PML Body Biogenesis: A Delicate Balance of Interactions
Abstract
:1. Introduction
2. PML Regulation at the mRNA Level
3. Roles of SUMO-SIM Interaction
4. PML Domains and Their Role in PML Body Formation
4.1. Analysis of PML Sequences Using AlphaFold
4.2. RING Domain PML: Dimerization and Tetramerization
4.3. B1- and B2-Box Domains PML: Dimerization and Oligomerization
4.4. Proline-Rich and Coiled-Coil Domain
4.5. Disordered C-Terminal Domains
5. Hypothetical Icosahedral PML Structure
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kakizuka, A.; Miller, W.H.; Umesono, K.; Warrell, R.P.; Frankel, S.R.; Murty, V.V.V.S.; Dmitrovsky, E.; Evans, R.M. Chromosomal Translocation t(15;17) in Human Acute Promyelocytic Leukemia Fuses RARα with a Novel Putative Transcription Factor, PML. Cell 1991, 66, 663–674. [Google Scholar] [CrossRef]
- Guan, D.; Kao, H.-Y. The Function, Regulation and Therapeutic Implications of the Tumor Suppressor Protein, PML. Cell Biosci. 2015, 5, 60. [Google Scholar] [CrossRef]
- Wafa, A.; Moassass, F.; Liehr, T.; Al-Ablog, A.; Al-Achkar, W. Acute Promyelocytic Leukemia with the Translocation t(15;17)(Q22;Q21) Associated with t(1;2)(Q42~43;Q11.2~12): A Case Report. J. Med. Case Rep. 2016, 10, 203. [Google Scholar] [CrossRef]
- Li, Y.; Ma, X.; Wu, W.; Chen, Z.; Meng, G. PML Nuclear Body Biogenesis, Carcinogenesis, and Targeted Therapy. Trends Cancer 2020, 6, 889–906. [Google Scholar] [CrossRef]
- Corpet, A.; Kleijwegt, C.; Roubille, S.; Juillard, F.; Jacquet, K.; Texier, P.; Lomonte, P. PML Nuclear Bodies and Chromatin Dynamics: Catch Me If You Can! Nucleic Acids Res. 2020, 48, 11890–11912. [Google Scholar] [CrossRef]
- Nisole, S.; Maroui, M.A.; Mascle, X.H.; Aubry, M.; Chelbi-Alix, M.K. Differential Roles of PML Isoforms. Front. Oncol. 2013, 3, 51002. [Google Scholar] [CrossRef]
- Delbarre, E.; Janicki, S.M. Modulation of H3.3 Chromatin Assembly by PML: A Way to Regulate Epigenetic Inheritance. BioEssays 2021, 43, 2100038. [Google Scholar] [CrossRef]
- Fracassi, C.; Ugge’, M.; Abdelhalim, M.; Zapparoli, E.; Simoni, M.; Magliulo, D.; Mazza, D.; Lazarevic, D.; Morelli, M.J.; Collas, P.; et al. PML Modulates Epigenetic Composition of Chromatin to Regulate Expression of Pro-Metastatic Genes in Triple-Negative Breast Cancer. Nucleic Acids Res. 2023, 51, 11024–11039. [Google Scholar] [CrossRef] [PubMed]
- Hsu, K.S.; Kao, H.Y. PML: Regulation and Multifaceted Function beyond Tumor Suppression. Cell Biosci. 2018, 8, 5. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Kao, H.-Y. Post-Translational Modifications of PML: Consequences and Implications. Front. Oncol. 2013, 2, 210. [Google Scholar] [CrossRef] [PubMed]
- Udagawa, O.; Kato-Udagawa, A.; Hirano, S. Promyelocytic Leukemia Nuclear Body-like Structures Can Assemble in Mouse Oocytes. Biol. Open 2022, 11, bio059130. [Google Scholar] [CrossRef]
- Previati, M.; Missiroli, S.; Perrone, M.; Caroccia, N.; Paliotto, F.; Milani, D.; Giorgi, C. Functions and Dys-Functions of Promyelocytic Leukemia Protein PML. Rend. Lincei Sci. Fis. Nat. 2018, 29, 411–420. [Google Scholar] [CrossRef]
