Gumulec, J. Amino Acid Profiling of Zinc Resistant Prostate Cancer Cell Lines: Associations With Cancer Progression. Prostate 2017, 77, 604–616. [Google Scholar] [CrossRef] [PubMed]
- Williams, K.T.; Schalinske, K.L. Homocysteine metabolism and its relation to health and disease. BioFactors 2010, 36, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Huidobro, C.; Fernandez, A.F.; Fraga, M.F. The role of genetics in the establishment and maintenance of the epigenome. Cell. Mol. Life Sci. 2013, 70, 1543–1573. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.C.; Mato, J.M. S-adenosylmethionine in liver health, injury, and cancer. Physiol. Rev. 2012, 92, 1515–1542. [Google Scholar] [CrossRef] [PubMed]
- Botezatu, A.; Bleotu, C.; Nastase, A.; Anton, G.; Bacalbasa, N.; Duda, D.; Dima, S.O.; Popescu, I. Epigenetic Silencing of GNMT Gene in Pancreatic Adenocarcinoma. Cancer Genom. Proteom. 2015, 12, 21–30. [Google Scholar]
- Zabala-Letona, A.; Arruabarrena-Aristorena, A.; Fernandez-Ruiz, S.; Viera, C.; Carlevaris, O.; Ercilla, A.; Mendizabal, I.; Martin, T.; Macchia, A.; Camacho, L.; et al. PI3K-regulated Glycine N-methyltransferase is required for the development of prostate cancer. Oncogenesis 2022, 11, 10. [Google Scholar] [CrossRef]
- Han, T.S.; Hur, K.; Cho, H.S.; Ban, H.S. Epigenetic Associations between lncRNA/circRNA and miRNA in Hepatocellular Carcinoma. Cancers 2020, 12, 2622. [Google Scholar] [CrossRef]
- Fernández-Ramos, D.; Fernández-Tussy, P.; Lopitz-Otsoa, F.; Gutiérrez-de-Juan, V.; Navasa, N.; Barbier-Torres, L.; Zubiete-Franco, I.; Simón, J.; Fernández, A.F.; Arbelaiz, A.; et al. MiR-873-5p acts as an epigenetic regulator in early stages of liver fibrosis and cirrhosis. Cell Death Dis. 2018, 9, 958. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Tussy, P.; Fernández-Ramos, D.; Lopitz-Otsoa, F.; Simón, J.; Barbier-Torres, L.; Gomez-Santos, B.; Nuñez-Garcia, M.; Azkargorta, M.; Gutiérrez-de Juan, V.; Serrano-Macia, M.; et al. miR-873-5p targets mitochondrial GNMT-Complex II interface contributing to non-alcoholic fatty liver disease. Mol. Metab. 2019, 29, 40–54. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara-Tani, R.; Sasaki, T.; Takagi, T.; Mori, S.; Kishi, S.; Nishiguchi, Y.; Ohmori, H.; Fujii, K.; Kuniyasu, H. Gemcitabine Resistance in Pancreatic Ductal Carcinoma Cell Lines Stems from Reprogramming of Energy Metabolism. Int. J. Mol. Sci. 2022, 23, 7824. [Google Scholar] [CrossRef] [PubMed]
- Kishi, S.; Nishiguchi, Y.; Honoki, K.; Mori, S.; Fujiwara-Tani, R.; Sasaki, T.; Fujii, K.; Kawahara, I.; Goto, K.; Nakashima, C.; et al. Role of Glycated High Mobility Group Box-1 in Gastric Cancer. Int. J. Mol. Sci. 2021, 22, 5185. [Google Scholar] [CrossRef]
- Gu, Y.R.; Liang, Y.; Gong, J.J.; Zeng, K.; Li, Z.Q.; Lei, Y.F.; He, Z.P.; Lv, X.B. Suitable internal control microRNA genes for measuring miRNA abundance in pig milk during different lactation periods. Genet. Mol. Res. 2012, 11, 2506–2512. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Topham, L.; Gregoire, S.; Kang, H.; Salmon-Divon, M.; Lax, E.; Millecamps, M.; Szyf, M.; Stone, L. The methyl donor S-adenosyl methionine reverses the DNA methylation signature of chronic neuropathic pain in mouse frontal cortex. Pain Rep. 2021, 6, e944. [Google Scholar] [CrossRef] [PubMed]
- Chadderton, T.; Wilson, C.; Bewick, M.; Glück, S. Evaluation of three rapid RNA extraction reagents: Relevance for use in RT-PCR’s and measurement of low level gene expression in clinical samples. Cell. Mol. Biol. 1997, 43, 1227–1234. [Google Scholar]
Parameter (1) | n | GNMT Grade | p(3) | |||||
