Immunomodulation of Antibody Glycosylation through the Placental Transfer
Abstract
:1. Introduction
2. Physiological Transport of IgG across the Placenta
3. Factors Influencing Transplacental Antibody Transfer
3.1. IgG Subclass
3.2. IgG Glycosylation
3.3. FcR
3.4. IgG Concentration
3.5. Maternal Immune Response
4. Placenta Transfer of Protective IgG
4.1. Vaccination during Pregnancy
4.2. Maternal Infection
5. Placenta Transfer of Pathological IgG
5.1. Alloimmune Diseases
5.1.1. HDFN
5.1.2. FNAIT
5.2. Autoimmune Diseases
6. Antibody Therapy and Future Perspective
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chaouat, G.; Petitbarat, M.; Dubanchet, S.; Rahmati, M.; Ledée, N. Tolerance to the Foetal Allograft? Am. J. Reprod. Immunol. 2010, 63, 624–636. [Google Scholar] [CrossRef]
- Förger, F.; Villiger, P.M. Immunological Adaptations in Pregnancy That Modulate Rheumatoid Arthritis Disease Activity. Nat. Rev. Rheumatol. 2020, 16, 113–122. [Google Scholar] [CrossRef]
- Smith, C.H.; Moe, A.J.; Ganapathy, V. Nutrient Transport Pathways across the Epithelium of the Placenta. Annu. Rev. Nutr. 1992, 12, 183–206. [Google Scholar] [CrossRef]
- Maltepe, E.; Fisher, S.J. Placenta: The Forgotten Organ. Annu. Rev. Cell Dev. Biol. 2015, 31, 523–552. [Google Scholar] [CrossRef] [PubMed]
- Simister, N.E. Placental Transport of Immunoglobulin G. Vaccine 2003, 21, 3365–3369. [Google Scholar] [CrossRef]
- Mellbye, O.J.; Natvig, J.B. Presence and Origin of Human IgG Subclass Proteins in Newborns. Vox. Sang 1973, 24, 206–215. [Google Scholar] [CrossRef]
- DeSesso, J.M.; Williams, A.L.; Ahuja, A.; Bowman, C.J.; Hurtt, M.E. The Placenta, Transfer of Immunoglobulins, and Safety Assessment of Biopharmaceuticals in Pregnancy. Crit. Rev. Toxicol. 2012, 42, 185–210. [Google Scholar] [CrossRef] [PubMed]
- Takizawa, T.; Anderson, C.L.; Robinson, J.M. A Novel Fc Gamma R-Defined, IgG-Containing Organelle in Placental Endothelium. J. Immunol. 2005, 175, 2331–2339. [Google Scholar] [CrossRef]
- Lyden, T.W.; Robinson, J.M.; Tridandapani, S.; Teillaud, J.L.; Garber, S.A.; Osborne, J.M.; Frey, J.; Budde, P.; Anderson, C.L. The Fc Receptor for IgG Expressed in the Villus Endothelium of Human Placenta Is Fc Gamma RIIb2. J. Immunol. 2001, 166, 3882–3889. [Google Scholar] [CrossRef]
- Wu, T.T.; Johnson, G.; Kabat, E.A. Length Distribution of CDRH3 in Antibodies. Proteins 1993, 16, 1–7. [Google Scholar] [CrossRef]
- Montaño, R.F.; Morrison, S.L. Influence of the Isotype of the Light Chain on the Properties of IgG. J. Immunol. 2002, 168, 224–231. [Google Scholar] [CrossRef]
- Huber, R.; Deisenhofer, J.; Colman, P.M.; Matsushima, M.; Palm, W. Crystallographic Structure Studies of an IgG Molecule and an Fc Fragment. Nature 1976, 264, 415–420. [Google Scholar] [CrossRef]
- Basha, S.; Surendran, N.; Pichichero, M. Immune Responses in Neonates. Expert Rev. Clin. Immunol. 2014, 10, 1171–1184. [Google Scholar] [CrossRef] [PubMed]
- Malek, A.; Sager, R.; Kuhn, P.; Nicolaides, K.H.; Schneider, H. Evolution of Maternofetal Transport of Immunoglobulins during Human Pregnancy. Am. J. Reprod. Immunol. 1996, 36, 248–255. [Google Scholar] [CrossRef]
- van den Berg, J.P.; Westerbeek, E.M.; van der Klis, F.R.M.; Berbers, G.A.M.; van Elburg, R.M. Transplacental Transport of IgG Antibodies to Preterm Infants: A Review of the Literature. Early Hum. Dev. 2011, 87, 67–72. [Google Scholar] [CrossRef]
- Hahn-Zoric, M.; Carlsson, B.; Björkander, J.; Osterhaus, A.D.; Mellander, L.; Hanson, L.A. Presence of Non-Maternal Antibodies in Newborns of Mothers with Antibody Deficiencies. Pediatr. Res. 1992, 32, 150–154. [Google Scholar] [CrossRef]
- Wang, Q.; Chung, C.-Y.; Chough, S.; Betenbaugh, M.J. Antibody Glycoengineering Strategies in Mammalian Cells. Biotechnol. Bioeng 2018, 115, 1378–1393. [Google Scholar] [CrossRef]
- Pyzik, M.; Sand, K.M.K.; Hubbard, J.J.; Andersen, J.T.; Sandlie, I.; Blumberg, R.S. The Neonatal Fc Receptor (FcRn): A Misnomer? Front. Immunol. 2019, 10, 1540. [Google Scholar] [CrossRef]
- Palmeira, P.; Quinello, C.; Silveira-Lessa, A.L.; Zago, C.A.; Carneiro-Sampaio, M. IgG Placental Transfer in Healthy and Pathological Pregnancies. Clin. Dev. Immunol. 2012, 2012, 985646. [Google Scholar] [CrossRef]
