The Response of Antioxidant Enzymes and Antiapoptotic Markers to an Oral Glucose Tolerance Test (OGTT) in Children and Adolescents with Excess Body Weight
Abstract
:1. Introduction
2. Results
2.1. Descriptive Characteristics
2.2. Glucose, Insulin, and C-Peptide Response during the OGTT
2.3. Antioxidant Markers (SOD, GPx3) during the OGTT
2.4. Apoptotic Markers (Apo1fas, cck18) during the OGTT
2.5. Baseline Correlation Analysis
2.5.1. Leptin, Ghrelin, and Adiponectin Levels
2.5.2. Linear Regression Analysis in Children with Normal OGTT
2.5.3. Linear Regression Analysis in Children with Abnormal OGTT
3. Discussion
4. Material and Methods
4.1. Subjects and Ethics
4.2. Anthropometric Measurements
4.3. OGTT
4.4. Laboratory Tests, Blood Samples, and Serum Assays
4.5. Studied Indexes
4.6. Antioxidant Markers
4.6.1. Superoxide Dismutase 3 (SOD3)
4.6.2. Glutathione Peroxidase 3 (GPx3)
4.7. Apoptotic Markers
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lister, N.B.; Baur, L.A.; Felix, J.F.; Hill, A.J.; Marcus, C.; Reinehr, T.; Summerbell, C.; Wabitsch, M. Child and adolescent obesity. Nat. Rev. Dis. Primers 2023, 9, 24. [Google Scholar] [CrossRef]
- Gunaratne, N.; Deplewski, D. Metabolic Consequences of Pediatric Obesity: A Review of Pathophysiology, Screening, and Treatment. Pediatr. Ann. 2023, 52, e62–e67. [Google Scholar] [CrossRef] [PubMed]
- Katsa, M.E.; Ioannidis, A.; Zyga, S.; Tsironi, M.; Koutsovitis, P.; Chatzipanagiotou, S.; Panagiotakos, D.; Sachlas, A.; Kolovos, P.; Routsi, K.; et al. The Effect of Nutrition and Sleep Habits on Predisposition for Metabolic Syndrome in Greek Children. J. Pediatr. Nurs. 2018, 40, e2–e8. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.E.; Aguirre, R.S.; Hannon, T.S. Methods for Measuring Risk for Type 2 Diabetes in Youth: The Oral Glucose Tolerance Test (OGTT). Curr. Diabetes Rep. 2018, 18, 51. [Google Scholar] [CrossRef] [PubMed]
- Arslanian, S.; El Ghormli, L.; Kim, J.Y.; Bacha, F.; Chan, C.; Ismail, H.M.; Katz, L.E.L.; Levitsky, L.; Tryggestad, J.B.; White, N.H.; et al. The Shape of the Glucose Response Curve during an Oral Glucose Tolerance Test: Forerunner of Heightened Glycemic Failure Rates Accelerated Decline in β-Cell Function in TODAY. Diabetes Care 2019, 42, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Kostopoulou, E.; Skiadopoulos, S.; Partsalaki, I.; Rojas Gil, A.P.; Spiliotis, B.E. Repetitiveness of the oral glucose tolerance test in children and adolescents. World J. Clin. Pediatr. 2021, 10, 29–39. [Google Scholar] [CrossRef]
- Karamouzis, I.; Pervanidou, P.; Berardelli, R.; Iliadis, S.; Papassotiriou, I.; Karamouzis, M.; Chrousos, G.P.; Kanaka-Gantenbein, C. Enhanced oxidative stress and platelet activation combined with reduced antioxidant capacity in obese prepubertal and adolescent girls with full or partial metabolic syndrome. Horm. Metab. Res. 2011, 43, 607–613. [Google Scholar] [CrossRef]
- Borys, J.; Maciejczyk, M.; Antonowicz, B.; Krętowski, A.; Sidun, J.; Domel, E.; Dąbrowski, J.R.; Ładny, J.R.; Morawska, K.; Zalewska, A. Glutathione Metabolism, Mitochondria Activity, and Nitrosative Stress in Patients Treated for Mandible Fractures. J. Clin. Med. 2019, 8, 127. [Google Scholar] [CrossRef]
- Lushchak, V.I. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem. Biol. Interact. 2014, 224, 164–175. [Google Scholar] [CrossRef]
- Ustundag, B.; Gungor, S.; Aygün, A.D.; Turgut, M.; Yilmaz, E. Oxidative status and serum leptin levels in obese prepubertal children. Cell Biochem. Funct. 2007, 25, 479–483. [Google Scholar] [CrossRef]