- Bernardi, R.; Pandolfi, P.P. Structure, Dynamics and Functions of Promyelocytic Leukaemia Nuclear Bodies. Nat. Rev. Mol. Cell Biol. 2007, 8, 1006–1016. [Google Scholar] [CrossRef] [PubMed]
- Patra, U.; Müller, S. A Tale of Usurpation and Subversion: SUMO-Dependent Integrity of Promyelocytic Leukemia Nuclear Bodies at the Crossroad of Infection and Immunity. Front. Cell Dev. Biol. 2021, 9, 696234. [Google Scholar] [CrossRef] [PubMed]
- Guion, L.G.; Sapp, M. The Role of Promyelocytic Leukemia Nuclear Bodies During HPV Infection. Front. Cell. Infect. Microbiol. 2020, 10, 35. [Google Scholar] [CrossRef] [PubMed]
- Neerukonda, S.N. Interplay between RNA Viruses and Promyelocytic Leukemia Nuclear Bodies. Vet. Sci. 2021, 8, 57. [Google Scholar] [CrossRef] [PubMed]
- Jensen, K.; Shiels, C.; Freemont, P.S. PML Protein Isoforms and the RBCC/TRIM Motif. Oncogene 2001, 20, 7223–7233. [Google Scholar] [CrossRef] [PubMed]
- Sachini, N.; Arampatzi, P.; Klonizakis, A.; Nikolaou, C.; Makatounakis, T.; Lam, E.W.F.; Kretsovali, A.; Papamatheakis, J. Promyelocytic Leukemia Protein (PML) Controls Breast Cancer Cell Proliferation by Modulating Forkhead Transcription Factors. Mol. Oncol. 2019, 13, 1369–1387. [Google Scholar] [CrossRef]
- Iwanami, A.; Gini, B.; Zanca, C.; Matsutani, T.; Assuncao, A.; Nael, A.; Dang, J.; Yang, H.; Zhu, S.; Kohyama, J.; et al. PML Mediates Glioblastoma Resistance to Mammalian Target of Rapamycin (MTOR)-Targeted Therapies. Proc. Natl. Acad. Sci. USA 2013, 110, 4339–4344. [Google Scholar] [CrossRef]
- Condemine, W.; Takahashi, Y.; Zhu, J.; Puvion-Dutilleul, F.; Guegan, S.; Janin, A.; De Thé, H. Characterization of Endogenous Human Promyelocytic Leukemia Isoforms. Cancer Res. 2006, 66, 6192–6198. [Google Scholar] [CrossRef]
- Jul-Larsen, Å.; Grudic, A.; Bjerkvig, R.; Bøe, S.O. Subcellular Distribution of Nuclear Import-Defective Isoforms of the Promyelocytic Leukemia Protein. BMC Mol. Biol. 2010, 11, 89. [Google Scholar] [CrossRef] [PubMed]
- Fonin, A.V.; Silonov, S.A.; Shpironok, O.G.; Antifeeva, I.A.; Petukhov, A.V.; Romanovich, A.E.; Kuznetsova, I.M.; Uversky, V.N.; Turoverov, K.K. The Role of Non-Specific Interactions in Canonical and ALT-Associated PML-Bodies Formation and Dynamics. Int. J. Mol. Sci. 2021, 22, 5821. [Google Scholar] [CrossRef] [PubMed]
- Keller, S.; Teora, S.P.; Boujemaa, M.; Wilson, D.A. Exploring New Horizons in Liquid Compartmentalization via Microfluidics. Biomacromolecules 2021, 22, 1759–1769. [Google Scholar] [CrossRef]
- Nesterov, S.V.; Ilyinsky, N.S.; Uversky, V.N. Liquid-Liquid Phase Separation as a Common Organizing Principle of Intracellular Space and Biomembranes Providing Dynamic Adaptive Responses. Biochim. Biophys. Acta–Mol. Cell Res. 2021, 1868, 119102. [Google Scholar] [CrossRef] [PubMed]
- Tong, X.; Tang, R.; Xu, J.; Wang, W.; Zhao, Y.; Yu, X.; Shi, S. Liquid–Liquid Phase Separation in Tumor Biology. Signal Transduct. Target. Ther. 2022, 7, 221. [Google Scholar] [CrossRef]
- Antifeeva, I.A.; Fonin, A.V.; Fefilova, A.S.; Mokin, Y.I.; Silonov, S.A.; Uversky, V.N.; Turoverov, K.K.; Kuznetsova, I.M. Techniques for the Detection and Analysis of LLPS and MLOs. Droplets Life 2023, 205–231. [Google Scholar] [CrossRef]