- Roopenian, D.C.; Akilesh, S. FcRn: The Neonatal Fc Receptor Comes of Age. Nat. Rev. Immunol. 2007, 7, 715–725. [Google Scholar] [CrossRef]
- Jensen, P.F.; Schoch, A.; Larraillet, V.; Hilger, M.; Schlothauer, T.; Emrich, T.; Rand, K.D. A Two-Pronged Binding Mechanism of IgG to the Neonatal Fc Receptor Controls Complex Stability and IgG Serum Half-Life. Mol. Cell Proteom. 2017, 16, 451–456. [Google Scholar] [CrossRef]
- Ober, R.J.; Martinez, C.; Vaccaro, C.; Zhou, J.; Ward, E.S. Visualizing the Site and Dynamics of IgG Salvage by the MHC Class I-Related Receptor, FcRn. J. Immunol. 2004, 172, 2021–2029. [Google Scholar] [CrossRef]
- Ober, R.J.; Martinez, C.; Lai, X.; Zhou, J.; Ward, E.S. Exocytosis of IgG as Mediated by the Receptor, FcRn: An Analysis at the Single-Molecule Level. Proc. Natl. Acad. Sci. USA 2004, 101, 11076–11081. [Google Scholar] [CrossRef]
- Jennewein, M.F.; Abu-Raya, B.; Jiang, Y.; Alter, G.; Marchant, A. Transfer of Maternal Immunity and Programming of the Newborn Immune System. Semin Immunopathol 2017, 39, 605–613. [Google Scholar] [CrossRef]
- Simister, N.E.; Mostov, K.E. An Fc Receptor Structurally Related to MHC Class I Antigens. Nature 1989, 337, 184–187. [Google Scholar] [CrossRef]
- Ishikawa, T.; Takizawa, T.; Iwaki, J.; Mishima, T.; Ui-Tei, K.; Takeshita, T.; Matsubara, S.; Takizawa, T. Fc Gamma Receptor IIb Participates in Maternal IgG Trafficking of Human Placental Endothelial Cells. Int. J. Mol. Med. 2015, 35, 1273–1289. [Google Scholar] [CrossRef]
- Mimoun, A.; Delignat, S.; Peyron, I.; Daventure, V.; Lecerf, M.; Dimitrov, J.D.; Kaveri, S.V.; Bayry, J.; Lacroix-Desmazes, S. Relevance of the Materno-Fetal Interface for the Induction of Antigen-Specific Immune Tolerance. Front. Immunol. 2020, 11, 810. [Google Scholar] [CrossRef]
- Gu, J.; Lei, Y.; Huang, Y.; Zhao, Y.; Li, J.; Huang, T.; Zhang, J.; Wang, J.; Deng, X.; Chen, Z.; et al. Fab Fragment Glycosylated IgG May Play a Central Role in Placental Immune Evasion. Hum. Reprod. 2015, 30, 380–391. [Google Scholar] [CrossRef]
- Arnold, J.N.; Wormald, M.R.; Sim, R.B.; Rudd, P.M.; Dwek, R.A. The Impact of Glycosylation on the Biological Function and Structure of Human Immunoglobulins. Annu. Rev. Immunol. 2007, 25, 21–50. [Google Scholar] [CrossRef]
- Vidarsson, G.; Dekkers, G.; Rispens, T. IgG Subclasses and Allotypes: From Structure to Effector Functions. Front. Immunol. 2014, 5, 520. [Google Scholar] [CrossRef]
- Carrasco, B.; Garcia de la Torre, J.; Davis, K.G.; Jones, S.; Athwal, D.; Walters, C.; Burton, D.R.; Harding, S.E. Crystallohydrodynamics for Solving the Hydration Problem for Multi-Domain Proteins: Open Physiological Conformations for Human IgG. Biophys. Chem. 2001, 93, 181–196. [Google Scholar] [CrossRef]
- Einarsdottir, H.K.; Stapleton, N.M.; Scherjon, S.; Andersen, J.T.; Rispens, T.; van der Schoot, C.E.; Vidarsson, G. On the Perplexingly Low Rate of Transport of IgG2 across the Human Placenta. PLoS ONE 2014, 9, e108319. [Google Scholar] [CrossRef]
- Lefranc, M.-P.; Lefranc, G. Human Gm, Km, and Am Allotypes and Their Molecular Characterization: A Remarkable Demonstration of Polymorphism. Methods Mol. Biol. 2012, 882, 635–680. [Google Scholar] [CrossRef]
- Einarsdottir, H.; Ji, Y.; Visser, R.; Mo, C.; Luo, G.; Scherjon, S.; van der Schoot, C.E.; Vidarsson, G. H435-Containing Immunoglobulin G3 Allotypes Are Transported Efficiently across the Human Placenta: Implications for Alloantibody-Mediated Diseases of the Newborn. Transfusion 2014, 54, 665–671. [Google Scholar] [CrossRef] [PubMed]
- Mimura, Y.; Sondermann, P.; Ghirlando, R.; Lund, J.; Young, S.P.; Goodall, M.; Jefferis, R. Role of Oligosaccharide Residues of IgG1-Fc in Fc Gamma RIIb Binding. J. Biol. Chem. 2001, 276, 45539–45547. [Google Scholar] [CrossRef] [PubMed]
- Mimura, Y.; Church, S.; Ghirlando, R.; Ashton, P.R.; Dong, S.; Goodall, M.; Lund, J.; Jefferis, R. The Influence of Glycosylation on the Thermal Stability and Effector Function Expression of Human IgG1-Fc: Properties of a Series of Truncated Glycoforms. Mol. Immunol. 2000, 37, 697–706. [Google Scholar] [CrossRef] [PubMed]
