Metabolic Markers and Association of Biological Sex in Lupus Nephritis
Abstract
:1. Introduction
2. Results
2.1. Comparison of LacCers and N-Linked Glycosylation in Urine of Lupus Nephritis Patients Compared to Healthy Controls and between Sexes
2.2. Comparison of LacCers and N-Linked Glycosylation in Serum of Lupus Nephritis Patients Compared to Healthy Controls and between Sexes
2.3. Influence of Disease and Biologic Sex in the Response of Mesangial Cells to Human Sera
2.4. Differences in LacCers and HexCers Levels and the N-Glycome in Female-Derived and Male-Derived hRMCs
3. Discussion
4. Materials and Methods
4.1. Human Samples and Ethics Statement
4.2. Cell Culture
4.3. Lipid Analyses
4.4. N-Glycan Analyses
4.5. Cytokine Release Experiments
4.6. Intracellular Ca2+ Analyses
4.7. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Izmirly, P.M.; Parton, H.; Wang, L.; McCune, W.J.; Lim, S.S.; Drenkard, C.; Ferucci, E.D.; Dall′Era, M.; Gordon, C.; Helmick, C.G.; et al. Prevalence of Systemic Lupus Erythematosus in the United States: Estimates from a Meta-Analysis of the Centers for Disease Control and Prevention National Lupus Registries. Arthritis Rheumatol. 2021, 73, 991–996. [Google Scholar] [CrossRef]
- Lingwood, C.A. Glycosphingolipid functions. Cold Spring Harb. Perspect. Biol. 2011, 3, a004788. [Google Scholar] [CrossRef]
- Jennemann, R.; Grone, H.J. Cell-specific in vivo functions of glycosphingolipids: Lessons from genetic deletions of enzymes involved in glycosphingolipid synthesis. Prog. Lipid Res. 2013, 52, 231–248. [Google Scholar] [CrossRef]
- Head, B.P.; Patel, H.H.; Insel, P.A. Interaction of membrane/lipid rafts with the cytoskeleton: Impact on signaling and function: Membrane/lipid rafts, mediators of cytoskeletal arrangement and cell signaling. Biochim. Biophys. Acta 2014, 1838, 532–545. [Google Scholar] [CrossRef]
- Zhang, T.; de Waard, A.A.; Wuhrer, M.; Spaapen, R.M. The Role of Glycosphingolipids in Immune Cell Functions. Front. Immunol. 2019, 10, 90. [Google Scholar] [CrossRef]
- Weesner, J.A.; Annunziata, I.; van de Vlekkert, D.; d′Azzo, A. Glycosphingolipids within membrane contact sites influence their function as signaling hubs in neurodegenerative diseases. FEBS Open Bio 2023, 13, 1587–1600. [Google Scholar] [CrossRef] [PubMed]
- Nowling, T.K.; Mather, A.R.; Thiyagarajan, T.; Hernandez-Corbacho, M.J.; Powers, T.W.; Jones, E.E.; Snider, A.J.; Oates, J.C.; Drake, R.R.; Siskind, L.J. Renal glycosphingolipid metabolism is dysfunctional in lupus nephritis. J. Am. Soc. Nephrol. JASN 2015, 26, 1402–1413. [Google Scholar] [CrossRef] [PubMed]
- Tabassum, R.; Ruotsalainen, S.; Ottensmann, L.; Gerl, M.J.; Klose, C.; Tukiainen, T.; Pirinen, M.; Simons, K.; Widen, E.; Ripatti, S. Lipidome- and Genome-Wide Study to Understand Sex Differences in Circulatory Lipids. J. Am. Heart Assoc. 2022, 11, e027103. [Google Scholar] [CrossRef]