- McSwiggen, D.T.; Mir, M.; Darzacq, X.; Tjian, R. Evaluating Phase Separation in Live Cells: Diagnosis, Caveats, and Functional Consequences. Genes Dev. 2019, 33, 1619–1634. [Google Scholar] [CrossRef]
- Ryczek, N.; Łyś, A.; Makałowska, I. The Functional Meaning of 5′UTR in Protein-Coding Genes. Int. J. Mol. Sci. 2023, 24, 2976. [Google Scholar] [CrossRef]
- Wang, J.; Gribskov, M. IRESpy: An XGBoost Model for Prediction of Internal Ribosome Entry Sites. BMC Bioinform. 2019, 20, 409. [Google Scholar] [CrossRef] [PubMed]
- Guan, D.; Putnam, A.; Jankowsky, E.; Kao, H. Post-transcriptional Regulation of PML Protein by Distinct Mechanisms. FASEB J. 2015, 29. [Google Scholar] [CrossRef]
- Lee, H.E.; Do Jee, C.; Kim, M.A.; Lee, H.S.; Lee, Y.M.; Lee, B.L.; Kim, W.H. Loss of Promyelocytic Leukemia Protein in Human Gastric Cancers. Cancer Lett. 2007, 247, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Godet, A.-C.; David, F.; Hantelys, F.; Tatin, F.; Lacazette, E.; Garmy-Susini, B.; Prats, A.-C. IRES Trans-Acting Factors, Key Actors of the Stress Response. Int. J. Mol. Sci. 2019, 20, 924. [Google Scholar] [CrossRef] [PubMed]
- Hsu, K.-S.; Guan, B.-J.; Cheng, X.; Guan, D.; Lam, M.; Hatzoglou, M.; Kao, H.-Y. Translational Control of PML Contributes to TNFα-Induced Apoptosis of MCF7 Breast Cancer Cells and Decreased Angiogenesis in HUVECs. Cell Death Differ. 2016, 23, 469–483. [Google Scholar] [CrossRef] [PubMed]
- Scaglioni, P.P.; Rabellino, A.; Yung, T.M.; Bernardi, R.; Choi, S.; Konstantinidou, G.; Nardella, C.; Cheng, K.; Pandolfi, P.P. Translation-dependent Mechanisms Lead to PML Upregulation and Mediate Oncogenic K-RAS-induced Cellular Senescence. EMBO Mol. Med. 2012, 4, 594–602. [Google Scholar] [CrossRef] [PubMed]
- Yamada, N.; Tsujimura, N.; Kumazaki, M.; Shinohara, H.; Taniguchi, K.; Nakagawa, Y.; Naoe, T.; Akao, Y. Colorectal Cancer Cell-Derived Microvesicles Containing MicroRNA-1246 Promote Angiogenesis by Activating Smad 1/5/8 Signaling Elicited by PML down-Regulation in Endothelial Cells. Biochim. Biophys. Acta–Gene Regul. Mech. 2014, 1839, 1256–1272. [Google Scholar] [CrossRef]
- Ghafouri-Fard, S.; Khoshbakht, T.; Hussen, B.M.; Taheri, M.; Samadian, M. A Review on the Role of MiR-1246 in the Pathoetiology of Different Cancers. Front. Mol. Biosci. 2022, 8, 771835. [Google Scholar] [CrossRef]
- Wu, W.; Wu, Z.; Xia, Y.; Qin, S.; Li, Y.; Wu, J.; Liang, J.; Wang, L.; Zhu, H.; Fan, L.; et al. Downregulation of Circ_0132266 in Chronic Lymphocytic Leukemia Promoted Cell Viability through MiR-337-3p/PML Axis. Aging 2019, 11, 3561–3573. [Google Scholar] [CrossRef] [PubMed]
- Lang, M.; Jegou, T.; Chung, I.; Richter, K.; Münch, S.; Udvarhelyi, A.; Cremer, C.; Hemmerich, P.; Engelhardt, J.; Hell, S.W.; et al. Three-Dimensional Organization of Promyelocytic Leukemia Nuclear Bodies. J. Cell Sci. 2010, 123, 392–400. [Google Scholar] [CrossRef]
- Lallemand-Breitenbach, V.; de Thé, H. PML Nuclear Bodies. Cold Spring Harb. Perspect. Biol. 2010, 2, a000661. [Google Scholar] [CrossRef]