- Krapp, S.; Mimura, Y.; Jefferis, R.; Huber, R.; Sondermann, P. Structural Analysis of Human IgG-Fc Glycoforms Reveals a Correlation between Glycosylation and Structural Integrity. J. Mol. Biol. 2003, 325, 979–989. [Google Scholar] [CrossRef]
- Borrok, M.J.; Jung, S.T.; Kang, T.H.; Monzingo, A.F.; Georgiou, G. Revisiting the Role of Glycosylation in the Structure of Human IgG Fc. ACS Chem. Biol. 2012, 7, 1596–1602. [Google Scholar] [CrossRef]
- Lee, J.Y.; Choi, J.-W.; Hwang, S.; Hahm, S.H.; Ahn, Y.H. Site-Specific Glycan Microheterogeneity Evaluation of Aflibercept Fusion Protein by Glycopeptide-Based LC-MSMS Mapping. Int. J. Mol. Sci. 2022, 23, 11807. [Google Scholar] [CrossRef]
- Parekh, R.B.; Dwek, R.A.; Sutton, B.J.; Fernandes, D.L.; Leung, A.; Stanworth, D.; Rademacher, T.W.; Mizuochi, T.; Taniguchi, T.; Matsuta, K. Association of Rheumatoid Arthritis and Primary Osteoarthritis with Changes in the Glycosylation Pattern of Total Serum IgG. Nature 1985, 316, 452–457. [Google Scholar] [CrossRef]
- Wormald, M.R.; Rudd, P.M.; Harvey, D.J.; Chang, S.C.; Scragg, I.G.; Dwek, R.A. Variations in Oligosaccharide-Protein Interactions in Immunoglobulin G Determine the Site-Specific Glycosylation Profiles and Modulate the Dynamic Motion of the Fc Oligosaccharides. Biochemistry 1997, 36, 1370–1380. [Google Scholar] [CrossRef] [PubMed]
- Jennewein, M.F.; Alter, G. The Immunoregulatory Roles of Antibody Glycosylation. Trends Immunol. 2017, 38, 358–372. [Google Scholar] [CrossRef] [PubMed]
- Bondt, A.; Rombouts, Y.; Selman, M.H.J.; Hensbergen, P.J.; Reiding, K.R.; Hazes, J.M.W.; Dolhain, R.J.E.M.; Wuhrer, M. Immunoglobulin G (IgG) Fab Glycosylation Analysis Using a New Mass Spectrometric High-Throughput Profiling Method Reveals Pregnancy-Associated Changes. Mol. Cell Proteom. 2014, 13, 3029–3039. [Google Scholar] [CrossRef]
- Jansen, B.C.; Bondt, A.; Reiding, K.R.; Scherjon, S.A.; Vidarsson, G.; Wuhrer, M. MALDI-TOF-MS Reveals Differential N-Linked Plasma- and IgG-Glycosylation Profiles between Mothers and Their Newborns. Sci. Rep. 2016, 6, 34001. [Google Scholar] [CrossRef]
- de Haan, N.; Reiding, K.R.; Driessen, G.; van der Burg, M.; Wuhrer, M. Changes in Healthy Human IgG Fc-Glycosylation after Birth and during Early Childhood. J. Proteome Res. 2016, 15, 1853–1861. [Google Scholar] [CrossRef] [PubMed]
- Kibe, T.; Fujimoto, S.; Ishida, C.; Togari, H.; Wada, Y.; Okada, S.; Nakagawa, H.; Tsukamoto, Y.; Takahashi, N. Glycosylation and Placental Transport of Immunoglobulin G. J. Clin. Biochem. Nutr. 1996, 21, 57–63. [Google Scholar] [CrossRef]
- Williams, P.J.; Arkwright, P.D.; Rudd, P.; Scragg, I.G.; Edge, C.J.; Wormald, M.R.; Rademacher, T.W. Short Communication: Selective Placental Transport of Maternal IgG to the Fetus. Placenta 1995, 16, 749–756. [Google Scholar] [CrossRef]
- Roberts, D.M.; Guenthert, M.; Rodewald, R. Isolation and Characterization of the Fc Receptor from the Fetal Yolk Sac of the Rat. J. Cell Biol. 1990, 111, 1867–1876. [Google Scholar] [CrossRef]
- Dashivets, T.; Thomann, M.; Rueger, P.; Knaupp, A.; Buchner, J.; Schlothauer, T. Multi-Angle Effector Function Analysis of Human Monoclonal IgG Glycovariants. PLoS ONE 2015, 10, e0143520. [Google Scholar] [CrossRef]
- Einarsdottir, H.K.; Selman, M.H.J.; Kapur, R.; Scherjon, S.; Koeleman, C.A.M.; Deelder, A.M.; van der Schoot, C.E.; Vidarsson, G.; Wuhrer, M. Comparison of the Fc Glycosylation of Fetal and Maternal Immunoglobulin G. Glycoconj. J. 2013, 30, 147–157. [Google Scholar] [CrossRef]
- Shields, R.L.; Namenuk, A.K.; Hong, K.; Meng, Y.G.; Rae, J.; Briggs, J.; Xie, D.; Lai, J.; Stadlen, A.; Li, B.; et al. High Resolution Mapping of the Binding Site on Human IgG1 for Fc Gamma RI, Fc Gamma RII, Fc Gamma RIII, and FcRn and Design of IgG1 Variants with Improved Binding to the Fc Gamma R. J. Biol. Chem. 2001, 276, 6591–6604. [Google Scholar] [CrossRef]
- Leabman, M.K.; Meng, Y.G.; Kelley, R.F.; DeForge, L.E.; Cowan, K.J.; Iyer, S. Effects of Altered FcγR Binding on Antibody Pharmacokinetics in Cynomolgus Monkeys. MAbs 2013, 5, 896–903. [Google Scholar] [CrossRef]
