The Role of Human and Animal Monocytes and Macrophages in Homeostasis and Disease
Conflicts of Interest
References
- Buchmann, K. Evolution of Innate Immunity: Clues from Invertebrates via Fish to Mammals. Front. Immunol. 2014, 5, 459. [Google Scholar] [CrossRef] [PubMed]
- Loker, E.S.; Adema, C.M.; Zhang, S.M.; Kepler, T.B. Invertebrate immune systems—Not homogeneous, not simple, not well understood. Immunol. Rev. 2004, 198, 10–24. [Google Scholar] [CrossRef] [PubMed]
- Melillo, D.; Marino, R.; Italiani, P.; Boraschi, D. Innate Immune Memory in Invertebrate Metazoans: A Critical Appraisal. Front. Immunol. 2018, 9, 1915. [Google Scholar] [CrossRef] [PubMed]
- Santosa, E.K.; Sun, J.C. Cardinal features of immune memory in innate lymphocytes. Nat. Immunol. 2023, 24, 1803–1812. [Google Scholar] [CrossRef] [PubMed]
- Decano, J.L.; Maiorino, E.; Matamalas, J.T.; Chelvanambi, S.; Tiemeijer, B.M.; Yanagihara, Y.; Mukai, S.; Jha, P.K.; Pestana, D.V.S.; D’souza, E.; et al. Cellular Heterogeneity of Activated Primary Human Macrophages and Associated Drug–Gene Networks: From Biology to Precision Therapeutics. Circulation 2023, 148, 1459–1478. [Google Scholar] [CrossRef] [PubMed]
- Frank, A.S.J.; Larripa, K.; Ryu, H.; Röblitz, S. Macrophage phenotype transitions in a stochastic gene-regulatory network model. J. Theor. Biol. 2023, 575, 111634. [Google Scholar] [CrossRef] [PubMed]
- Mass, E.; Nimmerjahn, F.; Kierdorf, K.; Schlitzer, A. Tissue-specific macrophages: How they develop and choreograph tissue biology. Nat. Rev. Immunol. 2023, 23, 563–579. [Google Scholar] [CrossRef]
- Noy, R.; Pollard, J.W. Tumor-associated macrophages: From mechanisms to therapy. Immunity 2014, 41, 49–61, Erratum in: Immunity 2014, 41, 866. [Google Scholar] [CrossRef]
- Dehnavi, S.; Sadeghi, M.; Tavakol Afshari, J.; Mohammadi, M. Interactions of mesenchymal stromal/stem cells and immune cells following MSC-based therapeutic approaches in rheumatoid arthritis. Cell. Immunol. 2023, 393–394, 104771. [Google Scholar] [CrossRef]
- Ladewig, L.; Gloy, L.; Langfeldt, D.; Pinnow, N.; Weiland-Bräuer, N.; Schmitz, R.A. Antimicrobial Peptides Originating from Expression Libraries of Aurelia aurita and Mnemiopsis leidyi Prevent Biofilm Formation of Opportunistic Pathogens. Microorganisms 2023, 11, 2184. [Google Scholar] [CrossRef]
- O’Brien, M.W.; Shivgulam, M.E. Mechanistic, participant, and movement-related factors that contribute to low-flow-mediated constriction. Eur. J. Appl. Physiol. 2023, 123, 2687–2697. [Google Scholar] [CrossRef]
- Nasci, V.L.; Almutlaq, R.N.; Pollock, D.M.; Gohar, E.Y. Endothelin mediates sex-differences in acclimation to high salt diet in rats. Biol. Sex Differ. 2023, 14, 70. [Google Scholar] [CrossRef]
- Sharrock, J.; Sun, J.C. Innate immunological memory: From plants to animals. Curr. Opin. Immunol. 2020, 62, 69–78. [Google Scholar] [CrossRef]
- Kurtz, J.; Franz, K. Innate defence: Evidence for memory in invertebrate immunity. Nature 2003, 425, 37–38. [Google Scholar] [CrossRef]
- Rodrigues, J.; Brayner, F.A.; Alves, L.C.; Dixit, R.; Barillas-Mury, C. Hemocyte Differentiation Mediates Innate Immune Memory in Anopheles gambiae Mosquitoes. Science 2010, 329, 1353–1355. [Google Scholar] [CrossRef] [PubMed]
- Bergin, D.; Murphy, L.; Keenan, J.; Clynes, M.; Kavanagh, K. Pre-exposure to yeast protects larvae of Galleria mellonella from a subsequent lethal infection by Candida albicans and is mediated by the increased expression of antimicrobial peptides. Microbes Infect. 2006, 8, 2105–2112. [Google Scholar] [CrossRef]
- Faulhaber, L.M.; Karp, R.D. A diphasic immune response against bacteria in the American cockroach. Immunology 1992, 75, 378–381. [Google Scholar] [PubMed]
- Moret, Y.; Siva-Jothy, M.T. Adaptive innate immunity? Responsive-mode prophylaxis in the mealworm beetle, Tenebrio molitor. Proc. R. Soc. B Biol. Sci. 2003, 270, 2475–2480. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lu, H.; Bargmann, C.I. Pathogenic bacteria induce aversive olfactory learning in Caenorhabditis elegans. Nature 2005, 438, 179–184. [Google Scholar] [CrossRef]