- Li, Y.; Ma, X.; Chen, Z.; Wu, H.; Wang, P.; Wu, W.; Cheng, N.; Zeng, L.; Zhang, H.; Cai, X.; et al. B1 Oligomerization Regulates PML Nuclear Body Biogenesis and Leukemogenesis. Nat. Commun. 2019, 10, 3789. [Google Scholar] [CrossRef]
- Kamitani, T.; Kito, K.; Nguyen, H.P.; Wada, H.; Fukuda-Kamitani, T.; Yeh, E.T.H. Identification of Three Major Sentrinization Sites in PML. J. Biol. Chem. 1998, 273, 26675–26682. [Google Scholar] [CrossRef]
- Geng, Y.; Monajembashi, S.; Shao, A.; Cui, D.; He, W.; Chen, Z.; Hemmerich, P.; Tang, J. Contribution of the C-Terminal Regions of Promyelocytic Leukemia Protein (PML) Isoforms II and V to PML Nuclear Body Formation. J. Biol. Chem. 2012, 287, 30729–30742. [Google Scholar] [CrossRef]
- Rabellino, A.; Carter, B.; Konstantinidou, G.; Wu, S.-Y.; Rimessi, A.; Byers, L.A.; Heymach, J.V.; Girard, L.; Chiang, C.-M.; Teruya-Feldstein, J.; et al. The SUMO E3-Ligase PIAS1 Regulates the Tumor Suppressor PML and Its Oncogenic Counterpart PML-RARA. Cancer Res. 2012, 72, 2275–2284. [Google Scholar] [CrossRef] [PubMed]
- Scaglioni, P.P.; Yung, T.M.; Cai, L.F.; Erdjument-Bromage, H.; Kaufman, A.J.; Singh, B.; Teruya-Feldstein, J.; Tempst, P.; Pandolfi, P.P. A CK2-Dependent Mechanism for Degradation of the PML Tumor Suppressor. Cell 2006, 126, 269–283. [Google Scholar] [CrossRef] [PubMed]
- Rabellino, A.; Scaglioni, P.P. PML Degradation: Multiple Ways to Eliminate PML. Front. Oncol. 2013, 3, 60. [Google Scholar] [CrossRef]
- Shen, T.H.; Lin, H.-K.; Scaglioni, P.P.; Yung, T.M.; Pandolfi, P.P. The Mechanisms of PML-Nuclear Body Formation. Mol. Cell 2006, 24, 805. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.-T.; Lu, G.-Y.; Hsu, Y.-J.; Chang, L.-C.; Ho, C.-L.; Huang, S.-M. Dual Roles for Lysine 490 of Promyelocytic Leukemia Protein in the Transactivation of Glucocorticoid Receptor-Interacting Protein 1. Biochim. Biophys. Acta–Mol. Cell Res. 2013, 1833, 1799–1810. [Google Scholar] [CrossRef]
- El-Asmi, F.; McManus, F.P.; Brantis-de-Carvalho, C.E.; Valle-Casuso, J.C.; Thibault, P.; Chelbi-Alix, M.K. Cross-Talk between SUMOylation and ISGylation in Response to Interferon. Cytokine 2020, 129, 155025. [Google Scholar] [CrossRef]
- Banani, S.F.; Rice, A.M.; Peeples, W.B.; Lin, Y.; Jain, S.; Parker, R.; Rosen, M.K. Compositional Control of Phase-Separated Cellular Bodies. Cell 2016, 166, 651–663. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, R.; Tones, J.; Liu, M.; Dilley, R.L.; Chenoweth, D.M.; Greenberg, R.A.; Lampson, M.A. Nuclear Body Phase Separation Drives Telomere Clustering in ALT Cancer Cells. Mol. Biol. Cell 2020, 31, 2048–2056. [Google Scholar] [CrossRef]
- Min, J.; Wright, W.E.; Shay, J.W. Clustered Telomeres in Phase-Separated Nuclear Condensates Engage Mitotic DNA Synthesis through BLM and RAD52. Genes Dev. 2019, 33, 814–827. [Google Scholar] [CrossRef]
- Sha, Z.; Blyszcz, T.; González-Prieto, R.; Vertegaal, A.C.O.; Goldberg, A.L. Inhibiting Ubiquitination Causes an Accumulation of SUMOylated Newly Synthesized Nuclear Proteins at PML Bodies. J. Biol. Chem. 2019, 294, 15218–15234. [Google Scholar] [CrossRef]