---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | Positivity (%) (2) | ||||
Age | <60 | 43 | 18 | 12 | 5 | 8 | 30 | |
>60 | 43 | 15 | 11 | 13 | 4 | 40 | 0.2369 | |
Sex | M | 71 | 28 | 17 | 17 | 9 | 37 | |
F | 15 | 5 | 6 | 1 | 3 | 27 | 0.3136 | |
Tissue | Tumor | 86 | 33 | 23 | 18 | 12 | 35 | |
Normal | 86 | 61 | 25 | 0 | 0 | 0 | <0.0001 | |
T factor | pTa/pTis | 21 | 19 | 2 | 0 | 0 | 0 | |
pT1 | 18 | 6 | 10 | 2 | 0 | 11 | ||
pT2 | 21 | 7 | 7 | 4 | 3 | 33 | ||
pT3 | 22 | 1 | 4 | 12 | 5 | 77 | ||
pT4 | 4 | 0 | 0 | 0 | 4 | 100 | <0.0001 | |
N factor | pN0 | 80 | 33 | 23 | 18 | 6 | 30 | |
pN1-2 | 6 | 0 | 0 | 0 | 6 | 100 | <0.0001 | |
M factor | M0 | 82 | 33 | 23 | 18 | 8 | 32 | |
M1b | 4 | 0 | 0 | 0 | 4 | 100 | <0.0001 | |
pStage | 0a/0is | 21 | 19 | 2 | 0 | 0 | 0 | |
I | 18 | 6 | 10 | 2 | 0 | 11 | ||
II | 21 | 7 | 7 | 4 | 3 | 33 | ||
IIIA | 22 | 1 | 4 | 12 | 5 | 77 | ||
IVB | 4 | 0 | 0 | 0 | 4 | 100 | <0.0001 | |
Muscle | NMIBC | 39 | 25 | 12 | 2 | 0 | 5 | |
invasion | MIBU | 47 | 8 | 11 | 16 | 12 | 60 | <0.0001 |
Grade | G1 | 6 | 2 | 3 | 0 | 1 | 17 | |
G2 | 33 | 20 | 7 | 5 | 1 | 18 | ||
G3 | 47 | 11 | 13 | 13 | 10 | 49 | 0.0132 |
Gene | Gene ID | Sequence | |
---|---|---|---|
CD44 | FJ216964.1 | forward | AAGGTGGAGCAAACACAACC |
reverse | AGCTTTTTCTTCTGCCCACA | ||
OCT3 | BC117437.1 | forward | GAAGGATGTGGTCCGAGTGT |
reverse | GTGAAGTGAGGGCTCCCATA | ||
GNMT | KR710869.1 | forward | CACCCCCAGGGAAGAACATC |
reverse | CCGTGAAGGATGCCAGACAG | ||
SARDH | NM_007101.4 | forward | GGAGGAGGAGACGGGACTAC |
reverse | CCGTAGAGGTCGTCCACATT | ||
ACTB | NM_001101.3 | forward | GGACTTCGAGCAAGAGATGG |
reverse | AGCACTGTGTTGGCGTACAG | ||
ERVK13-1 | NR_040023.1 | forward | GATGTGCAGTGGGTGATGGA |
reverse | GCCAAGCCGCCTAATTCATG | ||
MALAT1 | NR_144568.1 | forward | GGTTTCCCAGAGTCCTTGGG |
reverse | TCAATCCCACACCACAGAGC | ||
DDX11-AS1 | NR_038927.2 | forward | CGATTAGCGCCAGGTGTACT |
reverse | AAAGGTTGCTGGCTGATGGT | ||
miR-873-5p | NR_030618.1 | forward | TGCAGGAACTTGTGAGTCTCC |
reverse | TTCCCGGGAACTCATCAGTC | ||
U6 | EU520423 | forward | TTATGGGTCCTAGCCTGAC |
[38] | reverse | CACTATTGCGGGTCTGC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kishi, S.; Mori, S.; Fujiwara-Tani, R.; Ogata, R.; Sasaki, R.; Ikemoto, A.; Goto, K.; Sasaki, T.; Miyake, M.; Sasagawa, S.; et al. ERVK13-1/miR-873-5p/GNMT Axis Promotes Metastatic Potential in Human Bladder Cancer though Sarcosine Production. Int. J. Mol. Sci. 2023, 24, 16367. https://doi.org/10.3390/ijms242216367
Kishi S, Mori S, Fujiwara-Tani R, Ogata R, Sasaki R, Ikemoto A, Goto K, Sasaki T, Miyake M, Sasagawa S, et al. ERVK13-1/miR-873-5p/GNMT Axis Promotes Metastatic Potential in Human Bladder Cancer though Sarcosine Production. International Journal of Molecular Sciences. 2023; 24(22):16367. https://doi.org/10.3390/ijms242216367
Chicago/Turabian StyleKishi, Shingo, Shiori Mori, Rina Fujiwara-Tani, Ruiko Ogata, Rika Sasaki, Ayaka Ikemoto, Kei Goto, Takamitsu Sasaki, Makito Miyake, Satoru Sasagawa, and et al. 2023. "ERVK13-1/miR-873-5p/GNMT Axis Promotes Metastatic Potential in Human Bladder Cancer though Sarcosine Production" International Journal of Molecular Sciences 24, no. 22: 16367. https://doi.org/10.3390/ijms242216367
APA StyleKishi, S., Mori, S., Fujiwara-Tani, R., Ogata, R., Sasaki, R., Ikemoto, A., Goto, K., Sasaki, T., Miyake, M., Sasagawa, S., Kawaichi, M., Luo, Y., Bhawal, U. K., Fujimoto, K., Nakagawa, H., & Kuniyasu, H. (2023). ERVK13-1/miR-873-5p/GNMT Axis Promotes Metastatic Potential in Human Bladder Cancer though Sarcosine Production. International Journal of Molecular Sciences, 24(22), 16367. https://doi.org/10.3390/ijms242216367