- Chandrasekhar, T.; Suchitra, M.M.; Pallavi, M.; LN Srinivasa Rao, P.V.; Sachan, A. Risk Factors for Cardiovascular Disease in Obese Children. Indian Pediatr. 2017, 54, 752–755. [Google Scholar] [CrossRef]
- Ozgen, I.T.; Tascilar, M.E.; Bilir, P.; Boyraz, M.; Guncikan, M.N.; Akay, C.; Dundaroz, R. Oxidative stress in obese children and its relation with insulin resistance. J. Pediatr. Endocrinol. Metab. 2012, 25, 261–266. [Google Scholar] [CrossRef]
- Shin, M.-J.; Park, E. Contribution of insulin resistance to reduced antioxidant enzymes and vitamins in nonobese Korean children. Clin. Chim. Acta 2006, 365, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Ismail, H.M.; Scapozza, L.; Ruegg, U.T.; Dorchies, O.M. Diapocynin, a dimer of the NADPH oxidase inhibitor apocynin, reduces ROS production and prevents force loss in eccentrically contracting dystrophic muscle. PLoS ONE 2014, 9, e110708. [Google Scholar] [CrossRef] [PubMed]
- Ostrow, V.; Wu, S.; Aguilar, A.; Bonner, R.; Suarez, E.; De Luca, F. Association between oxidative stress and masked hypertension in a multi-ethnic population of obese children and adolescents. J. Pediatr. 2011, 158, 628–633. [Google Scholar] [CrossRef] [PubMed]
- Nobili, V.; Parola, M.; Alisi, A.; Marra, F.; Piemonte, F.; Mombello, C.; Sutti, S.; Povero, D.; Maina, V.; Novo, E.; et al. Oxidative stress parameters in paediatric non-alcoholic fatty liver disease. Int. J. Mol. Med. 2010, 26, 471–476. [Google Scholar] [CrossRef]
- Alghobashy, A.A.; Alkholy, U.M.; Talat, M.A.; Abdalmonem, N.; Zaki, A.; Ahmed, I.A.; Mohamed, R.H. Trace elements and oxidative stress in children with type 1 diabetes mellitus. Diabetes Metab. Syndr. Obes. 2018, 11, 85–92. [Google Scholar] [CrossRef]
- Bahadoran, Z.; Mirmiran, P.; Kashfi, K.; Ghasemi, A. Vascular nitric oxide resistance in type 2 diabetes. Cell Death Dis. 2023, 14, 410. [Google Scholar] [CrossRef]
- Kelly, A.S.; Jacobs, D.R.; Sinaiko, A.R.; Moran, A.; Steffen, L.M.; Steinberger, J. Relation of circulating oxidized LDL to obesity and insulin resistance in children. Pediatr. Diabetes 2010, 11, 552–555. [Google Scholar] [CrossRef]
- Park, K.; Gross, M.; Lee, D.H.; Holvoet, P.; Himes, J.H.; Shikany, J.M.; Jacobs, D.R., Jr. Oxidative stress and insulin resistance: The coronary artery risk development in young adults study. Diabetes Care 2009, 32, 1302–1307. [Google Scholar] [CrossRef]
- Asmat, U.; Abad, K.; Ismail, K. Diabetes mellitus and oxidative stress—A concise review. Saudi Pharm. J. 2016, 24, 547–553. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Branicky, R.; Noë, A.; Hekimi, S. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J. Cell Biol. 2018, 217, 1915–1928. [Google Scholar] [CrossRef] [PubMed]
- Langhardt, J.; Flehmig, G.; Klöting, N.; Lehmann, S.; Ebert, T.; Kern, M.; Schön, M.R.; Gärtner, D.; Lohmann, T.; Dressler, M.; et al. Effects of Weight Loss on Glutathione Peroxidase 3 Serum Concentrations and Adipose Tissue Expression in Human Obesity. Obes. Facts 2018, 11, 475–490. [Google Scholar] [CrossRef] [PubMed]
- Wueest, S.; Mueller, R.; Blüher, M.; Item, F.; Chin, A.S.; Wiedemann, M.S.; Takizawa, H.; Kovtonyuk, L.; Chervonsky, A.V.; Schoenle, E.J.; et al. Fas (CD95) expression in myeloid cells promotes obesity-induced muscle insulin resistance. EMBO Mol. Med. 2014, 1, 43–56. [Google Scholar] [CrossRef]