- Keiten-Schmitz, J.; Röder, L.; Hornstein, E.; Müller-McNicoll, M.; Müller, S. SUMO: Glue or Solvent for Phase-Separated Ribonucleoprotein Complexes and Molecular Condensates? Front. Mol. Biosci. 2021, 8, 673038. [Google Scholar] [CrossRef]
- Lascorz, J.; Codina-Fabra, J.; Reverter, D.; Torres-Rosell, J. SUMO-SIM Interactions: From Structure to Biological Functions. Semin. Cell Dev. Biol. 2022, 132, 193–202. [Google Scholar] [CrossRef]
- Wang, P.; Benhenda, S.; Wu, H.; Lallemand-Breitenbach, V.; Zhen, T.; Jollivet, F.; Peres, L.; Li, Y.; Chen, S.-J.; Chen, Z.; et al. RING Tetramerization Is Required for Nuclear Body Biogenesis and PML Sumoylation. Nat. Commun. 2018, 9, 1277. [Google Scholar] [CrossRef]
- Duprez, E.; Saurin, A.J.; Desterro, J.M.; Lallemand-Breitenbach, V.; Howe, K.; Boddy, M.N.; Solomon, E.; de Thé, H.; Hay, R.T.; Freemont, P.S. SUMO-1 Modification of the Acute Promyelocytic Leukaemia Protein PML: Implications for Nuclear Localisation. J. Cell Sci. 1999, 112, 381–393. [Google Scholar] [CrossRef]
- Chelbi-Alix, M.K.; Thibault, P. Crosstalk Between SUMO and Ubiquitin-Like Proteins: Implication for Antiviral Defense. Front. Cell Dev. Biol. 2021, 9, 671067. [Google Scholar] [CrossRef] [PubMed]
- Bregnard, T.; Ahmed, A.; Semenova, I.V.; Weller, S.K.; Bezsonova, I. The B-Box1 Domain of PML Mediates SUMO E2-E3 Complex Formation through an Atypical Interaction with UBC9. Biophys. Chem. 2022, 287, 106827. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Peng, Q.; Wan, X.; Sun, H.; Tang, J. C-Terminal Motifs in PML Isoforms Critically Regulate PML-NB Formation. J. Cell Sci. 2017, 130, 3496–3506. [Google Scholar] [CrossRef] [PubMed]
- Fonin, A.V.; Silonov, S.A.; Fefilova, A.S.; Stepanenko, O.V.; Gavrilova, A.A.; Petukhov, A.V.; Romanovich, A.E.; Modina, A.L.; Zueva, T.S.; Nedelyaev, E.M.; et al. New Evidence of the Importance of Weak Interactions in the Formation of PML-Bodies. Int. J. Mol. Sci. 2022, 23, 1613. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, J.G.; Okreglicka, K.; Chandrasekaran, V.; Welker, J.M.; Sundquist, W.I.; Pornillos, O. The Tripartite Motif Coiled-Coil Is an Elongated Antiparallel Hairpin Dimer. Proc. Natl. Acad. Sci. USA 2014, 111, 2494–2499. [Google Scholar] [CrossRef] [PubMed]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Meng, E.C.; Goddard, T.D.; Pettersen, E.F.; Couch, G.S.; Pearson, Z.J.; Morris, J.H.; Ferrin, T.E. UCSF ChimeraX: Tools for Structure Building and Analysis. Protein Sci. 2023, 32, e4792. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.Y.; Chang, C.F.; Fang, P.J.; Naik, M.T.; Güntert, P.; Shih, H.M.; Huang, T.H. The RING Domain of Human Promyelocytic Leukemia Protein (PML). J. Biomol. NMR 2015, 61, 173–180. [Google Scholar] [CrossRef]
- Esposito, D.; Koliopoulos, M.G.; Rittinger, K. Structural Determinants of TRIM Protein Function. Biochem. Soc. Trans. 2017, 45, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.-Y.; Naik, M.T.; Chang, C.-F.; Fang, P.-J.; Wang, Y.-H.; Shih, H.-M.; Huang, T. The B-Box 1 Dimer of Human Promyelocytic Leukemia Protein. J. Biomol. NMR 2014, 60, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, A.E.; Baniasadi, M.; Giansiracusa, D.; Giansiracusa, M.; Garcia, M.; Fryda, Z.; Wong, T.L.; Bishayee, A. Sulforaphane: A Broccoli Bioactive Phytocompound with Cancer Preventive Potential. Cancers 2021, 13, 4796. [Google Scholar] [CrossRef]