- Buhre, J.S.; Becker, M.; Ehlers, M. IgG subclass and Fc glycosylation shifts are linked to the transition from pre- to inflammatory autoimmune conditions. Front. Immunol. 2022, 13, 1006939. [Google Scholar] [CrossRef]
- Radovani, B.; Gudelj, I. N-Glycosylation and Inflammation; the Not-So-Sweet Relation. Front. Immunol. 2022, 13, 893365. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Wei, Z.; Wang, C.; Guo, J.; Zhou, Y.; Wang, Z.; Liu, H. Redesigning Vina@QNLM for Ultra-Large-Scale Molecular Docking and Screening on a Sunway Supercomputer. Front. Chem. 2021, 9, 750325. [Google Scholar] [CrossRef]
- Tomana, M.; Schrohenloher, R.E.; Reveille, J.D.; Arnett, F.C.; Koopman, W.J. Abnormal galactosylation of serum IgG in patients with systemic lupus erythematosus and members of families with high frequency of autoimmune diseases. Rheumatol. Int. 1992, 12, 191–194. [Google Scholar] [CrossRef] [PubMed]
- Pilkington, C.; Yeung, E.; Isenberg, D.; Lefvert, A.K.; Rook, G.A. Agalactosyl IgG and antibody specificity in rheumatoid arthritis, tuberculosis, systemic lupus erythematosus and myasthenia gravis. Autoimmunity 1995, 22, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Vuckovic, F.; Kristic, J.; Gudelj, I.; Teruel, M.; Keser, T.; Pezer, M.; Pucic-Bakovic, M.; Stambuk, J.; Trbojevic-Akmacic, I.; Barrios, C.; et al. Association of systemic lupus erythematosus with decreased immunosuppressive potential of the IgG glycome. Arthritis Rheumatol. 2015, 67, 2978–2989. [Google Scholar] [CrossRef]
- Sjowall, C.; Zapf, J.; von Lohneysen, S.; Magorivska, I.; Biermann, M.; Janko, C.; Winkler, S.; Bilyy, R.; Schett, G.; Herrmann, M.; et al. Altered glycosylation of complexed native IgG molecules is associated with disease activity of systemic lupus erythematosus. Lupus 2015, 24, 569–581. [Google Scholar] [CrossRef] [PubMed]
- Alves, I.; Santos-Pereira, B.; Dalebout, H.; Santos, S.; Vicente, M.M.; Campar, A.; Thepaut, M.; Fieschi, F.; Strahl, S.; Boyaval, F.; et al. Protein Mannosylation as a Diagnostic and Prognostic Biomarker of Lupus Nephritis: An Unusual Glycan Neoepitope in Systemic Lupus Erythematosus. Arthritis Rheumatol. 2021, 73, 2069–2077. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, S.; Wu, J.; Jiang, M.; Lin, J.; Zhang, Y.; Ding, H.; Zhou, H.; Shen, N.; Di, W. Control of lupus activity during pregnancy via the engagement of IgG sialylation: Novel crosstalk between IgG sialylation and pDC functions. Front. Med. 2023, 17, 549–561. [Google Scholar] [CrossRef] [PubMed]
- Sundararaj, K.; Rodgers, J.; Angel, P.; Wolf, B.; Nowling, T.K. The role of neuraminidase in TLR4-MAPK signalling and the release of cytokines by lupus serum-stimulated mesangial cells. Immunology 2021, 162, 418–433. [Google Scholar] [CrossRef]
- Sundararaj, K.; Rodgers, J.I.; Marimuthu, S.; Siskind, L.J.; Bruner, E.; Nowling, T.K. Neuraminidase activity mediates IL-6 production by activated lupus-prone mesangial cells. Am. J. Physiol. Ren. Physiol. 2018, 314, F630–F642. [Google Scholar] [CrossRef]