- Item, F.; Wueest, S.; Lemos, V.; Stein, S.; Lucchini, F.C.; Denzler, R.; Fisser, M.C.; Challa, T.D.; Pirinen, E.; Kim, Y.; et al. Fas cell surface death receptor controls hepatic lipid metabolism by regulating mitochondrial function. Nat. Commun. 2017, 8, 480. [Google Scholar] [CrossRef]
- Margaryan, S.; Witkowicz, A.; Arakelyan, A.; Partyka, A.; Karabon, L.; Manukyan, G. sFasL-mediated induction of neutrophil activation in patients with type 2 diabetes mellitus. PLoS ONE 2018, 13, e0201087. [Google Scholar] [CrossRef]
- Blüher, M.; Klöting, N.; Wueest, S.; Schoenle, E.J.; Schön, M.R.; Dietrich, A.; Fasshauer, M.; Stumvoll, M.; Konrad, D. Fas and FasL expression in human adipose tissue is related to obesity, insulin resistance, and type 2 diabetes. J. Clin. Endocrinol. Metab. 2014, 99, E36–E44. [Google Scholar] [CrossRef]
- Choi, J.W.; Kim, S.K. Relationships of soluble APO-1 (Fas/CD95) concentrations, obesity, and serum lipid parameters in healthy adults. Ann. Clin. Lab. Sci. 2005, 35, 290–296. [Google Scholar]
- Katsa, M.E.; Kostopoulou, E.; Magana, M.; Ioannidis, A.; Chatzipanagiotou, S.; Sachlas, A.; Dimopoulos, I.; Spiliotis, B.E.; Gil, A.P.R. Association of the apoptotic marker APO1/Fas with children’s predisposing factors for metabolic syndrome and with mean platelet volume. J. Pediatr. Endocrinol. Metab. 2021, 34, 1393–1400. [Google Scholar] [CrossRef]
- Demiray, M.; Ulukaya, E.E.; Arslan, M.; Gokgoz, S.; Saraydaroglu, O.; Ercan, I.; Evrensel, T.; Manavoglu, O. Response to neoadjuvant chemotherapy in breast cancer could be predictable by measuring a novel serum apoptosis product, caspase-cleaved cytokeratin 18: A prospective pilot study. Cancer Investig. 2006, 24, 669–676. [Google Scholar] [CrossRef]
- Bhangu, J.S.; Macher-Beer, A.; Schimek, V.; Garmroudi, B.; Tamandl, D.; Unger, L.W.; Bachleitner-Hofmann, T.; Oehler, R. Circulating caspase-cleaved cytokeratin 18 correlates with tumour burden and response to therapy in patients with colorectal cancer liver metastasis. Clin. Chim. Acta 2023, 538, 53–59. [Google Scholar] [CrossRef]
- Nanou, A.; Coumans, F.A.; van Dalum, G.; Zeune, L.L.; Dolling, D.; Onstenk, W.; Crespo, M.; Fontes, M.S.; Rescigno, P.; Fowler, G.; et al. Circulating tumor cells, tumor-derived extracellular vesicles and plasma cytokeratins in castration-resistant prostate cancer patients. Oncotarget 2018, 9, 19283–19293. [Google Scholar] [CrossRef] [PubMed]
- Menz, A.; Weitbrecht, T.; Gorbokon, N.; Büscheck, F.; Luebke, A.M.; Kluth, M.; Hube-Magg, C.; Hinsch, A.; Höflmayer, D.; Weidemann, S.; et al. Diagnostic and prognostic impact of cytokeratin 18 expression in human tumors: A tissue microarray study on 11,952 tumors. Mol. Med. 2021, 27, 16. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, B.; Coskun, U.; Sancak, B.; Yaman, E.; Buyukberber, S.; Benekli, M. Elevated serum levels of M30 and M65 in patients with locally advanced head and neck tumors. Int. Immunopharmacol. 2009, 9, 645–648. [Google Scholar] [CrossRef]
- Dive, C.; Smith, R.A.; Garner, E.; Ward, T.; George-Smith, S.S.; Campbell, F.; Greenhalf, W.; Ghaneh, P.; Neoptolemos, J.P. Considerations for the use of plasma cytokeratin 18 as a biomarker in pancreatic cancer. Br. J. Cancer 2010, 102, 577–582. [Google Scholar] [CrossRef]
- Yaman, E.; Coskun, U.; Sancak, B.; Buyukberber, S.; Ozturk, B.; Benekli, M. Serum M30 levels are associated with survival in advanced gastric carcinoma patients. Int. Immunopharmacol. 2010, 10, 719–722. [Google Scholar] [CrossRef]