- Alhazmi, N.; Pai, C.-P.; Albaqami, A.; Wang, H.; Zhao, X.; Chen, M.; Hu, P.; Guo, S.; Starost, K.; Hajihassani, O.; et al. The Promyelocytic Leukemia Protein Isoform PML1 Is an Oncoprotein and a Direct Target of the Antioxidant Sulforaphane (SFN). Biochim. Biophys. Acta–Mol. Cell Res. 2020, 1867, 118707. [Google Scholar] [CrossRef]
- Mrosek, M.; Meier, S.; Ucurum-Fotiadis, Z.; Von Castelmur, E.; Hedbom, E.; Lustig, A.; Grzesiek, S.; Labeit, D.; Labeit, S.; Mayans, O. Structural Analysis of B-Box 2 from MuRF1: Identification of a Novel Self-Association Pattern in a RING-like Fold. Biochemistry 2008, 47, 10722–10730. [Google Scholar] [CrossRef]
- Keown, J.R.; Goldstone, D.C. Crystal Structure of the Trim5α Bbox2 Domain from Rhesus Macaques Describes a Plastic Oligomerisation Interface. J. Struct. Biol. 2016, 195, 282–285. [Google Scholar] [CrossRef]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the Sensitivity of Progressive Multiple Sequence Alignment through Sequence Weighting, Position-Specific Gap Penalties and Weight Matrix Choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef] [PubMed]
- Waterhouse, A.M.; Procter, J.B.; Martin, D.M.A.; Clamp, M.; Barton, G.J. Jalview Version 2-A Multiple Sequence Alignment Editor and Analysis Workbench. Bioinformatics 2009, 25, 1189–1191. [Google Scholar] [CrossRef] [PubMed]
- Weinert, C.; Morger, D.; Djekic, A.; Grütter, M.G.; Mittl, P.R.E. Crystal Structure of TRIM20 C-Terminal Coiled-Coil/B30.2 Fragment: Implications for the Recognition of Higher Order Oligomers. Sci. Rep. 2015, 5, 10819. [Google Scholar] [CrossRef] [PubMed]
- Wagner, J.M.; Roganowicz, M.D.; Skorupka, K.; Alam, S.L.; Christensen, D.; Doss, G.; Wan, Y.; Frank, G.A.; Ganser-Pornillos, B.K.; Sundquist, W.I.; et al. Mechanism of B-Box 2 Domain-Mediated Higher-Order Assembly of the Retroviral Restriction Factor TRIM5α. eLife 2016, 5, e16309. [Google Scholar] [CrossRef]
- Stoll, G.A.; Oda, S.; Chong, Z.S.; Yu, M.; McLaughlin, S.H.; Modis, Y. Structure of KAP1 Tripartite Motif Identifies Molecular Interfaces Required for Retroelement Silencing. Proc. Natl. Acad. Sci. USA 2019, 116, 15042–15051. [Google Scholar] [CrossRef] [PubMed]
- Lusic, M.; Marini, B.; Ali, H.; Lucic, B.; Luzzati, R.; Giacca, M. Proximity to PML Nuclear Bodies Regulates HIV-1 Latency in CD4+ T Cells. Cell Host Microbe 2013, 13, 665–677. [Google Scholar] [CrossRef]
- Masroori, N.; Cherry, P.; Merindol, N.; Li, J.; Dufour, C.; Poulain, L.; Plourde, M.B.; Berthoux, L. Gene Knockout Shows That PML (TRIM19) Does Not Restrict the Early Stages of HIV-1 Infection in Human Cell Lines. mSphere 2017, 2. [Google Scholar] [CrossRef]
- Scherer, M.; Klingl, S.; Sevvana, M.; Otto, V.; Schilling, E.-M.; Stump, J.D.; Müller, R.; Reuter, N.; Sticht, H.; Muller, Y.A.; et al. Crystal Structure of Cytomegalovirus IE1 Protein Reveals Targeting of TRIM Family Member PML via Coiled-Coil Interactions. PLoS Pathog. 2014, 10, e1004512. [Google Scholar] [CrossRef]