- Troyer, B.; Rodgers, J.; Wolf, B.J.; Oates, J.C.; Drake, R.R.; Nowling, T.K. Glycosphingolipid Levels in Urine Extracellular Vesicles Enhance Prediction of Therapeutic Response in Lupus Nephritis. Metabolites 2022, 12, 134. [Google Scholar] [CrossRef] [PubMed]
- Tan, T.C.; Fang, H.; Magder, L.S.; Petri, M.A. Differences between male and female systemic lupus erythematosus in a multiethnic population. J. Rheumatol. 2012, 39, 759–769. [Google Scholar] [CrossRef]
- Ramirez Sepulveda, J.I.; Bolin, K.; Mofors, J.; Leonard, D.; Svenungsson, E.; Jonsen, A.; Bengtsson, C.; Consortium, D.; Nordmark, G.; Rantapaa Dahlqvist, S.; et al. Sex differences in clinical presentation of systemic lupus erythematosus. Biol. Sex. Differ. 2019, 10, 60. [Google Scholar] [CrossRef]
- Trentin, F.; Signorini, V.; Manca, M.L.; Cascarano, G.; Gualtieri, L.; Schiliro, D.; Valevich, A.; Cardelli, C.; Carli, L.; Elefante, E.; et al. Gender differences in SLE: Report from a cohort of 417 Caucasian patients. Lupus Sci. Med. 2023, 10, e000880. [Google Scholar] [CrossRef] [PubMed]
- McCluer, R.H.; Williams, M.A.; Gross, S.K.; Meisler, M.H. Testosterone effects on the induction and urinary excretion of mouse kidney glycosphingolipids associated with lysosomes. J. Biol. Chem. 1981, 256, 13112–13120. [Google Scholar] [CrossRef]
- Chiricozzi, E.; Ciampa, M.G.; Brasile, G.; Compostella, F.; Prinetti, A.; Nakayama, H.; Ekyalongo, R.C.; Iwabuchi, K.; Sonnino, S.; Mauri, L. Direct interaction, instrumental for signaling processes, between LacCer and Lyn in the lipid rafts of neutrophil-like cells. J. Lipid Res. 2015, 56, 129–141. [Google Scholar] [CrossRef] [PubMed]
- Iwabuchi, K.; Prinetti, A.; Sonnino, S.; Mauri, L.; Kobayashi, T.; Ishii, K.; Kaga, N.; Murayama, K.; Kurihara, H.; Nakayama, H.; et al. Involvement of very long fatty acid-containing lactosylceramide in lactosylceramide-mediated superoxide generation and migration in neutrophils. Glycoconj. J. 2008, 25, 357–374. [Google Scholar] [CrossRef]
- Iwabuchi, K.; Nagaoka, I. Lactosylceramide-enriched glycosphingolipid signaling domain mediates superoxide generation from human neutrophils. Blood 2002, 100, 1454–1464. [Google Scholar] [CrossRef]
- Mishra, S.; Chatterjee, S. Lactosylceramide promotes hypertrophy through ROS generation and activation of ERK1/2 in cardiomyocytes. Glycobiology 2014, 24, 518–531. [Google Scholar] [CrossRef] [PubMed]
- Subathra, M.; Korrapati, M.; Howell, L.A.; Arthur, J.M.; Shayman, J.A.; Schnellmann, R.G.; Siskind, L.J. Kidney glycosphingolipids are elevated early in diabetic nephropathy and mediate hypertrophy of mesangial cells. Am. J. Physiol. Ren. Physiol. 2015, 309, F204–F215. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wu, X.; Su, P.; Gao, Y.; Meng, B.; Sun, Y.; Li, L.; Zhou, Z.; Zhou, G. Doxorubicin influences the expression of glucosylceramide synthase in invasive ductal breast cancer. PLoS ONE 2012, 7, e48492. [Google Scholar] [CrossRef]
