Utilizing Extraepitopic Amino Acid Substitutions to Define Changes in the Accessibility of Conformational Epitopes of the Bacillus cereus HlyII C-Terminal Domain
Abstract
:1. Introduction
2. Results
2.1. Monoclonal Antibodies HlyIIC-20 and HlyIIC-40 Recognize Non-Overlapping Regions on the Surface of the Spatial Structure of HlyIICTD
2.2. Efficiency of HlyIIC-20 Binding to Full-Length Hemolysins of B. cereus Strains ATCC 14579T, B771, and ATCC 4342T
2.3. Determination of the HlyIIC-20 Epitope
3. Discussion
4. Materials and Methods
4.1. Strains, Plasmids and Enzymes
4.2. Molecular Cloning and Site-Directed Mutagenesis
4.3. Expression and Purification of HlyIICTD His6 and Its Mutant Forms
4.4. Enzyme immunosorbent Assay
4.5. Conjugation of Antibodies with Biotin
4.6. Measurement of Hemolytic Activity of Hemolysin II in the Presence of mAbs
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Logan, N.A. Bacillus and relatives in foodborne illness. J. Appl. Microbiol. 2012, 3, 417–429. [Google Scholar] [CrossRef] [PubMed]
- Thery, M.; Cousin, V.L.; Tissieres, P.; Enault, M.; Morin, L. Multi-organ failure caused by lasagnas: A case report of Bacillus cereus food poisoning. Front. Pediatr. 2022, 11, 1178208. [Google Scholar] [CrossRef]
- Ramarao, N.; Sanchis, V. The pore-forming haemolysins of Bacillus cereus: A review. Toxins 2013, 6, 1119–1139. [Google Scholar] [CrossRef]
- Hunter, S.E.; Brown, J.E.; Oyston, P.C.; Sakurai, J.; Titball, R.W. Molecular genetic analysis of beta-toxin of Clostridium perfringens reveals sequence homology with alpha-toxin, gamma-toxin, and leukocidin of Staphylococcus aureus. Infect. Immun. 1993, 9, 3958–3965. [Google Scholar] [CrossRef] [PubMed]
- Miles, G.; Bayley, H.; Cheley, S. Properties of Bacillus cereus hemolysin II: A heptameric transmembrane pore. Protein Sci. 2002, 7, 1813–1824. [Google Scholar] [CrossRef]
- Hu, H.; Liu, M.; Sun, S. Pore-Forming toxins during bacterial infection: Molecular Mechanisms and Potential Therapeutic Targets. Drug Des. Dev. Ther. 2021, 15, 3773–3781. [Google Scholar] [CrossRef]
- Kholodkov, O.A.; Budarina, Z.; Kovalevskaya, J.I.; Siunov, A.V.; Solonin, A.S. Effect of Bacillus cereus hemolysin II on hepatocyte cells. Prikl. Biokhim Mikrobiol. 2015, 2, 258–267. [Google Scholar] [CrossRef]
- Kataev, A.A.; Andreeva-Kovalevskaya, Z.I.; Solonin, A.S.; Ternovsky, V.I. Bacillus cereus can attack the cell membranes of the alga Chara corallina by means of HlyII. Biochim. Biophys. Acta 2012, 5, 1235–1241. [Google Scholar] [CrossRef]
- Teplova, V.V.; Andreeva-Kovalevskaya, Z.I.; Sineva, E.V.; Solonin, A.S. Quick assessment of cytotoxins effect on Daphnia magna using in vivo fluorescence microscopy. Environ. Toxicol. Chem. 2010, 6, 1345–1348. [Google Scholar] [CrossRef]
- Baida, G.; Budarina, Z.I.; Kuzmin, N.P.; Solonin, A.S. Complete nucleotide sequence and molecular characterization of hemolysin II gene from Bacillus cereus. FEMS Microbiol. Lett. 1999, 1, 7–14. [Google Scholar] [CrossRef]
