Overexpression of Grapevine VyTRXy Improves Drought Tolerance by Maintaining Photosynthesis and Enhancing the Antioxidant and Osmolyte Capacity of Plants
Abstract
:1. Introduction
2. Results
2.1. Expression Patterns of VyTRXy under Stress Treatments
2.2. Enzymatic Activity and Subcellular Localization of VyTRXy
2.3. Overexpression of VyTRXy Enhanced Drought Resistance in Transgenic Tobacco
2.4. Overexpression of VyTRXy Promoted Photosynthesis in Transgenic Tobacco
2.5. Overexpression of VyTRXy Regulates the Expression of Stress-Related Genes under Drought Treatment
2.6. Overexpression of VyTRXy Increases Antioxidant Enzyme Activities and Decreases the H2O2 Content in Transgenic Tobacco under Drought Treatment
3. Discussion
4. Materials and Methods
4.1. Plant Material and Treatment
4.2. Generation and Identification of Transgenic Plants
4.3. Bioinformatics Analysis of VyTRXy
4.4. Subcellular Localization Analysis
4.5. Protein Expression and Enzyme Activity Analysis
4.6. Determination of Photosynthetic Indexes
4.7. Determination of Physiological Indexes of Transgenic Plants
4.8. Real-Time Quantitative RT-PCR
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nikkanen, L.; Toivola, J.; Rintamäki, E. Crosstalk between chloroplast thioredoxin systems in regulation of photosynthesis. Plant Cell Environ. 2016, 39, 1691–1705. [Google Scholar] [CrossRef] [PubMed]
- Bhurta, R.; Hurali, D.T.; Tyagi, S.; Sathee, L.; Adavi, B.; Singh, D.; Jha, S.K. Genome-wide identification and expression analysis of the thioredoxin (trx) gene family reveals its role in leaf rust resistance in wheat (Triticum aestivum L.). Front. Genet. 2022, 13, 563. [Google Scholar] [CrossRef] [PubMed]
- Thormählen, I.; Meitzel, T.; Groysman, J.; Öchsner, A.B.; von Roepenack-Lahaye, E.; Naranjo, B.; Geigenberger, P. Thioredoxin f1 and NADPH-dependent thioredoxin reductase C have overlapping functions in regulating photosynthetic metabolism and plant growth in response to varying light conditions. Plant Physiol. 2015, 169, 1766–1786. [Google Scholar] [CrossRef] [PubMed]
- Kang, Z.; Qin, T.; Zhao, Z. Thioredoxins and thioredoxin reductase in chloroplasts: A review. Gene 2019, 706, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Serrato, A.J.; Fernández-Trijueque, J.; Barajas-López, J.; Chueca, A.; Sahrawy, M. Plastid thioredoxins: A “one-for-all” redox-signaling system in plants. Front. Plant Sci. 2013, 4, 463. [Google Scholar] [CrossRef]
- Shohat, H.; Eliaz, N.I.; Weiss, D. Gibberellin in tomato: Metabolism, signaling and role in drought responses. Mol. Hortic. 2021, 1, 1–12. [Google Scholar] [CrossRef]
- Qi, J.; Song, C.P.; Wang, B.; Zhou, J.; Kangasjärvi, J.; Zhu, J.K.; Gong, Z. Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack. J. Integr. Plant Biol. 2018, 60, 805–826. [Google Scholar] [CrossRef]
- Impa, S.M.; Nadaradjan, S.; Jagadish, S. Drought stress induced reactive oxygen species and anti-oxidants in plants. In Abiotic Stress Responses in Plants: Metabolism, Productivity and Sustainability; Springer: New York, NY, USA, 2012; pp. 131–147. [Google Scholar]
- Kizildeniz, T.; Mekni, I.; Santesteban, H.; Pascual, I.; Morales, F.; Irigoyen, J.J. Effects of climate change including elevated CO2 concentration, temperature and water deficit on growth, water status, and yield quality of grapevine (Vitis vinifera L.) cultivars. Agric. Water Manag. 2015, 159, 155–164. [Google Scholar] [CrossRef]
- Wenter, A.; Zanotelli, D.; Montagnani, L.; Tagliavini, M.; Andreotti, C. Effect of different timings and intensities of water stress on yield and berry composition of grapevine (cv. Sauvignon blanc) in a mountain environment. Sci. Hortic. 2018, 236, 137–145. [Google Scholar] [CrossRef]