- Chui, D.; Sellakumar, G.; Green, R.; Sutton-Smith, M.; McQuistan, T.; Marek, K.; Morris, H.; Dell, A.; Marth, J. Genetic remodeling of protein glycosylation in vivo induces autoimmune disease. Proc. Natl. Acad. Sci. USA 2001, 98, 1142–1147. [Google Scholar] [CrossRef] [PubMed]
- Green, R.S.; Stone, E.L.; Tenno, M.; Lehtonen, E.; Farquhar, M.G.; Marth, J.D. Mammalian N-glycan branching protects against innate immune self-recognition and inflammation in autoimmune disease pathogenesis. Immunity 2007, 27, 308–320. [Google Scholar] [CrossRef] [PubMed]
- Hashii, N.; Kawasaki, N.; Itoh, S.; Nakajima, Y.; Kawanishi, T.; Yamaguchi, T. Alteration of N-glycosylation in the kidney in a mouse model of systemic lupus erythematosus: Relative quantification of N-glycans using an isotope-tagging method. Immunology 2009, 126, 336–345. [Google Scholar] [CrossRef] [PubMed]
- Ercan, A.; Kohrt, W.M.; Cui, J.; Deane, K.D.; Pezer, M.; Yu, E.W.; Hausmann, J.S.; Campbell, H.; Kaiser, U.B.; Rudd, P.M.; et al. Estrogens regulate glycosylation of IgG in women and men. JCI Insight 2017, 2, e89703. [Google Scholar] [CrossRef]
- Ding, N.; Nie, H.; Sun, X.; Sun, W.; Qu, Y.; Liu, X.; Yao, Y.; Liang, X.; Chen, C.C.; Li, Y. Human serum N-glycan profiles are age and sex dependent. Age Ageing 2011, 40, 568–575. [Google Scholar] [CrossRef]
- Kristic, J.; Lauc, G.; Pezer, M. Immunoglobulin G glycans—Biomarkers and molecular effectors of aging. Clin. Chim. Acta 2022, 535, 30–45. [Google Scholar] [CrossRef]
- Yu, X.; Wang, Y.; Kristic, J.; Dong, J.; Chu, X.; Ge, S.; Wang, H.; Fang, H.; Gao, Q.; Liu, D.; et al. Profiling IgG N-glycans as potential biomarker of chronological and biological ages: A community-based study in a Han Chinese population. Medicine 2016, 95, e4112. [Google Scholar] [CrossRef]
- Nikolac Perkovic, M.; Pucic Bakovic, M.; Kristic, J.; Novokmet, M.; Huffman, J.E.; Vitart, V.; Hayward, C.; Rudan, I.; Wilson, J.F.; Campbell, H.; et al. The association between galactosylation of immunoglobulin G and body mass index. Prog. Neuropsychopharmacol. Biol. Psychiatry 2014, 48, 20–25. [Google Scholar] [CrossRef]
- Mertins, P.; Tang, L.C.; Krug, K.; Clark, D.J.; Gritsenko, M.A.; Chen, L.; Clauser, K.R.; Clauss, T.R.; Shah, P.; Gillette, M.A.; et al. Reproducible workflow for multiplexed deep-scale proteome and phosphoproteome analysis of tumor tissues by liquid chromatography-mass spectrometry. Nat. Protoc. 2018, 13, 1632–1661. [Google Scholar] [CrossRef]
- Engdahl, C.; Bondt, A.; Harre, U.; Raufer, J.; Pfeifle, R.; Camponeschi, A.; Wuhrer, M.; Seeling, M.; Martensson, I.L.; Nimmerjahn, F.; et al. Estrogen induces St6gal1 expression and increases IgG sialylation in mice and patients with rheumatoid arthritis: A potential explanation for the increased risk of rheumatoid arthritis in postmenopausal women. Arthritis Res. Ther. 2018, 20, 84. [Google Scholar] [CrossRef]