- Hoffmanová, I.; Sánchez, D.; Hábová, V.; Anděl, M.; Tučková, L.; Tlaskalová-Hogenová, H. Serological markers of enterocyte damage and apoptosis in patients with celiac disease, autoimmune diabetes mellitus and diabetes mellitus type 2. Physiol. Res. 2015, 64, 537–546. [Google Scholar] [CrossRef] [PubMed]
- Tambalis, K.D.; Panagiotakos, D.B.; Psarra, G.; Sidossis, L.S. Current data in Greek children indicate decreasing trends of obesity in the transition from childhood to adolescence; results from the National Action for Children’s Health (EYZHN) program. J. Prev. Med. Hyg. 2018, 59, E36–E47. [Google Scholar] [CrossRef] [PubMed]
- Kostopoulou, E.; Tsekoura, E.; Fouzas, S.; Gkentzi, D.; Jelastopulu, E.; Varvarigou, A. Association of lifestyle factors with a high prevalence of overweight and obesity in Greek children aged 10–16 years. Acta Paediatr. 2021, 110, 3356–3364. [Google Scholar] [CrossRef]
- Kostopoulou, E.; Avgeri, A.; Skiadopoulos, S.; Dimitriou, G.; Giannakopoulos, I. The Association between Excess Weight and Body Composition Measurements in a Pediatric Population. J. Pediatr. Perinatol. Child. Health 2021, 5, 142–157. [Google Scholar] [CrossRef]
- González-Domínguez, Á.; Millán-Martínez, M.; Domínguez-Riscart, J.; Mateos, R.M.; Lechuga-Sancho, A.M.; González-Domínguez, R. Altered Metal Homeostasis Associates with Inflammation, Oxidative Stress, Impaired Glucose Metabolism, and Dyslipidemia in the Crosstalk between Childhood Obesity and Insulin Resistance. Antioxidants 2022, 11, 2439. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Letai, A.; Sarosiek, K. Regulation of apoptosis in health and disease: The balancing act of BCL-2 family proteins. Nat. Rev. Mol. Cell Biol. 2019, 3, 175–193. [Google Scholar] [CrossRef] [PubMed]
- Checa, J.; Aran, J.M. Reactive Oxygen Species: Drivers of Physiological and Pathological Processes. J. Inflamm. Res. 2020, 13, 1057–1073. [Google Scholar] [CrossRef]
- Mukhopadhyay, P.; Eid, N.; Abdelmegeed, M.A.; Sen, A. Interplay of Oxidative Stress, Inflammation, and Autophagy: Their Role in Tissue Injury of the Heart, Liver, and Kidney. Oxid. Med. Cell Longev. 2018, 2018, 2090813. [Google Scholar] [CrossRef]
- Baez-Duarte, B.G.; Zamora-Ginez, I.; Mendoza-Carrera, F.; Ruiz-Vivanco, G.; Torres-Rasgado, E.; Gonzalez-Mejia, M.E.; Garcia-Zapien, A.; Flores-Martinez, S.E.; Perez-Fuentes, R. Serum levels of glutathione peroxidase 3 in overweight and obese subjects from central Mexico. Arch. Med. Res. 2012, 43, 541–547. [Google Scholar] [CrossRef] [PubMed]
- Pohl, S.Ö.; Agostino, M.; Dharmarajan, A.; Pervaiz, S. Cross Talk Between Cellular Redox State and the Antiapoptotic Protein Bcl-2. Antioxid. Redox Signal. 2018, 29, 1215–1236. [Google Scholar] [CrossRef]
- Andreeva-Gateva, P.; Popova, D.; Orbetsova, V. Antioxidant parameters in metabolic syndrome—A dynamic evaluation during oral glucose tolerance test. Vutreshni Boles. 2001, 33, 48–53. [Google Scholar]
- Nakanishi, S.; Yoneda, M.; Maeda, S. Impact of glucose excursion and mean glucose concentration in oral glucose-tolerance test on oxidative stress among Japanese Americans. Diabetes Metab. Syndr. Obes. 2013, 6, 427–433. [Google Scholar] [CrossRef]
- Yildirim, T.; Göçmen, A.Y.; Özdemir, Z.T.; Börekci, E.; Turan, E.; Aral, Y. The effect of hyperglycemic peak induced by oral glucose tolerance test on the oxidant and antioxidant levels. Turk. J. Med. Sci. 2019, 49, 1742–1747. [Google Scholar] [CrossRef]