- Borghi, S.; Bournazos, S.; Thulin, N.K.; Li, C.; Gajewski, A.; Sherwood, R.W.; Zhang, S.; Harris, E.; Jagannathan, P.; Wang, L.-X.; et al. FcRn, but Not FcγRs, Drives Maternal-Fetal Transplacental Transport of Human IgG Antibodies. Proc. Natl. Acad. Sci. USA 2020, 117, 12943–12951. [Google Scholar] [CrossRef] [PubMed]
- Halliday, R. Prenatal and Postnatal Transmission of Passive Immunity to Young Rats. Proc. R Soc. Lond B Biol. Sci. 1955, 144, 427–430. [Google Scholar] [CrossRef]
- Pentsuk, N.; van der Laan, J.W. An Interspecies Comparison of Placental Antibody Transfer: New Insights into Developmental Toxicity Testing of Monoclonal Antibodies. Birth Defects Res. B Dev. Reprod. Toxicol. 2009, 86, 328–344. [Google Scholar] [CrossRef]
- Okayama, Y.; Kirshenbaum, A.S.; Metcalfe, D.D. Expression of a Functional High-Affinity IgG Receptor, Fc Gamma RI, on Human Mast Cells: Up-Regulation by IFN-Gamma. J. Immunol. 2000, 164, 4332–4339. [Google Scholar] [CrossRef] [PubMed]
- Veri, M.-C.; Gorlatov, S.; Li, H.; Burke, S.; Johnson, S.; Stavenhagen, J.; Stein, K.E.; Bonvini, E.; Koenig, S. Monoclonal Antibodies Capable of Discriminating the Human Inhibitory Fcgamma-Receptor IIB (CD32B) from the Activating Fcgamma-Receptor IIA (CD32A): Biochemical, Biological and Functional Characterization. Immunology 2007, 121, 392–404. [Google Scholar] [CrossRef]
- Van der Heijden, J.; Breunis, W.B.; Geissler, J.; de Boer, M.; van den Berg, T.K.; Kuijpers, T.W. Phenotypic Variation in IgG Receptors by Nonclassical FCGR2C Alleles. J. Immunol. 2012, 188, 1318–1324. [Google Scholar] [CrossRef]
- Meknache, N.; Jönsson, F.; Laurent, J.; Guinnepain, M.-T.; Daëron, M. Human Basophils Express the Glycosylphosphatidylinositol-Anchored Low-Affinity IgG Receptor FcgammaRIIIB (CD16B). J. Immunol. 2009, 182, 2542–2550. [Google Scholar] [CrossRef]
- Zhu, X.; Meng, G.; Dickinson, B.L.; Li, X.; Mizoguchi, E.; Miao, L.; Wang, Y.; Robert, C.; Wu, B.; Smith, P.D.; et al. MHC Class I-Related Neonatal Fc Receptor for IgG Is Functionally Expressed in Monocytes, Intestinal Macrophages, and Dendritic Cells. J. Immunol. 2001, 166, 3266–3276. [Google Scholar] [CrossRef]
- Jennewein, M.F.; Goldfarb, I.; Dolatshahi, S.; Cosgrove, C.; Noelette, F.J.; Krykbaeva, M.; Das, J.; Sarkar, A.; Gorman, M.J.; Fischinger, S.; et al. Fc Glycan-Mediated Regulation of Placental Antibody Transfer. Cell 2019, 178, 202–215.e14. [Google Scholar] [CrossRef]
- Bournazos, S.; Gupta, A.; Ravetch, J.V. The Role of IgG Fc Receptors in Antibody-Dependent Enhancement. Nat. Rev. Immunol. 2020, 20, 633–643. [Google Scholar] [CrossRef]
- Englund, J.A. The Influence of Maternal Immunization on Infant Immune Responses. J. Comp. Pathol. 2007, 137 (Suppl. S1), S16–S19. [Google Scholar] [CrossRef]
- Hartter, H.K.; Oyedele, O.I.; Dietz, K.; Kreis, S.; Hoffman, J.P.; Muller, C.P. Placental Transfer and Decay of Maternally Acquired Antimeasles Antibodies in Nigerian Children. Pediatr. Infect. Dis. J. 2000, 19, 635–641. [Google Scholar] [CrossRef]
- Okoko, B.J.; Wesuperuma, L.H.; Ota, M.O.; Banya, W.A.; Pinder, M.; Gomez, F.S.; Osinusi, K.; Hart, A.C. Influence of Placental Malaria Infection and Maternal Hypergammaglobulinaemia on Materno-Foetal Transfer of Measles and Tetanus Antibodies in a Rural West African Population. J. Health Popul. Nutr. 2001, 19, 59–65. [Google Scholar]
- Gonçalves, G.; Cutts, F.T.; Hills, M.; Rebelo-Andrade, H.; Trigo, F.A.; Barros, H. Transplacental Transfer of Measles and Total IgG. Epidemiol. Infect. 1999, 122, 273–279. [Google Scholar] [CrossRef]
- Silveira Lessa, A.L.; Krebs, V.L.J.; Brasil, T.B.; Pontes, G.N.; Carneiro-Sampaio, M.; Palmeira, P. Preterm and Term Neonates Transplacentally Acquire IgG Antibodies Specific to LPS from Klebsiella Pneumoniae, Escherichia Coli and Pseudomonas Aeruginosa. FEMS Immunol. Med. Microbiol. 2011, 62, 236–243. [Google Scholar] [CrossRef]
- Farquhar, C.; Nduati, R.; Haigwood, N.; Sutton, W.; Mbori-Ngacha, D.; Richardson, B.; John-Stewart, G. High Maternal HIV-1 Viral Load during Pregnancy Is Associated with Reduced Placental Transfer of Measles IgG Antibody. J. Acquir. Immun. Defic. Syndr. 2005, 40, 494–497. [Google Scholar] [CrossRef]