- Nowling, T.K.; Rodgers, J.; Thiyagarajan, T.; Wolf, B.; Bruner, E.; Sundararaj, K.; Molano, I.; Gilkeson, G. Targeting glycosphingolipid metabolism as a potential therapeutic approach for treating disease in female MRL/lpr lupus mice. PLoS ONE 2020, 15, e0230499. [Google Scholar] [CrossRef]
- Toora, B.D.; Rajagopal, G. Measurement of creatinine by Jaffe’s reaction—Determination of concentration of sodium hydroxide required for maximum color development in standard, urine and protein free filtrate of serum. Indian J. Exp. Biol. 2002, 40, 352–354. [Google Scholar] [PubMed]
- Blaschke, C.R.K.; Hartig, J.P.; Grimsley, G.; Liu, L.; Semmes, O.J.; Wu, J.D.; Ippolito, J.E.; Hughes-Halbert, C.; Nyalwidhe, J.O.; Drake, R.R. Direct N-Glycosylation Profiling of Urine and Prostatic Fluid Glycoproteins and Extracellular Vesicles. Front. Chem. 2021, 9, 734280. [Google Scholar] [CrossRef] [PubMed]
- Blaschke, C.R.K.; Black, A.P.; Mehta, A.S.; Angel, P.M.; Drake, R.R. Rapid N-Glycan Profiling of Serum and Plasma by a Novel Slide-Based Imaging Mass Spectrometry Workflow. J. Am. Soc. Mass Spectrom. 2020, 31, 2511–2520. [Google Scholar] [CrossRef] [PubMed]
- Angel, P.M.; Saunders, J.; Clift, C.L.; White-Gilbertson, S.; Voelkel-Johnson, C.; Yeh, E.; Mehta, A.; Drake, R.R. A Rapid Array-Based Approach to N-Glycan Profiling of Cultured Cells. J. Proteome Res. 2019, 18, 3630–3639. [Google Scholar] [CrossRef]
- Palygin, O.; Klemens, C.A.; Isaeva, E.; Levchenko, V.; Spires, D.R.; Dissanayake, L.V.; Nikolaienko, O.; Ilatovskaya, D.V.; Staruschenko, A. Characterization of purinergic receptor 2 signaling in podocytes from diabetic kidneys. iScience 2021, 24, 102528. [Google Scholar] [CrossRef]
HC (N = 20) | LN (N = 20) | p | |
---|---|---|---|
Sex, male, n (%) | 10 (50) | 10 (50) | 1.000 |
Age, mean (SD) | 34.0 (10.3) | 33.2 (11.2) | 0.824 |
Race, n (%) | 0.041 | ||
Black | 10 (50) | 16 (80) | |
White | 10 (50) | 3 (15) | |
Other | 0 (0) | 1 (5) | |
Estimated Glomerular Filtration Rate, mean (SD) | 103.9 (23.9) | 93.0 (51.9) | 0.455 |
Urine Creatinine, mg/mL (SD) | 1.46 (1.14) | 1.24 (0.82) | 0.484 |
Urine Protein: Creatinine, median (IQR) | 0.055 (0.033) | 1.69 (3.48) | <0.001 |
Nephritis Class, n (%) | N/A | ||
I | N/A | 2 (10) | |
II | N/A | 2 (10) | |
III, IV | N/A | 8 (40) | |
III + V, IV + V | N/A | 3 (15) | |
V | N/A | 3 (15) | |
No biopsy/missing | N/A | 2 (10) | |
SLEDAI, mean (SD) | N/A | 11.85 (5.6) | N/A |
Anti-dsDNA, n positive (%) | N/A | 15 (75) | N/A |
Anti-Sm, n positive (%) | N/A | 10 (56) | N/A |
Anti-RNP, n positive (%) | N/A | 11 (61) | N/A |
C3 Complement, mean (SD) | 151.0 (16.1) | 85.8 (21.5) | <0.001 |
C4 Complement, mean (SD) | 33.9 (11.5) | 23.0 (8.18) | 0.034 |
AIC | LRT p-Value | AUC (95% CI) | Δ AUC (95% CI) | |
---|---|---|---|---|
Null Model | 43.12 | 0.0020 | 0.870 (0.748, 0.992) | |