- Diaz-Griffero, F.; Gallo, D.E.; Hope, T.J.; Sodroski, J. Trafficking of Some Old World Primate TRIM5α Proteins through the Nucleus. Retrovirology 2011, 8, 38. [Google Scholar] [CrossRef]
- Jiang, X.; Ho, D.B.T.; Mahe, K.; Mia, J.; Sepulveda, G.; Antkowiak, M.; Jiang, L.; Yamada, S.; Jao, L.-E. Condensation of Pericentrin Proteins in Human Cells Illuminates Phase Separation in Centrosome Assembly. J. Cell Sci. 2021, 134, jcs258897. [Google Scholar] [CrossRef]
- Woodruff, J.B.; Ferreira Gomes, B.; Widlund, P.O.; Mahamid, J.; Honigmann, A.; Hyman, A.A. The Centrosome Is a Selective Condensate That Nucleates Microtubules by Concentrating Tubulin. Cell 2017, 169, 1066–1077.e10. [Google Scholar] [CrossRef]
- Feng, Z.; Caballe, A.; Wainman, A.; Johnson, S.; Haensele, A.F.M.; Cottee, M.A.; Conduit, P.T.; Lea, S.M.; Raff, J.W. Structural Basis for Mitotic Centrosome Assembly in Flies. Cell 2017, 169, 1078–1089.e13. [Google Scholar] [CrossRef]
- Ramirez, D.A.; Hough, L.E.; Shirts, M.R. Coiled-Coil Domains Are Sufficient to Drive Liquid-Liquid Phase Separation of Proteins in Molecular Models. bioRxiv 2023. [Google Scholar] [CrossRef]
- Occhionorelli, M.; Santoro, F.; Pallavicini, I.; Gruszka, A.; Moretti, S.; Bossi, D.; Viale, A.; Shing, D.; Ronzoni, S.; Muradore, I.; et al. The Self-Association Coiled-Coil Domain of PML Is Sufficient for the Oncogenic Conversion of the Retinoic Acid Receptor (RAR) Alpha. Leukemia 2011, 25, 814–820. [Google Scholar] [CrossRef]
- Sahin, U.; Ferhi, O.; Jeanne, M.; Benhenda, S.; Berthier, C.; Jollivet, F.; Niwa-Kawakita, M.; Faklaris, O.; Setterblad, N.; de Thé, H.; et al. Oxidative Stress–Induced Assembly of PML Nuclear Bodies Controls Sumoylation of Partner Proteins. J. Cell Biol. 2014, 204, 931–945. [Google Scholar] [CrossRef] [PubMed]
- Brand, P.; Lenser, T.; Hemmerich, P. Assembly Dynamics of PML Nuclear Bodies in Living Cells. PMC Biophys. 2010, 3, 3. [Google Scholar] [CrossRef] [PubMed]
- Hands, K.J.; Cuchet-Lourenco, D.; Everett, R.D.; Hay, R.T. PML Isoforms in Response to Arsenic: High Resolution Analysis of PML Body Structure and Degradation Characteristics. J. Cell Sci. 2013, 127, 365–375. [Google Scholar] [CrossRef] [PubMed]
- Ivanschitz, L.; Takahashi, Y.; Jollivet, F.; Ayrault, O.; Le Bras, M.; de Thé, H. PML IV/ARF Interaction Enhances P53 SUMO-1 Conjugation, Activation, and Senescence. Proc. Natl. Acad. Sci. USA 2015, 112, 14278–14283. [Google Scholar] [CrossRef] [PubMed]
- Condemine, W.; Takahashi, Y.; Le Bras, M.; de Thé, H. A Nucleolar Targeting Signal in PML-I Addresses PML to Nucleolar Caps in Stressed or Senescent Cells. J. Cell Sci. 2007, 120, 3219–3227. [Google Scholar] [CrossRef] [PubMed]
- Imrichova, T.; Hubackova, S.; Kucerova, A.; Kosla, J.; Bartek, J.; Hodny, Z.; Vasicova, P. Dynamic PML Protein Nucleolar Associations with Persistent DNA Damage Lesions in Response to Nucleolar Stress and Senescence-Inducing Stimuli. Aging 2019, 11, 7206–7235. [Google Scholar] [CrossRef] [PubMed]
- Bischof, O.; Kirsh, O.; Pearson, M.; Itahana, K.; Pelicci, P.G.; Dejean, A. Deconstructing PML-Induced Premature Senescence. EMBO J. 2002, 21, 3358–3369. [Google Scholar] [CrossRef] [PubMed]