- Rehman, A.; Farooq, M. Morphology, Physiology and Ecology of cotton. In Cotton Production; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2019; pp. 23–46. [Google Scholar]
- Mo, Y.; Yang, R.; Liu, L.; Gu, X.; Yang, X.; Wang, Y.; Li, H. Growth, photosynthesis and adaptive responses of wild and domesticated watermelon genotypes to drought stress and subsequent re-watering. Plant Growth Regul. 2016, 79, 229–241. [Google Scholar] [CrossRef]
- Yu, Y.; Xu, W.; Wang, J.; Wang, L.; Yao, W.; Yang, Y.; Wang, Y. The Chinese wild grapevine (Vitis pseudoreticulata) E3 ubiquitin ligase Erysiphe necator-induced RING finger protein 1 (EIRP1) activates plant defense responses by inducing proteolysis of the VpWRKY11 transcription factor. New Phytol. 2013, 200, 834–846. [Google Scholar] [CrossRef]
- Chan, K.X.; Phua, S.Y.; Crisp, P.; McQuinn, R.; Pogson, B.J. Learning the languages of the chloroplast: Retrograde signaling and beyond. Ann. Rev. Plant Biol. 2016, 67, 25–53. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.; Wang, L.; Peng, C.; Tong, Z.; Wang, D.; Ding, G.; Wang, X. The chloroplast proteome response to drought stress in cassava leaves. Plant Physiol. Biochem. 2019, 142, 351–362. [Google Scholar] [CrossRef] [PubMed]
- Muhammad Aslam, M.; Waseem, M.; Jakada, B.H.; Okal, E.J.; Lei, Z.; Saqib, H.S.A.; Yuan, W.; Xu, W.; Zhang, Q. Mechanisms of Abscisic Acid-Mediated Drought Stress Responses in Plants. Int. J. Mol. Sci. 2022, 23, 1084. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Chen, S.; Dong, Y.; Ren, R.; Chen, D.; Chen, X. Chloroplastic Os3BGlu6 contributes significantly to cellular ABA pools and impacts drought tolerance and photosynthesis in rice. New Phytol. 2020, 226, 1042–1054. [Google Scholar] [CrossRef] [PubMed]
- Elasad, M.; Ahmad, A.; Wang, H.; Ma, L.; Yu, S.; Wei, H. Overexpression of CDSP32 (GhTRX134) cotton gene enhances drought, salt, and oxidative stress tolerance in Arabidopsis. Plants 2020, 9, 1388. [Google Scholar] [CrossRef]
- Kaur, S.; Seem, K.; Duhan, N.; Kumar, S.; Kaundal, R.; Mohapatra, T. Transcriptome and physio-biochemical profiling reveals differential responses of rice cultivars at reproductive-stage drought stress. Int. J. Mol. Sci. 2023, 24, 1002. [Google Scholar] [CrossRef]
- Zhanassova, K.; Kurmanbayeva, A.; Gadilgereyeva, B.; Yermukhambetova, R.; Iksat, N.; Amanbayeva, U.; Masalimov, Z. ROS status and antioxidant enzyme activities in response to combined temperature and drought stresses in barley. Acta Physiol. Plant. 2021, 43, 1–12. [Google Scholar] [CrossRef]
- Meng, L.; Wong, J.H.; Feldman, L.J.; Lemaux, P.G.; Buchanan, B.B. A membrane-associated thioredoxin required for plant growth moves from cell to cell, suggestive of a role in intercellular communication. Proc. Natl. Acad. Sci. USA 2010, 107, 3900–3905. [Google Scholar] [CrossRef]
- Xu, L.; Zhou, Y.; Cheng, J.; Kang, L.; Qiang, Y.; Yan, X.; Li, H. Identification of thioredoxin genes and analysis of their expression under abiotic stresses in Medicago truncatula. Acta Physiol. Plant. 2022, 44, 120. [Google Scholar] [CrossRef]
- Duan, X.; Wang, Z.; Zhang, Y.; Li, H.; Yang, M.; Yin, H.; Hu, G. Overexpression of a Thioredoxin-Protein-Encoding Gene, MsTRX, from Medicago sativa Enhances Salt Tolerance to Transgenic Tobacco. Agronomy 2022, 12, 1467. [Google Scholar] [CrossRef]
- Vanacker, H.; Guichard, M.; Bohrer, A.; Issakidis-Bourguet, E. Redox regulation of monodehydroascorbate reductase by thioredoxin y in plastids revealed in the context of water stress. Antioxidants 2018, 7, 183. [Google Scholar] [CrossRef] [PubMed]
- Deschoenmaeker, F.; Mihara, S.; Niwa, T.; Taguchi, H.; Nomata, J.; Wakabayashi, K.; Hisabori, T. Disruption of the gene trx-m1 impedes the growth of Anabaena sp. PCC 7120 under nitrogen starvation. Plant Cell Physiol. 2019, 60, 1504–1513. [Google Scholar] [CrossRef] [PubMed]