2669 * | 8 | 0.9970 | 1 (1, 1) | 0.13 (0.008, 0.252) |
1419 * | 8 | 0.9976 | 1 (1, 1) | 0.13 (0.008, 0.252) |
1581 * | 8 | 0.9987 | 1 (1, 1) | 0.13 (0.008, 0.252) |
Mannose * | 8 | 0.9987 | 1 (1, 1) | 0.13 (0.008, 0.252) |
1485 | 33.92 | 0.0081 | 0.932 (0.859, 1.00) | 0.062 (−0.031, 0.156) |
1853 | 30.1 | 0.0081 | 0.945 (0.866, 1.00) | 0.075 (−0.025, 0.175) |
2174 | 32.47 | 0.0085 | 0.943 (0.876, 1.00) | 0.073 (−0.036, 0.181) |
1866 | 31.85 | 0.0095 | 0.948 (0.88, 1.00) | 0.078 (−0.023, 0.178) |
2122 | 33.54 | 0.0107 | 0.943 (0.872, 1.00) | 0.073 (−0.047, 0.192) |
2158 | 28.28 | 0.0108 | 0.958 (0.903, 1.00) | 0.088 (−0.023, 0.198) |
1996 | 31.62 | 0.0111 | 0.948 (0.887, 1.00) | 0.078 (−0.026, 0.181) |
2377 | 25.13 | 0.0119 | 0.970(0.923, 1.00) | 0.100 (−0.019, 0.219) |
2361 | 34 | 0.0124 | 0.938 (0.860, 1.00) | 0.068 (−0.018, 0.153) |
Tetraantennary | 33.13 | 0.0130 | 0.938 (0.860, 1.00) | 0.068 (−0.054, 0.189) |
2012 | 34.74 | 0.0131 | 0.917 (0.830, 1.00) | 0.047 (−0.062, 0.157) |
2967 | 31.54 | 0.0159 | 0.943 (0.861, 1.00) | 0.073 (−0.042, 0.187) |
2289 | 36.13 | 0.0170 | 0.915 (0.828, 1.00) | 0.045 (−0.059, 0.149) |
Sialylation | 35.54 | 0.0182 | 0.948 (0.874, 1.00) | 0.078 (−0.018, 0.173) |
1831 | 34.34 | 0.0212 | 0.932 (0.846, 1.00) | 0.062 (−0.014, 0.139) |
2056 | 37.2 | 0.0225 | 0.915 (0.829, 1.00) | 0.045 (−0.025, 0.115) |
1704 | 33.24 | 0.0242 | 0.955 (0.886, 1.00) | 0.085 (−0.011, 0.181) |
1809 | 37.7 | 0.0250 | 0.917 (0.833, 1.00) | 0.047 (−0.036, 0.131) |
3770 | 37.38 | 0.0264 | 0.902 (0.805, 1.00) | 0.032 (−0.062, 0.127) |
2632 | 38.17 | 0.0289 | 0.907 (0.813, 1.00) | 0.037 (−0.035, 0.110) |
2487 | 38.8 | 0.0311 | 0.897 (0.806, 0.989) | 0.027 (−0.065, 0.120) |
2267 | 37.86 | 0.0314 | 0.915 (0.830, 1.00) | 0.045 (−0.038, 0.128) |
1257 | 20.36 | 0.0346 | 0.985 (0.959, 1.00) | 0.115 (−0.005, 0.235) |
2245 | 38.88 | 0.0363 | 0.902 (0.807, 0.998) | 0.032 (−0.034, 0.099) |
2852 | 38.39 | 0.0367 | 0.912 (0.823, 1.00) | 0.042 (−0.068, 0.153) |
1079 | 39.5 | 0.0372 | 0.900 (0.793, 1.00) | 0.030 (−0.067, 0.127) |
2221 | 39.48 | 0.0389 | 0.902 (0.807, 0.998) | 0.032 (−0.047, 0.112) |
2638 | 38.44 | 0.0406 | 0.910 (0.809, 1.00) | 0.040 (−0.040, 0.120) |
3333 | 38.94 | 0.0412 | 0.897 (0.800, 0.995) | 0.027 (−0.070, 0.125) |
2287 | 38.33 | 0.0445 | 0.902 (0.808, 0.997) | 0.032 (−0.040, 0.105) |
1663 | 39.57 | 0.0477 | 0.885 (0.774, 0.996) | 0.015 (−0.032, 0.062) |
1891 | 19.61 | 0.0557 | 0.988 (0.965, 1.00) | 0.118 (−0.001, 0.236) |
1743 | 19.12 | 0.0567 | 0.985 (0.957, 1.00) | 0.115 (0.005, 0.225) |
2945 | 40.2 | 0.0586 | 0.897 (0.801, 0.994) | 0.027 (−0.032, 0.087) |
1905 | 21.5 | 0.0604 | 0.983 (0.954, 1.00) | 0.113 (0.001, 0.224) |
1444 | 37.27 | 0.0657 | 0.920 (0.831, 1.00) | 0.05 (−0.038, 0.138) |
2465 | 41.09 | 0.0714 | 0.890 (0.792, 0.988) | 0.02 (−0.053, 0.093) |
1960 | 41.41 | 0.0741 | 0.887 (0.774, 1.00) | 0.017 (−0.038, 0.073) |
2523 | 37.65 | 0.0813 | 0.907 (0.809, 1.00) | 0.037 (−0.024, 0.099) |