- Kronenberg, F.; Mora, S.; Stroes, E.S.G.; Ference, B.A.; Arsenault, B.J.; Berglund, L.; Dweck, M.R.; Koschinsky, M.; Lambert, G.; Mach, F.; et al. Lipoprotein(a) in atherosclerotic cardiovascular disease and aortic stenosis: A European Atherosclerosis Society consensus statement. Eur. Heart J. 2022, 43, 3925–3946. [Google Scholar] [CrossRef]
- Mangaraj, M.; Nanda, R.; Panda, S. Apolipoprotein A-I: A Molecule of Diverse Function. Indian J. Clin. Biochem. 2016, 31, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Gao, X.; Yao, Z.; Xu, Y. Low apoA-I is associated with insulin resistance in patients with impaired glucose tolerance: A cross-sectional study. Lipids Health Dis. 2017, 16, 69. [Google Scholar] [CrossRef]
- Koutroumani, N.; Partsalaki, I.; Lamari, F.; Dettoraki, A.; Gil, A.P.R.; Karvela, A.; Kostopoulou, E.; Spiliotis, B.E. Protective mechanisms against oxidative stress and angiopathy in young patients with diabetes type 1 (DM1). J. Pediatr. Endocrinol. Metab. 2013, 26, 309–317. [Google Scholar] [CrossRef]
- Vos, M.B.; Barve, S.; Joshi-Barve, S.; Carew, J.D.; Whitington, P.F.; McClain, C.J. Cytokeratin 18, a marker of cell death, is increased in children with suspected nonalcoholic fatty liver disease. J. Pediatr. Gastroenterol. Nutr. 2008, 47, 481–485. [Google Scholar] [CrossRef] [PubMed]
- Pereira, S.; Cline, D.L.; Glavas, M.M.; Covey, S.D.; Kieffer, T.J. Tissue-Specific Effects of Leptin on Glucose and Lipid Metabolism. Endocr. Rev. 2021, 42, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Aygun, A.D.; Gungor, S.; Ustundag, B.; Gurgoze, M.K.; Sen, Y. Proinflammatory cytokines and leptin are increased in serum of prepubertal obese children. Mediators Inflamm. 2005, 2005, 180–183. [Google Scholar] [CrossRef] [PubMed]
- Frithioff-Bøjsøe, C.; Lund, M.A.V.; Lausten-Thomsen, U.; Hedley, P.L.; Pedersen, O.; Christiansen, M.; Baker, J.L.; Hansen, T.; Holm, J.C. Leptin, adiponectin, and their ratio as markers of insulin resistance and cardiometabolic risk in childhood obesity. Pediatr. Diabetes 2020, 21, 194–202. [Google Scholar] [CrossRef]
- Zuo, H.; Shi, Z.; Yuan, B.; Dai, Y.; Wu, G.; Hussain, A. Association between serum leptin concentrations and insulin resistance: A population-based study from China. PLoS ONE 2013, 8, e54615. [Google Scholar] [CrossRef]
- Shiiya, T.; Nakazato, M.; Mizuta, M.; Date, Y.; Mondal, M.S.; Tanaka, M.; Nozoe, S.-I.; Hosoda, H.; Kangawa, K.; Matsukura, S. Plasma ghrelin levels in lean and obese humans and the effect of glucose on ghrelin secretion. J. Clin. Endocrinol. Metab. 2002, 87, 240–244. [Google Scholar] [CrossRef]
- Cummings, D.E.; Purnell, J.Q.; Frayo, R.S.; Schmidova, K.; Wisse, B.E.; Weigle, D.S. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 2001, 50, 1714–1719. [Google Scholar] [CrossRef]
- Fittipaldi, A.S.; Hernández, J.; Castrogiovanni, D.; Lufrano, D.; De Francesco, P.N.; Garrido, V.; Vitaux, P.; Fasano, M.V.; Fehrentz, J.A.; Fernández, A.; et al. Plasma levels of ghrelin, des-acyl ghrelin and LEAP2 in children with obesity: Correlation with age and insulin resistance. Eur. J. Endocrinol. 2020, 182, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Ohman-Hanson, R.A.; Cree-Green, M.; Kelsey, M.M.; Bessesen, D.H.; Sharp, T.A.; Pyle, L.; Pereira, R.I.; Nadeau, K.J. Ethnic and Sex Differences in Adiponectin: From Childhood to Adulthood. J. Clin. Endocrinol. Metab. 2016, 12, 4808–4815. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention Overweight and Obesity 2023. Available online: https://www.cdc.gov/obesity/index.html (accessed on 25 February 2023).