- Brair, M.E.; Brabin, B.J.; Milligan, P.; Maxwell, S.; Hart, C.A. Reduced Transfer of Tetanus Antibodies with Placental Malaria. Lancet 1994, 343, 208–209. [Google Scholar] [CrossRef]
- de Moraes-Pinto, M.I.; Verhoeff, F.; Chimsuku, L.; Milligan, P.J.; Wesumperuma, L.; Broadhead, R.L.; Brabin, B.J.; Johnson, P.M.; Hart, C.A. Placental Antibody Transfer: Influence of Maternal HIV Infection and Placental Malaria. Arch. Dis. Child Fetal Neonatal Ed. 1998, 79, F202–F205. [Google Scholar] [CrossRef]
- Cumberland, P.; Shulman, C.E.; Maple, P.A.C.; Bulmer, J.N.; Dorman, E.K.; Kawuondo, K.; Marsh, K.; Cutts, F.T. Maternal HIV Infection and Placental Malaria Reduce Transplacental Antibody Transfer and Tetanus Antibody Levels in Newborns in Kenya. J. Infect. Dis. 2007, 196, 550–557. [Google Scholar] [CrossRef]
- Dangor, Z.; Kwatra, G.; Izu, A.; Adrian, P.; van Niekerk, N.; Cutland, C.L.; Adam, Y.; Velaphi, S.; Lala, S.G.; Madhi, S.A. HIV-1 Is Associated With Lower Group B Streptococcus Capsular and Surface-Protein IgG Antibody Levels and Reduced Transplacental Antibody Transfer in Pregnant Women. J. Infect. Dis. 2015, 212, 453–462. [Google Scholar] [CrossRef]
- Atwell, J.E.; Thumar, B.; Robinson, L.J.; Tobby, R.; Yambo, P.; Ome-Kaius, M.; Siba, P.M.; Unger, H.W.; Rogerson, S.J.; King, C.L.; et al. Impact of Placental Malaria and Hypergammaglobulinemia on Transplacental Transfer of Respiratory Syncytial Virus Antibody in Papua New Guinea. J. Infect. Dis. 2016, 213, 423–431. [Google Scholar] [CrossRef]
- Edlow, A.G.; Li, J.Z.; Collier, A.-R.Y.; Atyeo, C.; James, K.E.; Boatin, A.A.; Gray, K.J.; Bordt, E.A.; Shook, L.L.; Yonker, L.M.; et al. Assessment of Maternal and Neonatal SARS-CoV-2 Viral Load, Transplacental Antibody Transfer, and Placental Pathology in Pregnancies During the COVID-19 Pandemic. JAMA Netw. Open 2020, 3, e2030455. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.A.; Sharma, S.; Remmel, C.A.; Holder, B.; Jones, C.E.; Marchant, A.; Ackerman, M.E. HIV-Associated Alterations of the Biophysical Features of Maternal Antibodies Correlate with Their Reduced Transfer Across the Placenta. J. Infect. Dis. 2022, 226, 1441–1450. [Google Scholar] [CrossRef] [PubMed]
- Forsyth, K.; Plotkin, S.; Tan, T.; Wirsing von König, C.H. Strategies to Decrease Pertussis Transmission to Infants. Pediatrics 2015, 135, e1475–e1482. [Google Scholar] [CrossRef]
- Whittaker, E.; Goldblatt, D.; McIntyre, P.; Levy, O. Neonatal Immunization: Rationale, Current State, and Future Prospects. Front. Immunol. 2018, 9, 532. [Google Scholar] [CrossRef]
- Saso, A.; Kampmann, B. Vaccine Responses in Newborns. Semin. Immunopathol. 2017, 39, 627–642. [Google Scholar] [CrossRef]
- Wood, N.; Siegrist, C.-A. Neonatal Immunization: Where Do We Stand? Curr. Opin. Infect. Dis. 2011, 24, 190–195. [Google Scholar] [CrossRef]
- Niewiesk, S. Maternal Antibodies: Clinical Significance, Mechanism of Interference with Immune Responses, and Possible Vaccination Strategies. Front. Immunol. 2014, 5, 446. [Google Scholar] [CrossRef]
- Winkelstein, J.A.; Marino, M.C.; Lederman, H.M.; Jones, S.M.; Sullivan, K.; Burks, A.W.; Conley, M.E.; Cunningham-Rundles, C.; Ochs, H.D. X-Linked Agammaglobulinemia: Report on a United States Registry of 201 Patients. Medicine 2006, 85, 193–202. [Google Scholar] [CrossRef]
- de Voer, R.M.; van der Klis, F.R.M.; Nooitgedagt, J.E.; Versteegh, F.G.A.; van Huisseling, J.C.M.; van Rooijen, D.M.; Sanders, E.A.M.; Berbers, G.A.M. Seroprevalence and Placental Transportation of Maternal Antibodies Specific for Neisseria Meningitidis Serogroup C, Haemophilus Influenzae Type B, Diphtheria, Tetanus, and Pertussis. Clin. Infect. Dis. 2009, 49, 58–64. [Google Scholar] [CrossRef]
- Fu, C.; Lu, L.; Wu, H.; Shaman, J.; Cao, Y.; Fang, F.; Yang, Q.; He, Q.; Yang, Z.; Wang, M. Placental Antibody Transfer Efficiency and Maternal Levels: Specific for Measles, Coxsackievirus A16, Enterovirus 71, Poliomyelitis I-III and HIV-1 Antibodies. Sci. Rep. 2016, 6, 38874. [Google Scholar] [CrossRef]
- Edwards, K.M.; Berbers, G.A.M. Immune Responses to Pertussis Vaccines and Disease. J. Infect. Dis. 2014, 209 (Suppl. S1), S10–S15. [Google Scholar] [CrossRef] [PubMed]