- Elasad, M.; Wei, H.; Wang, H.; Su, J.; Ondati, E.; Yu, S. Genome-wide analysis and characterization of the TRX gene family in upland cotton. Trop. Plant Biol. 2018, 11, 119–130. [Google Scholar] [CrossRef]
- Potters, G.; Horemans, N.; Jansen, M.A. The cellular redox state in plant stress biology—A charging concept. Plant Physiol. Biochem. 2010, 48, 292–300. [Google Scholar] [CrossRef]
- Larouk, C.; Gabon, F.; Kehel, Z.; Djekoun, A.; Nachit, M.; Amri, A. Chlorophyll Fluorescence and Drought Tolerance in a Mapping Population of Durum Wheat. Contemp. Agric. 2021, 70, 123–134. [Google Scholar] [CrossRef]
- Sun, S.; Feng, Y.; Huang, G.; Zhao, X.; Song, F. Rhizophagus irregularis enhances tolerance to cadmium stress by altering host plant hemp (Cannabis sativa L.) photosynthetic properties. Environ. Pollut. 2022, 314, 120309. [Google Scholar] [CrossRef]
- Kidokoro, S.; Watanabe, K.; Ohori, T.; Moriwaki, T.; Maruyama, K.; Mizoi, J.; Shinozaki, K. Soybean DREB 1/CBF-type transcription factors function in heat and drought as well as cold stress-responsive gene expression. Plant J. 2015, 81, 505–518. [Google Scholar] [CrossRef]
- Nguyen, Y.T.H.; Tu, T.Q.; Nguyen, N.H.; Van Nguyen, D.; Tran, H.T.; Do, P.T.; Vu, T.T.T. A novel soybean transcription factor, DREB7, regulates RD29A and SODFe gene expression in transgenic tobacco plants. In Vitro Cell. Dev. Biol. Plant 2023, 59, 275–284. [Google Scholar] [CrossRef]
- Msanne, J.; Lin, J.; Stone, J.M.; Awada, T. Characterization of abiotic stress-responsive Arabidopsis thaliana RD29A and RD29B genes and evaluation of transgenes. Planta 2011, 234, 97–107. [Google Scholar] [CrossRef]
- Clough, S.J.; Bent, A.F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998, 16, 735–743. [Google Scholar] [CrossRef] [PubMed]
- Locatelli, F.; Vannini, C.; Magnani, E.; Coraggio, I.; Bracale, M. Efficiency of transient transformation in tobacco protoplasts is independent of plasmid amount. Plant Cell Rep. 2003, 21, 865–871. [Google Scholar] [CrossRef] [PubMed]
- Smith, B.M.; Melis, A. Photosystem stoichiometry and excitation distribution in chloroplasts from surface and minus 20 meter blades of Macrocystis pyrifera, the giant kelp. Plant Physiol. 1987, 84, 1325–1330. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, J.; Li, M.; Li, Y.; Liu, Y.; Wei, L.; Zheng, T.; Wu, J.; Yu, Y.; Cheng, J. Overexpression of Grapevine VyTRXy Improves Drought Tolerance by Maintaining Photosynthesis and Enhancing the Antioxidant and Osmolyte Capacity of Plants. Int. J. Mol. Sci. 2023, 24, 16388. https://doi.org/10.3390/ijms242216388
Xiang J, Li M, Li Y, Liu Y, Wei L, Zheng T, Wu J, Yu Y, Cheng J. Overexpression of Grapevine VyTRXy Improves Drought Tolerance by Maintaining Photosynthesis and Enhancing the Antioxidant and Osmolyte Capacity of Plants. International Journal of Molecular Sciences. 2023; 24(22):16388. https://doi.org/10.3390/ijms242216388
Chicago/Turabian StyleXiang, Jiang, Min Li, Yiyi Li, Yi Liu, Lingzhu Wei, Ting Zheng, Jiang Wu, Yihe Yu, and Jianhui Cheng. 2023. "Overexpression of Grapevine VyTRXy Improves Drought Tolerance by Maintaining Photosynthesis and Enhancing the Antioxidant and Osmolyte Capacity of Plants" International Journal of Molecular Sciences 24, no. 22: 16388. https://doi.org/10.3390/ijms242216388
APA StyleXiang, J., Li, M., Li, Y., Liu, Y., Wei, L., Zheng, T., Wu, J., Yu, Y., & Cheng, J. (2023). Overexpression of Grapevine VyTRXy Improves Drought Tolerance by Maintaining Photosynthesis and Enhancing the Antioxidant and Osmolyte Capacity of Plants. International Journal of Molecular Sciences, 24(22), 16388. https://doi.org/10.3390/ijms242216388