- Chiotis, D.; Krikos, X.; Tsiftis, G.; Hatzisymeon, M.; Maniati-Christidi, M.; Dacou-Voutetakis, A. Body mass index and prevalence of obesity in subjects of Hellenic origin aged 0–18 years, living in the Athens area. Ann. Clin. Pediatr. Inive Atheniensis 2004, 51, 139–154. [Google Scholar]
- American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2010, 33, S62–S69. [Google Scholar] [CrossRef] [PubMed]
- Kurtoğlu, S.; Hatipoğlu, N.; Mazıcıoğlu, M.; Kendirici, M.; Keskin, M.; Kondolot, M. Insulin resistance in obese children and adolescents: HOMA-IR cut-off levels in the prepubertal and pubertal periods. J. Clin. Res. Pediatr. Endocrinol. 2010, 2, 100–106. [Google Scholar] [CrossRef]
- Matthews, J.N.; Altman, D.G.; Campbell, M.J.; Royston, P. Analysis of serial measurements in medical research. BMJ 1990, 300, 230–235. [Google Scholar] [CrossRef]
- McCord, J.M. Analysis of superoxide dismutase activity. Curr. Protoc. Toxicol. 2001, 7, Unit 7.3. [Google Scholar] [CrossRef]
- Wendel, A. Glutathione peroxidase. Methods Enzym. 1981, 77, 325–333. [Google Scholar] [CrossRef]
- Aslam, H.; Jacka, F.; Marx, W.; Karatzi, K.; Mavrogianni, C.; Karaglani, E.; Mohebbi, M.; Pasco, J.; O’neil, A.; Berk, M.; et al. The Associations between Dairy Product Consumption and Biomarkers of Inflammation, Adipocytokines, and Oxidative Stress in Children: A Cross-Sectional Study. Nutrients 2020, 12, 3055. [Google Scholar] [CrossRef]
Variable | Children without Glucose Disturbance N = 31 | Children with Glucose Disturbance N = 14 | p-Value |
---|---|---|---|
Age (years) | 11.87 ± 2.5 | 12.79 ± 1.88 | 0.230 |
BMI% | 92.19 ± 2.7 | 90.64 ± 3.9 | 0.750 |
Glucose (mg/dL) | 87.74 ± 6.74 | 96.57 ± 16.72 | 0.015 |
Insulin (mIU/L) | 16.45 ± 8.69 | 24.19 ± 14.87 | 0.033 |
HOMA-IR | 65.41 ± 35.81 | 101.81 ± 56.91 | 0.012 |
Insulinogenic Index | 1.94 ± 1.02 | 1.38 ± 0.72 | 0.071 |
C-peptide (ng/dL) | 1.23 ± 0.5 | 1.67 ± 0.88 | 0.106 |
Triglycerides (mg/dL) | 74.9 ± 37.13 | 84.29 ± 33.34 | 0.423 |
Cholesterol (mg/dL) | 79.39 ± 35.38 | 176.43± 27.83 | 0.784 |
HDL (mg/dL) | 53.53 ±15.83 | 48.64 ± 12.65 | 0.317 |
LDL (mg/dL) | 114.19 ± 26.82 | 108.89 ± 21.69 | 0.534 |
T3 (ng/mL) | 1.64 ± 0.42 | 1.86 ± 0.35 | 0.145 |
T4 (mg/dL) | 9.09 ± 2.5 | 9.4 ± 1.18 | 0.686 |
TSH (IU/mL) | 2.5 ± 3.3 | 2.25 ± 1.62 | 0.832 |
FT4 (ng/mL) | 1.77 ± 0.85 | 1.6 ± 0.37 | 0.453 |
IGF-1 (ng/mL)) | 482.55 ± 314.72 | 642.08 ± 304.23 | 0.170 |
HbA1c (%) | 5.12 ± 0.61 | 5.48 ± 0.73 | 0.131 |
Apolipoprotein a1 (mg/dL) | 152.77 ± 41.67 | 149.7 ± 22.82 | 0.81 |
Apolipoprotein b (mg/dL) | 80.36 ± 16.36 | 78.24 ± 16.12 | 0.73 |