- Jennewein, M.F.; Kosikova, M.; Noelette, F.J.; Radvak, P.; Boudreau, C.M.; Campbell, J.D.; Chen, W.H.; Xie, H.; Alter, G.; Pasetti, M.F. Functional and Structural Modifications of Influenza Antibodies during Pregnancy. iScience 2022, 25, 104088. [Google Scholar] [CrossRef] [PubMed]
- Walker, K.F.; O’Donoghue, K.; Grace, N.; Dorling, J.; Comeau, J.L.; Li, W.; Thornton, J.G. Maternal Transmission of SARS-COV-2 to the Neonate, and Possible Routes for Such Transmission: A Systematic Review and Critical Analysis. BJOG 2020, 127, 1324–1336. [Google Scholar] [CrossRef] [PubMed]
- Cavaliere, A.F.; Marchi, L.; Aquilini, D.; Brunelli, T.; Vasarri, P.L. Passive Immunity in Newborn from SARS-CoV-2-Infected Mother. J. Med. Virol. 2021, 93, 1810–1813. [Google Scholar] [CrossRef]
- Wang, X.; Yang, P.; Zheng, J.; Liu, P.; Wei, C.; Guo, J.; Zhang, Y.; Zhao, D. Dynamic Changes of Acquired Maternal SARS-CoV-2 IgG in Infants. Sci. Rep. 2021, 11, 8021. [Google Scholar] [CrossRef]
- Joseph, N.T.; Dude, C.M.; Verkerke, H.P.; Irby, L.S.; Dunlop, A.L.; Patel, R.M.; Easley, K.A.; Smith, A.K.; Stowell, S.R.; Jamieson, D.J.; et al. Maternal Antibody Response, Neutralizing Potency, and Placental Antibody Transfer After Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection. Obstet. Gynecol. 2021, 138, 189–197. [Google Scholar] [CrossRef]
- Atyeo, C.; Pullen, K.M.; Bordt, E.A.; Fischinger, S.; Burke, J.; Michell, A.; Slein, M.D.; Loos, C.; Shook, L.L.; Boatin, A.A.; et al. Compromised SARS-CoV-2-Specific Placental Antibody Transfer. Cell 2021, 184, 628–642.e10. [Google Scholar] [CrossRef]
- Looker, K.J.; Magaret, A.S.; May, M.T.; Turner, K.M.E.; Vickerman, P.; Newman, L.M.; Gottlieb, S.L. First Estimates of the Global and Regional Incidence of Neonatal Herpes Infection. Lancet Glob Health 2017, 5, e300–e309. [Google Scholar] [CrossRef]
- Mahant, A.M.; Trejo, F.E.; Aguilan, J.T.; Sidoli, S.; Permar, S.R.; Herold, B.C. Antibody Attributes, Fc Receptor Expression, Gestation and Maternal SARS-CoV-2 Infection Modulate HSV IgG Placental Transfer. iScience 2023, 26, 107648. [Google Scholar] [CrossRef]
- Martinez, D.R.; Fong, Y.; Li, S.H.; Yang, F.; Jennewein, M.F.; Weiner, J.A.; Harrell, E.A.; Mangold, J.F.; Goswami, R.; Seage, G.R.; et al. Fc Characteristics Mediate Selective Placental Transfer of IgG in HIV-Infected Women. Cell 2019, 178, 190–201.e11. [Google Scholar] [CrossRef] [PubMed]
- Ackerman, M.E.; Mikhailova, A.; Brown, E.P.; Dowell, K.G.; Walker, B.D.; Bailey-Kellogg, C.; Suscovich, T.J.; Alter, G. Polyfunctional HIV-Specific Antibody Responses Are Associated with Spontaneous HIV Control. PLoS Pathog. 2016, 12, e1005315. [Google Scholar] [CrossRef]
- Van Coillie, J.; Schulz, M.A.; Bentlage, A.E.H.; de Haan, N.; Ye, Z.; Geerdes, D.M.; van Esch, W.J.E.; Hafkenscheid, L.; Miller, R.L.; Narimatsu, Y.; et al. Role of N-Glycosylation in FcγRIIIa Interaction with IgG. Front. Immunol. 2022, 13, 987151. [Google Scholar] [CrossRef] [PubMed]
- Dekkers, G.; Treffers, L.; Plomp, R.; Bentlage, A.E.H.; de Boer, M.; Koeleman, C.A.M.; Lissenberg-Thunnissen, S.N.; Visser, R.; Brouwer, M.; Mok, J.Y.; et al. Decoding the Human Immunoglobulin G-Glycan Repertoire Reveals a Spectrum of Fc-Receptor- and Complement-Mediated-Effector Activities. Front. Immunol. 2017, 8, 877. [Google Scholar] [CrossRef] [PubMed]
- Hendrickson, J.E.; Delaney, M. Hemolytic Disease of the Fetus and Newborn: Modern Practice and Future Investigations. Transfus. Med. Rev. 2016, 30, 159–164. [Google Scholar] [CrossRef] [PubMed]
- de Haas, M.; Thurik, F.F.; Koelewijn, J.M.; van der Schoot, C.E. Haemolytic Disease of the Fetus and Newborn. Vox. Sang 2015, 109, 99–113. [Google Scholar] [CrossRef] [PubMed]
- Sonneveld, M.E.; Koelewijn, J.; de Haas, M.; Admiraal, J.; Plomp, R.; Koeleman, C.A.M.; Hipgrave Ederveen, A.L.; Ligthart, P.; Wuhrer, M.; van der Schoot, C.E.; et al. Antigen Specificity Determines Anti-Red Blood Cell IgG-Fc Alloantibody Glycosylation and Thereby Severity of Haemolytic Disease of the Fetus and Newborn. Br. J. Haematol. 2017, 176, 651–660. [Google Scholar] [CrossRef]