- Tran, T.D.; Luallen, R.J. An organismal understanding of C. elegans innate immune responses, from pathogen recognition to multigenerational resistance. Semin. Cell Dev. Biol. 2024, 154, 77–84. [Google Scholar] [CrossRef]
- Little, T.J.; Killick, S.C. Evidence for a cost of immunity when the crustacean Daphnia magna is exposed to the bacterial pathogen Pasteuria ramosa. J. Anim. Ecol. 2007, 76, 1202–1207. [Google Scholar] [CrossRef] [PubMed]
- Low, C.F.; Chong, C.M. Peculiarities of innate immune memory in crustaceans. Fish Shellfish. Immunol. 2020, 104, 605–612. [Google Scholar] [CrossRef]
- Roy, S.; Baruah, K.; Bossier, P.; Vanrompay, D.; Norouzitallab, P. Induction of transgenerational innate immune memory against Vibrio infections in a brine shrimp (Artemia franciscana) model. Aquaculture 2022, 557, 738309. [Google Scholar] [CrossRef]
- Schulz, N.K.E.; Sell, M.P.; Ferro, K.; Kleinhölting, N.; Kurtz, J. Transgenerational Developmental Effects of Immune Priming in the Red Flour Beetle Tribolium castaneum. Front. Physiol. 2019, 10, 98. [Google Scholar] [CrossRef]
- Hernández López, J.; Schuehly, W.; Crailsheim, K.; Riessberger-Gallé, U. Trans-generational immune priming in honeybees. Proc. Biol. Sci. 2014, 281, 20140454. [Google Scholar] [CrossRef] [PubMed]
- Boraschi, D.; Italiani, P. Innate Immune Memory: Time for Adopting a Correct Terminology. Front. Immunol. 2018, 9, 799. [Google Scholar] [CrossRef]
- Roth, O.; Beemelmanns, A.; Barribeau, S.M.; Sadd, B.M. Recent advances in vertebrate and invertebrate transgenerational immunity in the light of ecology and evolution. Heredity 2018, 121, 225–238. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xin, Y.; Wang, Z.; Li, J.; Li, W.; Li, H. The role of cardiac resident macrophage in cardiac aging. Aging Cell 2023, e14008. [Google Scholar] [CrossRef]
- Hussell, T.; Bell, T.J. Alveolar macrophages: Plasticity in a tissue-specific context. Nat. Rev. Immunol. 2014, 14, 81–93. [Google Scholar] [CrossRef]
- Nguyen-Lefebvre, A.T.; Horuzsko, A. Kupffer Cell Metabolism and Function. J. Enzymol. Metab. 2015, 1, 101. [Google Scholar]
- Thomas, S.K.; Wattenberg, M.M.; Choi-Bose, S.; Uhlik, M.; Harrison, B.; Coho, H.; Cassella, C.R.; Stone, M.L.; Patel, D.; Markowitz, K.; et al. Kupffer cells prevent pancreatic ductal adenocarcinoma metastasis to the liver in mice. Nat. Commun. 2023, 14, 6330. [Google Scholar] [CrossRef] [PubMed]
- Afkhami, H.; Mahmoudvand, G.; Fakouri, A.; Shadab, A.; Mahjoor, M.; Komeili Movahhed, T. New insights in application of mesenchymal stem cells therapy in tumor microenvironment: Pros and cons. Front. Cell Dev. Biol. 2023, 11, 1255697. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Xu, Y.; Liu, Q.; Zhang, Q. Mesenchymal Stem Cell-Macrophage Crosstalk and Maintenance of Inflammatory Microenvironment Homeostasis. Front. Cell Dev. Biol. 2021, 9, 681171. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kloc, M.; Kubiak, J.Z. The Role of Human and Animal Monocytes and Macrophages in Homeostasis and Disease. Int. J. Mol. Sci. 2023, 24, 16397. https://doi.org/10.3390/ijms242216397
Kloc M, Kubiak JZ. The Role of Human and Animal Monocytes and Macrophages in Homeostasis and Disease. International Journal of Molecular Sciences. 2023; 24(22):16397. https://doi.org/10.3390/ijms242216397
Chicago/Turabian StyleKloc, Malgorzata, and Jacek Z. Kubiak. 2023. "The Role of Human and Animal Monocytes and Macrophages in Homeostasis and Disease" International Journal of Molecular Sciences 24, no. 22: 16397. https://doi.org/10.3390/ijms242216397
APA StyleKloc, M., & Kubiak, J. Z. (2023). The Role of Human and Animal Monocytes and Macrophages in Homeostasis and Disease. International Journal of Molecular Sciences, 24(22), 16397. https://doi.org/10.3390/ijms242216397