- Barroso-Gomila, O.; Trulsson, F.; Muratore, V.; Canosa, I.; Merino-Cacho, L.; Cortazar, A.R.; Pérez, C.; Azkargorta, M.; Iloro, I.; Carracedo, A.; et al. Identification of Proximal SUMO-Dependent Interactors Using SUMO-ID. Nat. Commun. 2021, 12, 6671. [Google Scholar] [CrossRef] [PubMed]
- Ryabchenko, B.; Šroller, V.; Horníková, L.; Lovtsov, A.; Forstová, J.; Huérfano, S. The Interactions between PML Nuclear Bodies and Small and Medium Size DNA Viruses. Virol. J. 2023, 20, 82. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Salsman, J.; Foster, J.; Dellaire, G.; Ridgway, N.D. Lipid-Associated PML Structures Assemble Nuclear Lipid Droplets Containing CCTα and Lipin1. Life Sci. Alliance 2020, 3, 1–13. [Google Scholar] [CrossRef]
# | Ensembl Transcript Name | Jensen et al. Name [17] | TRIM Name | NCBI Name | UniProt Name | Length, aa | Mw, kDa | UniProt Match | CCDS |
---|---|---|---|---|---|---|---|---|---|
1 | PML-201 | PML-I | TRIM19 alpha | Isoform 1 | PML-11 | 882 | 97.6 | P29590–1 | CCDS10255 |
2 | PML-202 | PML-II | TRIM19 kappa | Isoform 9 | PML-2 | 829 | 90.7 | P29590–8 | CCDS10257 |
3 | PML-203 | PML-IIa | - | Isoform 11 | PML-13 | 781 | 85.7 | P29590–13 | CCDS10258 |
4 | PML-204 PML-217 | PML-VIb | TRIM19 iota TRIM19 eta | Isoform 7 | PML-14 | 423 | 47.6 | P29590–14 | CCDS45300 |
5 | PML-205 | PML-VIIb | TRIM19 theta | Isoform 8 | PML-7 | 435 | 48.6 | P29590–10 | CCDS10256 |
6 | PML-206 | PML-IV PML-X | TRIM19 zeta | Isoform 6 | PML-4 | 633 | 70.0 | P29590–5 | CCDS45297 |
7 | PML-207 | PML-V | TRIM19 beta | Isoform 2 | PML-5 | 611 | 67.5 | P29590–2 | CCDS45298 |
8 | PML-208 PML-221 | PML-VI | TRIM19 epsilon | Isoform 5 | PML-6 | 560 | 62.0 | P29590–4 | CCDS45299 |
9 | PML-211 | PML-IVa | TRIM19 lambda | Isoform 10 | PML-12 | 585 | 65.0 | P29590–12 | CCDS58386 |
10 | PML-215 | PML-Ia | - | - | PML-11 | 834 | 92.6 | P29590–11 | - |
11 | PML-220 | PML-III | - | - | PML-31 | 641 | 70.4 | P29590–9 | - |
12 | - | PML-IIg | TRIM19 gamma | - | PML-8 | 824 | 90.2 | P29590–3 | - |
13 | PML-210 | - | - | - | - | 568 | 62.9 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silonov, S.A.; Smirnov, E.Y.; Kuznetsova, I.M.; Turoverov, K.K.; Fonin, A.V. PML Body Biogenesis: A Delicate Balance of Interactions. Int. J. Mol. Sci. 2023, 24, 16702. https://doi.org/10.3390/ijms242316702
Silonov SA, Smirnov EY, Kuznetsova IM, Turoverov KK, Fonin AV. PML Body Biogenesis: A Delicate Balance of Interactions. International Journal of Molecular Sciences. 2023; 24(23):16702. https://doi.org/10.3390/ijms242316702
Chicago/Turabian StyleSilonov, Sergey A., Eugene Y. Smirnov, Irina M. Kuznetsova, Konstantin K. Turoverov, and Alexander V. Fonin. 2023. "PML Body Biogenesis: A Delicate Balance of Interactions" International Journal of Molecular Sciences 24, no. 23: 16702. https://doi.org/10.3390/ijms242316702
APA StyleSilonov, S. A., Smirnov, E. Y., Kuznetsova, I. M., Turoverov, K. K., & Fonin, A. V. (2023). PML Body Biogenesis: A Delicate Balance of Interactions. International Journal of Molecular Sciences, 24(23), 16702. https://doi.org/10.3390/ijms242316702