- Kapur, R.; Della Valle, L.; Sonneveld, M.; Hipgrave Ederveen, A.; Visser, R.; Ligthart, P.; de Haas, M.; Wuhrer, M.; van der Schoot, C.E.; Vidarsson, G. Low Anti-RhD IgG-Fc-Fucosylation in Pregnancy: A New Variable Predicting Severity in Haemolytic Disease of the Fetus and Newborn. Br. J. Haematol. 2014, 166, 936–945. [Google Scholar] [CrossRef]
- Shields, R.L.; Lai, J.; Keck, R.; O’Connell, L.Y.; Hong, K.; Meng, Y.G.; Weikert, S.H.A.; Presta, L.G. Lack of Fucose on Human IgG1 N-Linked Oligosaccharide Improves Binding to Human Fcgamma RIII and Antibody-Dependent Cellular Toxicity. J. Biol. Chem. 2002, 277, 26733–26740. [Google Scholar] [CrossRef]
- Masuda, K.; Kubota, T.; Kaneko, E.; Iida, S.; Wakitani, M.; Kobayashi-Natsume, Y.; Kubota, A.; Shitara, K.; Nakamura, K. Enhanced Binding Affinity for FcgammaRIIIa of Fucose-Negative Antibody Is Sufficient to Induce Maximal Antibody-Dependent Cellular Cytotoxicity. Mol. Immunol. 2007, 44, 3122–3131. [Google Scholar] [CrossRef]
- Houde, D.; Peng, Y.; Berkowitz, S.A.; Engen, J.R. Post-Translational Modifications Differentially Affect IgG1 Conformation and Receptor Binding. Mol. Cell Proteom. 2010, 9, 1716–1728. [Google Scholar] [CrossRef]
- Larsen, M.D.; de Graaf, E.L.; Sonneveld, M.E.; Plomp, H.R.; Nouta, J.; Hoepel, W.; Chen, H.-J.; Linty, F.; Visser, R.; Brinkhaus, M.; et al. Afucosylated IgG Characterizes Enveloped Viral Responses and Correlates with COVID-19 Severity. Science 2021, 371, eabc8378. [Google Scholar] [CrossRef] [PubMed]
- Semple, J.W.; Italiano, J.E.; Freedman, J. Platelets and the Immune Continuum. Nat. Rev. Immunol. 2011, 11, 264–274. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, C. Neonatal Alloimmune Thrombocytopenia: A 50-Year Story. Immunohematology 2007, 23, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Sachs, U.J. Prospects for Risk Stratification of Anti-HPA-1a Alloimmunized Pregnant Women. Transfus. Apher. Sci. 2020, 59, 102709. [Google Scholar] [CrossRef] [PubMed]
- Mawas, F.; Wiener, E.; Williamson, L.M.; Rodeck, C.H. Immunoglobulin G Subclasses of Anti-Human Platelet Antigen 1a in Maternal Sera: Relation to the Severity of Neonatal Alloimmune Thrombocytopenia. Eur. J. Haematol. 1997, 59, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Kapur, R.; Kustiawan, I.; Vestrheim, A.; Koeleman, C.A.M.; Visser, R.; Einarsdottir, H.K.; Porcelijn, L.; Jackson, D.; Kumpel, B.; Deelder, A.M.; et al. A Prominent Lack of IgG1-Fc Fucosylation of Platelet Alloantibodies in Pregnancy. Blood 2014, 123, 471–480. [Google Scholar] [CrossRef]
- Wuhrer, M.; Porcelijn, L.; Kapur, R.; Koeleman, C.A.M.; Deelder, A.; de Haas, M.; Vidarsson, G. Regulated Glycosylation Patterns of IgG during Alloimmune Responses against Human Platelet Antigens. J. Proteome Res. 2009, 8, 450–456. [Google Scholar] [CrossRef]
- Sonneveld, M.E.; Natunen, S.; Sainio, S.; Koeleman, C.A.M.; Holst, S.; Dekkers, G.; Koelewijn, J.; Partanen, J.; van der Schoot, C.E.; Wuhrer, M.; et al. Glycosylation Pattern of Anti-Platelet IgG Is Stable during Pregnancy and Predicts Clinical Outcome in Alloimmune Thrombocytopenia. Br. J. Haematol. 2016, 174, 310–320. [Google Scholar] [CrossRef] [PubMed]
- Buhre, J.S.; Becker, M.; Ehlers, M. IgG Subclass and Fc Glycosylation Shifts Are Linked to the Transition from Pre- to Inflammatory Autoimmune Conditions. Front. Immunol. 2022, 13, 1006939. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lin, S.; Wu, J.; Jiang, M.; Lin, J.; Zhang, Y.; Ding, H.; Zhou, H.; Shen, N.; Di, W. Control of Lupus Activity during Pregnancy via the Engagement of IgG Sialylation: Novel Crosstalk between IgG Sialylation and pDC Functions. Front. Med. 2023, 17, 549–561. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Han, J.; Zhang, R.; Tang, Z.; Yi, G.; Gong, W.; Wan, L.; Hu, Q.; Teng, J.; Liu, H.; et al. Characteristics of Purified Anti-β2GPI IgG N-Glycosylation Associate with Thrombotic, Obstetric and Catastrophic Antiphospholipid Syndrome. Rheumatology 2022, 61, 1243–1254. [Google Scholar] [CrossRef] [PubMed]
- Selman, M.H.J.; de Jong, S.E.; Soonawala, D.; Kroon, F.P.; Adegnika, A.A.; Deelder, A.M.; Hokke, C.H.; Yazdanbakhsh, M.; Wuhrer, M. Changes in Antigen-Specific IgG1 Fc N-Glycosylation upon Influenza and Tetanus Vaccination. Mol. Cell Proteom. 2012, 11, M111.014563. [Google Scholar] [CrossRef] [PubMed]