- Rudenko, N.; Siunov, A.; Zamyatina, A.; Melnik, B.; Nagel, A.; Karatovskaya, A.; Borisova, M.; Shepelyakovskaya, A.; Andreeva-Kovalevskaya, Z.; Kolesnikov, A.; et al. The C-terminal domain of Bacillus cereus hemolysin II oligomerizes by itself in the presence of cell membranes to form ion channels. Int. J. Biol. Macromol. 2022, 200, 416–427. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, A.R.; Kaus, K.; De, S.; Olson, R.; Alexandrescu, A.T. NMR structure of the Bacillus cereus hemolysin II C-terminal domain reveals a novel fold. Sci. Rep. 2017, 1, 3277. [Google Scholar] [CrossRef]
- Kaplan, A.R.; Maciejewski, M.W.; Olson, R.; Alexandrescu, A.T. NMR assignments for the cis and trans forms of the hemolysin II C-terminal domain. Biomol. NMR Assign. 2014, 2, 419–423. [Google Scholar] [CrossRef]
- Kaplan, A.R.; Olson, R.; Alexandrescu, A.T. Protein yoga: Conformational versatility of the hemolysin II C-terminal domain detailed by NMR structures for multiple states. Protein Sci. 2021, 5, 990–1005. [Google Scholar] [CrossRef] [PubMed]
- Rudenko, N.; Nagel, A.; Zamyatina, A.; Karatovskaya, A.; Salyamov, V.; Andreeva-Kovalevskaya, Z.; Siunov, A.; Kolesnikov, A.; Shepelyakovskaya, A.; Boziev, K.; et al. A monoclonal antibody against the C-terminal domain of Bacillus cereus hemolysin II inhibits HlyII cytolytic activity. Toxins 2020, 12, 806. [Google Scholar] [CrossRef]
- Sharon, J.; Gefter, M.L.; Manser, T.; Ptashne, M. Site-directed mutagenesis of an invariant amino acid residue at the variable-diversity segments junction of an antibody. Proc. Natl. Acad. Sci. USA 1986, 8, 2628–2631. [Google Scholar] [CrossRef]
- Kumar, N.; Bajiya, N.; Patiyal, S.; Raghava, G.P.S. Multi-perspectives and challenges in identifying B-cell epitopes. Protein Sci. 2023, 11, e4785. [Google Scholar] [CrossRef]
- Guarra, F.; Colombo, G. Computational Methods in Immunology and Vaccinology: Design and Development of Antibodies and Immunogens. J. Chem. Theory Comput. 2023, 16, 5315–5333. [Google Scholar] [CrossRef]
- Murphy, K.; Weaver, C. Janeway’s Immunobiology, 9th ed.; Mowat, A., Berg, L., Chaplin, D., Janeway, C.A., Jr., Travers, P., Walport, M., Eds.; Garland Science/Taylor & Francis Group, LLC: New York, NY, USA, 2017. [Google Scholar]
- Gouaux, E. alpha-Hemolysin from Staphylococcus aureus: An archetype of beta-barrel, channel-forming toxins. J. Struct. Biol. 1998, 121, 110–122. [Google Scholar] [CrossRef]
- Li, Y.; Mengist, H.M.; Shi, C.; Zhang, C.; Wang, B.; Li, T.; Huang, Y.; Xu, Y.; Jin, T. Structural basis of the pore-forming toxin/membrane interaction. Toxins 2021, 13, 128. [Google Scholar] [CrossRef]
- Song, L.; Hobaugh, M.R.; Shustak, C.; Cheley, S.; Bayley, H.; Gouaux, J.E. Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science 1996, 5294, 1859–1866. [Google Scholar] [CrossRef] [PubMed]
- Sambrook, J.; Russell, D.W. Site-specific mutagenesis by overlap extension. CSH Protoc. 2006, 1, pdb.prot3468. [Google Scholar] [CrossRef] [PubMed]
- Sinev, M.A.; Budarina, Z.; Gavrilenko, I.V.; Tomashevskii, A.I.; Kuzmin, N.P. Evidence of the existence of hemolysin II from Bacillus cereus: Cloning the genetic determinant of hemolysin II. Mol. Biol. 1993, 27, 1218–1229. [Google Scholar]
Mutation Name | Oligonucleotide Name | Sequence 5′->3′ |
---|---|---|
N377A | F_N377A | CTTTGTAGCTGGTGAAAAGGTCTATAC |
R_N377A | TTCACCAGCTACAAAGATACCCCAAT | |
Q411A | R_Q411A | TAACTCGAGGGTACCGATAGCTTTAATCTCGATATAAGGTCC |
P405M | F_P405M | AAAGGAATGTATATCGAGATTAAACAGATC |
R_P405M | GATATACATTCCTTTAATGTTTAATTTG | |
Y363G | F_Y363G | GCTGGTGGAGGTATCAGTTACGAAG |