Apolipoprotein b/Apolipoprotein a1 | 0.55 ± 0.14 | 0.53 ± 0. 12 | 0.688 |
Apo1fas (ng/mL) | 0.29 ± 0.04 | 0.62 ± 0.032 | 0.144 |
cck18 (u/mL) | 109.1 ± 14.97 | 75.26 ± 12.52 | 0.177 |
SOD (u/mL) | 1.81 ± 0.22 | 2.18 ± 0.32 | 0.348 |
GPX3 (u/mL) | 0.04 ± 0.04 | 0.058 ± 0.006 | 0.075 |
Leptin (ng/mL) | 26.6 ± 3.89 | 18.29 ± 3.34 | 0.186 |
Ghrelin (mol/mL) | 2.21 ± 0.19 | 2.72 ± 0.64 | 0.331 |
Adiponectin (ug/mL) | 14.97 ± 1.04 | 10.23 ± 1.16 | 0.009 |
p-Value | ||
---|---|---|
GPx3 | SOD | 0.042 |
Insulin | 0.048 | |
HOMA-IR | 0.040 | |
FT4 | 0.004 | |
cck18 AUC | Insulin | 0.021 |
HOMA-IR | 0.023 | |
HbA1c | 0.002 | |
Apo1fas | BMI% | −0.026 |
Apolipoptorein-alpha | 0.025 | |
Apo1fas AUC | HbA1c | −0.025 |
GPx3 AUC | 0.043 | |
SOD AUC | IGF-1 | 0.045 |
p-Value | ||
---|---|---|
GPx3 | Insulin | 0.018 |
HOMA-IR | 0.024 | |
Apofas1 AUC | Apolipoprotein-alpha | 0.002 |
Insulin | −0.050 | |
Fasting blood glucose | GPx3 AUC | 0.001 |
cck18 AUC | 0.018 | |
SOD AUC | HbA1c | 0.038 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katsa, M.E.; Kostopoulou, E.; Nomikos, T.; Ioannidis, A.; Sarris, V.; Papadogiannis, S.; Spiliotis, B.E.; Rojas Gil, A.P. The Response of Antioxidant Enzymes and Antiapoptotic Markers to an Oral Glucose Tolerance Test (OGTT) in Children and Adolescents with Excess Body Weight. Int. J. Mol. Sci. 2023, 24, 16517. https://doi.org/10.3390/ijms242216517
Katsa ME, Kostopoulou E, Nomikos T, Ioannidis A, Sarris V, Papadogiannis S, Spiliotis BE, Rojas Gil AP. The Response of Antioxidant Enzymes and Antiapoptotic Markers to an Oral Glucose Tolerance Test (OGTT) in Children and Adolescents with Excess Body Weight. International Journal of Molecular Sciences. 2023; 24(22):16517. https://doi.org/10.3390/ijms242216517
Chicago/Turabian StyleKatsa, Maria Efthymia, Eirini Kostopoulou, Tzortzis Nomikos, Anastasios Ioannidis, Vasileios Sarris, Spyridon Papadogiannis, Bessie E. Spiliotis, and Andrea Paola Rojas Gil. 2023. "The Response of Antioxidant Enzymes and Antiapoptotic Markers to an Oral Glucose Tolerance Test (OGTT) in Children and Adolescents with Excess Body Weight" International Journal of Molecular Sciences 24, no. 22: 16517. https://doi.org/10.3390/ijms242216517
APA StyleKatsa, M. E., Kostopoulou, E., Nomikos, T., Ioannidis, A., Sarris, V., Papadogiannis, S., Spiliotis, B. E., & Rojas Gil, A. P. (2023). The Response of Antioxidant Enzymes and Antiapoptotic Markers to an Oral Glucose Tolerance Test (OGTT) in Children and Adolescents with Excess Body Weight. International Journal of Molecular Sciences, 24(22), 16517. https://doi.org/10.3390/ijms242216517