3144 | 40.32 | 0.0826 | 0.897 (0.800, 0.995) | 0.027 (−0.05, 0.105) |
1647 | 41.44 | 0.0864 | 0.895 (0.798, 0.992) | 0.025 (−0.04, 0.09) |
3646 | 41.69 | 0.0948 | 0.887 (0.787, 0.988) | 0.017 (−0.043, 0.078) |
2654 | 41.54 | 0.1038 | 0.887 (0.779, 0.996) | 0.017 (−0.059, 0.094) |
1954 | 42.03 | 0.1056 | 0.892 (0.790, 0.995) | 0.022 (−0.036, 0.081) |
2610 | 41.41 | 0.1125 | 0.885 (0.777, 0.993) | 0.015 (−0.038, 0.068) |
2028 | 42.3 | 0.1158 | 0.893 (0.778, 1.00) | 0.023 (−0.024, 0.069) |
sulfation | 42.4 | 0.1233 | 0.900 (0.793, 1.00) | 0.03 (−0.016, 0.076) |
2163 | 42.2 | 0.1234 | 0.882 (0.774, 0.991) | 0.012 (−0.062, 0.087) |
2923 | 42.01 | 0.1353 | 0.880 (0.774, 0.986) | 0.01 (−0.052, 0.072) |
1814 | 42.61 | 0.1363 | 0.885 (0.786, 0.984) | 0.015 (−0.061, 0.091) |
2304 | 42.78 | 0.1480 | 0.887 (0.784, 0.991) | 0.017 (−0.057, 0.092) |
3092 | 42.8 | 0.1579 | 0.873 (0.754, 0.991) | 0.003 (−0.034, 0.039) |
1850 | 42.93 | 0.1609 | 0.88 (0.771, 0.989) | 0.01 (−0.059, 0.079) |
3193 | 42.38 | 0.1649 | 0.885 (0.778, 0.992) | 0.015 (−0.042, 0.072) |
3113 | 42.56 | 0.1651 | 0.882 (0.769, 0.996) | 0.012 (−0.017, 0.042) |
3004 | 42.8 | 0.1815 | 0.878 (0.760, 0.995) | 0.008 (−0.03, 0.045) |
2435 | 43.22 | 0.1838 | 0.875 (0.769, 0.981) | 0.005 (−0.06, 0.07) |
3093 | 43.2 | 0.1933 | 0.865 (0.740, 0.990) | −0.005 (−0.039, 0.029) |
2393 | 43.16 | 0.2030 | 0.880 (0.769, 0.991) | 0.010 (−0.042, 0.062) |
fucosylation | 43.35 | 0.2073 | 0.885 (0.780, 0.990) | 0.015 (−0.044, 0.074) |
2100 | 43.33 | 0.2168 | 0.870 (0.754, 0.986) | 0.00 (−0.048, 0.048) |
3384 | 43.18 | 0.2193 | 0.873 (0.755, 0.99) | 0.003 (−0.044, 0.049) |
triantennary | 43.7 | 0.2642 | 0.870 (0.747, 0.993) | 0.00 (−0.052, 0.052) |
bisect | 43.82 | 0.2776 | 0.882 (0.774, 0.991) | 0.012 (−0.045, 0.07) |
2319 | 43.58 | 0.2828 | 0.882 (0.772, 0.993) | 0.012 (−0.036, 0.061) |
1875 | 44.09 | 0.3257 | 0.882 (0.769, 0.996) | 0.012 (−0.017, 0.042) |
2383 | 44.55 | 0.4570 | 0.882 (0.767, 0.998) | 0.012 (−0.019, 0.044) |
2413 | 44.69 | 0.5224 | 0.863 (0.739, 0.986) | −0.007 (−0.041, 0.026) |
1773 | 44.75 | 0.5600 | 0.875 (0.756, 0.994) | 0.005 (−0.016, 0.026) |
1611 | 44.83 | 0.5933 | 0.877 (0.762, 0.993) | 0.007 (−0.02, 0.035) |
2594 | 44.87 | 0.6229 | 0.877 (0.759, 0.996) | 0.007 (−0.019, 0.034) |
2339 | 44.89 | 0.6393 | 0.875 (0.752, 0.998) | 0.005 (−0.019, 0.029) |
2341 | 44.97 | 0.7073 | 0.875 (0.758, 0.992) | 0.005 (−0.019, 0.029) |
2391 | 45.1 | 0.9027 | 0.873 (0.750, 0.995) | 0.003 (−0.004, 0.009) |
AIC | LRT p-Value | AUC (95% CI) | D AUC | |
---|---|---|---|---|
Null Model | 43.12 | 0.002 | 0.870 (0.748, 0.992) | |
mannose | 29.08 | 0.012 | 0.955 (0.900, 1.00) | 0.085 (−0.016, 0.186) |
1743 | 29.71 | 0.013 | 0.953 (0.897, 1.00) | 0.083 (−0.013, 0.178) |
1581 | 30.74 | 0.008 | 0.950 (0.887, 1.00) | 0.080 (−0.024, 0.184) |
sulfation | 32.53 | 0.006 | 0.945 (0.875, 1.00) | 0.075 (−0.031, 0.181) |