R_Y363G | GATACCTCCACCAGCATTGCTAGATG | |
K399G | F_K399G | GATATTAACGGATTAAACATTAAAGGACCTTATATC |
R_K399G | AATGTTTAATCCGTTAATATCATTAGAGATATTGC | |
K355G | F_K355G | CAACTTGGAGCTACATCTAGCAATGC |
R_K355G | GATGTAGCTCCAAGTTGATTTCCATTC | |
N360A N392A | F_N360A | TCTAGCGCAGCTGGTTATGGTATC |
R_N360A | ACCAGCTGCGCTAGATGTAGCTTTAAG | |
F_N392A | GTAGGCGCTATCTCTAATGATATTAACAAAT | |
R_N392A | AGAGATAGCGCCTACAGTTGATTTTTC | |
N339A K340A | F_NK339 | AACTTGCTGCTGGAAAAGGGAAATTATC |
R_NK339 | CTTTTCCAGCAGCAAGTTTATCATTCACGC | |
P405M N377A | F_P405M | AAAGGAATGTATATCGAGATTAAACAGATC |
R_P405M | GATATACATTCCTTTAATGTTTAATTTG | |
F_N377A | CTTTGTAGCTGGTGAAAAGGTCTATAC | |
R_N377A | TTCACCAGCTACAAAGATACCCCAAT | |
P405M N392A | F_P405M | AAAGGAATGTATATCGAGATTAAACAGATC |
R_P405M | GATATACATTCCTTTAATGTTTAATTTG | |
F_N392A | GTAGGCGCTATCTCTAATGATATTAACAAAT | |
R_N392A | AGAGATAGCGCCTACAGTTGATTTTTC | |
E379G K380G | F_EK379G | GGTGGTGGAGTCTATACTTTTAATGAAAAATCAAC |
R_EK379G | GTATAGACTCCACCACCATTTACAAAGATACCC | |
Y367G E368A D369A | F_YED367GAA | CAGTGGAGCAGCAAAAAATTGGGGTATCTTTG |
R_YED367GAA | TTTTGCTGCTCCACTGATACCATAACCAG | |
P405M N339A K340A | F_P405M | AAAGGAATGTATATCGAGATTAAACAGATC |
R_P405M | GATATACATTCCTTTAATGTTTAATTTG | |
F_NK339 | AACTTGCTGCTGGAAAAGGGAAATTATC | |
R_NK339 | CTTTTCCAGCAGCAAGTTTATCATTCACGC | |
N350A N352A Q353A | F-NNQ | ATGGCTGGAGCTGCTCTTAAAGCTACATCTAGC |
R-NNQ | AAGAGCAGCTCCAGCCATTGAAAGAGATAATTTC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rudenko, N.V.; Nagel, A.S.; Melnik, B.S.; Karatovskaya, A.P.; Vetrova, O.S.; Zamyatina, A.V.; Andreeva-Kovalevskaya, Z.I.; Siunov, A.V.; Shlyapnikov, M.G.; Brovko, F.A.; et al. Utilizing Extraepitopic Amino Acid Substitutions to Define Changes in the Accessibility of Conformational Epitopes of the Bacillus cereus HlyII C-Terminal Domain. Int. J. Mol. Sci. 2023, 24, 16437. https://doi.org/10.3390/ijms242216437
Rudenko NV, Nagel AS, Melnik BS, Karatovskaya AP, Vetrova OS, Zamyatina AV, Andreeva-Kovalevskaya ZI, Siunov AV, Shlyapnikov MG, Brovko FA, et al. Utilizing Extraepitopic Amino Acid Substitutions to Define Changes in the Accessibility of Conformational Epitopes of the Bacillus cereus HlyII C-Terminal Domain. International Journal of Molecular Sciences. 2023; 24(22):16437. https://doi.org/10.3390/ijms242216437
Chicago/Turabian StyleRudenko, Natalia V., Alexey S. Nagel, Bogdan S. Melnik, Anna P. Karatovskaya, Olesya S. Vetrova, Anna V. Zamyatina, Zhanna I. Andreeva-Kovalevskaya, Alexander V. Siunov, Mikhail G. Shlyapnikov, Fedor A. Brovko, and et al. 2023. "Utilizing Extraepitopic Amino Acid Substitutions to Define Changes in the Accessibility of Conformational Epitopes of the Bacillus cereus HlyII C-Terminal Domain" International Journal of Molecular Sciences 24, no. 22: 16437. https://doi.org/10.3390/ijms242216437
APA StyleRudenko, N. V., Nagel, A. S., Melnik, B. S., Karatovskaya, A. P., Vetrova, O. S., Zamyatina, A. V., Andreeva-Kovalevskaya, Z. I., Siunov, A. V., Shlyapnikov, M. G., Brovko, F. A., & Solonin, A. S. (2023). Utilizing Extraepitopic Amino Acid Substitutions to Define Changes in the Accessibility of Conformational Epitopes of the Bacillus cereus HlyII C-Terminal Domain. International Journal of Molecular Sciences, 24(22), 16437. https://doi.org/10.3390/ijms242216437