- Mahan, A.E.; Jennewein, M.F.; Suscovich, T.; Dionne, K.; Tedesco, J.; Chung, A.W.; Streeck, H.; Pau, M.; Schuitemaker, H.; Francis, D.; et al. Antigen-Specific Antibody Glycosylation Is Regulated via Vaccination. PLoS Pathog. 2016, 12, e1005456. [Google Scholar] [CrossRef]
- Wang, T.T.; Maamary, J.; Tan, G.S.; Bournazos, S.; Davis, C.W.; Krammer, F.; Schlesinger, S.J.; Palese, P.; Ahmed, R.; Ravetch, J.V. Anti-HA Glycoforms Drive B Cell Affinity Selection and Determine Influenza Vaccine Efficacy. Cell 2015, 162, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Elias, S.; Kol, I.; Kahlon, S.; Amore, R.; Zeibak, M.; Mevorach, D.; Elchalal, U.; Zelig, O.; Mandelboim, O. Anti-RhD Antibody Therapy Modulates Human Natural Killer Cell Function. Haematologica 2021, 106, 1846–1856. [Google Scholar] [CrossRef]
- Washburn, N.; Schwab, I.; Ortiz, D.; Bhatnagar, N.; Lansing, J.C.; Medeiros, A.; Tyler, S.; Mekala, D.; Cochran, E.; Sarvaiya, H.; et al. Controlled Tetra-Fc Sialylation of IVIg Results in a Drug Candidate with Consistent Enhanced Anti-Inflammatory Activity. Proc. Natl. Acad. Sci. USA 2015, 112, E1297–E1306. [Google Scholar] [CrossRef]
Disease Setting | Affected-IgG | IgG-Glycan | Effector Function | |
---|---|---|---|---|
Protective IgG | Healthy pregnancy | Total IgG | Increased galactosylation; Increased sialylation; Decreased fucosylation | Enhanced placental transfer |
Pertussis vaccination | Fimbriae (FIM) -specific IgG | Increased galactosylation; Increased sialylation; Decreased bisecting N-acetylglucosamine | Enhanced placental transfer; Natural killer (NK) cell activation | |
Influenza vaccination | Total IgG; Hemagglutinin (HA) -specific IgG | Decreased fucosylation; Increased galactosylation; Increased sialylation; | Enhanced placental transfer; reduced inflammation | |
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) | SARS-CoV-2-specific IgG | Increased fucosylation; Decreased galactosylation; Decreased sialylation; | Decreased placental transfer; maternal protective immunity | |
Herpes simplex virus (HSV) | Anti-glycoprotein B (gB) IgG | Decreased bisecting N-acetylglucosamine; Increased sialylation; Decreased fucosylation | Decreased placental transfer; the heightening risk of neonatal disease | |
Human immunodeficiency virus (HIV) | Total IgG; gp120-specific IgG | Increased fucosylation; Decreased galactosylation; | Decreased placental transfer; the heightening risk of neonatal disease | |
Pathological IgG | Hemolytic disease of the fetus and newborn (HDFN) | Red blood cell (RBC)-specific IgG | Increased galactosylation; Decreased fucosylation Decreased bisecting N-acetylglucosamine | Enhanced placental transfer; NK cell activation |
Fetal or neonatal alloimmune thrombocytopenia (FNAIT) | Anti-human platelet antigen (HPA)-1a IgG | Increased galactosylation; Increased sialylation; Decreased fucosylation | NK cell activation | |
Systemic lupus erythematosus (SLE) | Total IgG | Decreased sialylation | The risk of fetal death | |
Antiphospholipid antibody syndrome (APS) | Total IgG | Decreased galactosylation; Increased bisecting N-acetylglucosamine; Increased fucosylation | Catastrophic antiphospholipid antibody syndrome (CAPS) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, C.; Chen, Q.; Hao, X.; Wang, Q. Immunomodulation of Antibody Glycosylation through the Placental Transfer. Int. J. Mol. Sci. 2023, 24, 16772. https://doi.org/10.3390/ijms242316772
Gao C, Chen Q, Hao X, Wang Q. Immunomodulation of Antibody Glycosylation through the Placental Transfer. International Journal of Molecular Sciences. 2023; 24(23):16772. https://doi.org/10.3390/ijms242316772
Chicago/Turabian StyleGao, Chang, Qingyan Chen, Xinxin Hao, and Qiushi Wang. 2023. "Immunomodulation of Antibody Glycosylation through the Placental Transfer" International Journal of Molecular Sciences 24, no. 23: 16772. https://doi.org/10.3390/ijms242316772
APA StyleGao, C., Chen, Q., Hao, X., & Wang, Q. (2023). Immunomodulation of Antibody Glycosylation through the Placental Transfer. International Journal of Molecular Sciences, 24(23), 16772. https://doi.org/10.3390/ijms242316772