1419 | 32.62 | 0.006 | 0.943 (0.876, 1.00) | 0.073 (−0.030, 0.175) |
triantennary | 32.94 | 0.013 | 0.935 (0.867, 1.00) | 0.065 (−0.041, 0.171) |
1809 | 33.3 | 0.009 | 0.938 (0.868, 1.00) | 0.068 (−0.039, 0.174) |
2275 | 33.33 | 0.016 | 0.927 (0.852, 1.00) | 0.057 (−0.041, 0.156) |
2540.1 | 33.69 | 0.007 | 0.935 (0.864, 1.00) | 0.065 (−0.023, 0.153) |
2028 | 34.96 | 0.02 | 0.917 (0.834, 1.00) | 0.047 (−0.052, 0.147) |
1444 | 35.96 | 0.028 | 0.917 (0.834, 1.00) | 0.047 (−0.044, 0.139) |
1905 | 36.12 | 0.015 | 0.935 (0.855, 1.00) | 0.065 (−0.009, 0.139) |
1136 | 36.24 | 0.019 | 0.910 (0.823, 0.997) | 0.040 (−0.054, 0.134) |
tetraantennary | 36.79 | 0.015 | 0.915 (0.830, 1.00) | 0.045 (−0.049, 0.139) |
1257 | 36.87 | 0.014 | 0.920 (0.831, 1.00) | 0.050 (−0.044, 0.144) |
2319 | 37.69 | 0.026 | 0.900 (0.809, 0.991) | 0.030 (−0.072, 0.132) |
2122 | 38.32 | 0.024 | 0.910 (0.826, 0.994) | 0.040 (−0.053, 0.133) |
2633.1 | 39.17 | 0.043 | 0.900 (0.809, 0.991) | 0.030 (−0.060, 0.120) |
2523.1 | 39.2 | 0.036 | 0.895 (0.799, 0.991) | 0.025 (−0.059, 0.109) |
2231 | 40.01 | 0.053 | 0.897 (0.803, 0.992) | 0.027 (−0.050, 0.105) |
2393 | 40.16 | 0.04 | 0.905 (0.813, 0.997) | 0.035 (−0.045, 0.115) |
2341 | 40.65 | 0.066 | 0.895 (0.799, 0.991) | 0.025 (−0.050, 0.100) |
biantennary | 40.83 | 0.053 | 0.897 (0.788, 1.00) | 0.027 (−0.036, 0.091) |
1647 | 41.87 | 0.091 | 0.890 (0.780, 1.00) | 0.020 (−0.037, 0.077) |
2968.1 | 42.67 | 0.15 | 0.880 (0.774, 0.986) | 0.010 (−0.059, 0.079) |
2655.1 | 42.75 | 0.158 | 0.875 (0.767, 0.983) | 0.005 (−0.071, 0.081) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wolf, B.; Blaschke, C.R.K.; Mungaray, S.; Weselman, B.T.; Stefanenko, M.; Fedoriuk, M.; Bai, H.; Rodgers, J.; Palygin, O.; Drake, R.R.; et al. Metabolic Markers and Association of Biological Sex in Lupus Nephritis. Int. J. Mol. Sci. 2023, 24, 16490. https://doi.org/10.3390/ijms242216490
Wolf B, Blaschke CRK, Mungaray S, Weselman BT, Stefanenko M, Fedoriuk M, Bai H, Rodgers J, Palygin O, Drake RR, et al. Metabolic Markers and Association of Biological Sex in Lupus Nephritis. International Journal of Molecular Sciences. 2023; 24(22):16490. https://doi.org/10.3390/ijms242216490
Chicago/Turabian StyleWolf, Bethany, Calvin R. K. Blaschke, Sandy Mungaray, Bryan T. Weselman, Mariia Stefanenko, Mykhailo Fedoriuk, Hongxia Bai, Jessalyn Rodgers, Oleg Palygin, Richard R. Drake, and et al. 2023. "Metabolic Markers and Association of Biological Sex in Lupus Nephritis" International Journal of Molecular Sciences 24, no. 22: 16490. https://doi.org/10.3390/ijms242216490
APA StyleWolf, B., Blaschke, C. R. K., Mungaray, S., Weselman, B. T., Stefanenko, M., Fedoriuk, M., Bai, H., Rodgers, J., Palygin, O., Drake, R. R., & Nowling, T. K. (2023). Metabolic Markers and Association of Biological Sex in Lupus Nephritis. International Journal of Molecular Sciences, 24(22), 16490. https://doi.org/10.3390/ijms242216490