Melatonin Ameliorates Neuropsychiatric Behaviors, Gut Microbiome, and Microbiota-Derived Metabolites in Rats with Chronic Sleep Deprivation
Abstract
:1. Introduction
2. Results
2.1. Growth Status and Organ Weights of Animals
2.2. Biochemical, Inflammatory, and Neurochemical Status
2.3. Behavioral Responses
2.4. Status of Gut Microbiota and Its Metabolites
2.5. Cerebral Cortex and Colon Melatonin Receptor Protein Expression Levels
3. Discussion
4. Materials and Methods
4.1. Animals and Diets
4.2. Melatonin Intervention
4.3. Chronic Sleep Deprivation
4.4. Behavioral Tests
4.5. Examination of Biochemical, Inflammatory, and Neurochemical Parameters
4.6. Collection of Colon Content and Fecal Microbiota Analysis
4.7. Measurement of Microbiota-Derived Metabolites
4.8. Western Blotting
4.9. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sheehan, C.M.; Frochen, S.E.; Walsemann, K.M.; Ailshire, J.A. Are U.S. adults reporting less sleep?: Findings from sleep duration trends in the National Health Interview Survey, 2004–2017. Sleep 2019, 42, zsy221. [Google Scholar] [CrossRef] [PubMed]
- Hafner, M.; Stepanek, M.; Taylor, J.; Troxel, W.M.; van Stolk, C. Why Sleep Matters-The Economic Costs of Insufficient Sleep: A Cross-Country Comparative Analysis. Rand Health Q. 2017, 6, 11. [Google Scholar] [PubMed]
- Hirshkowitz, M.; Whiton, K.; Albert, S.M.; Alessi, C.; Bruni, O.; DonCarlos, L.; Hazen, N.; Herman, J.; Katz, E.S.; Kheirandish-Gozal, L.; et al. National Sleep Foundation’s sleep time duration recommendations: Methodology and results summary. Sleep. Health 2015, 1, 40–43. [Google Scholar] [CrossRef] [PubMed]
- Skaer, T.L.; Sclar, D.A. Economic implications of sleep disorders. Pharmacoeconomics 2010, 28, 1015–1023. [Google Scholar] [CrossRef]
- Spiegel, K.; Tasali, E.; Leproult, R.; Van Cauter, E. Effects of poor and short sleep on glucose metabolism and obesity risk. Nat. Rev. Endocrinol. 2009, 5, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.W.; Jeong, J.H.; Hong, S.C. The impact of sleep and circadian disturbance on hormones and metabolism. Int. J. Endocrinol. 2015, 2015, 591729. [Google Scholar] [CrossRef] [PubMed]
- Besedovsky, L.; Lange, T.; Born, J. Sleep and immune function. Pflug. Arch. Eur. J. Physiol. 2012, 463, 121–137. [Google Scholar] [CrossRef]
- Scott, A.; Webb, T.; Rowse, G. Does improving sleep lead to better mental health? A protocol for a meta-analytic review of randomised controlled trials. BMJ Open 2017, 7, e016873. [Google Scholar] [CrossRef]
- Fang, H.; Tu, S.; Sheng, J.; Shao, A. Depression in sleep disturbance: A review on a bidirectional relationship, mechanisms and treatment. J. Cell Mol. Med. 2019, 23, 2324–2332. [Google Scholar] [CrossRef]
- Pak, K.; Kim, J.; Kim, K.; Kim, S.J.; Kim, I.J. Sleep and Neuroimaging. Nucl. Med. Mol. Imaging 2020, 54, 98–104. [Google Scholar] [CrossRef]
- Zhai, L.; Zhang, H.; Zhang, D. Sleep duration and depression among adults: A meta-analysis of prospective studies. Depress. Anxiety 2015, 32, 664–670. [Google Scholar] [CrossRef]
- Yoo, S.S.; Hu, P.T.; Gujar, N.; Jolesz, F.A.; Walker, M.P. A deficit in the ability to form new human memories without sleep. Nat. Neurosci. 2007, 10, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, V.; Spence, W.D.; Pandi-Perumal, S.R.; Zakharia, R.; Bhatnagar, K.P.; Brzezinski, A. Melatonin and human reproduction: Shedding light on the darkness hormone. Gynecol. Endocrinol. 2009, 25, 779–785. [Google Scholar] [CrossRef] [PubMed]
- Hardeland, R. Chronobiology of Melatonin beyond the Feedback to the Suprachiasmatic Nucleus-Consequences to Melatonin Dysfunction. Int. J. Mol. Sci. 2013, 14, 5817–5841. [Google Scholar] [CrossRef] [PubMed]
- Hardeland, R. Recent Findings in Melatonin Research and Their Relevance to the CNS. Cent. Nerv. Syst. Agents Med. Chem. 2018, 18, 102–114. [Google Scholar] [CrossRef] [PubMed]
- Cecon, E.; Oishi, A.; Jockers, R. Melatonin receptors: Molecular pharmacology and signalling in the context of system bias. Br. J. Pharmacol. 2018, 175, 3263–3280. [Google Scholar] [CrossRef]
- Ferracioli-Oda, E.; Qawasmi, A.; Bloch, M.H. Meta-analysis: Melatonin for the treatment of primary sleep disorders. PLoS ONE 2013, 8, e63773. [Google Scholar] [CrossRef]
- Pandi-Perumal, S.R.; Zisapel, N.; Srinivasan, V.; Cardinali, D.P. Melatonin and sleep in aging population. Exp. Gerontol. 2005, 40, 911–925. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Z.; Cao, J.; Dong, Y.; Chen, Y. Melatonin Alleviates Acute Sleep Deprivation-Induced Memory Loss in Mice by Suppressing Hippocampal Ferroptosis. Front. Pharmacol. 2021, 12, 708645. [Google Scholar] [CrossRef]
- Wu, Y.H.; Ursinus, J.; Zhou, J.N.; Scheer, F.A.; Ai-Min, B.; Jockers, R.; van Heerikhuize, J.; Swaab, D.F. Alterations of melatonin receptors MT1 and MT2 in the hypothalamic suprachiasmatic nucleus during depression. J. Affect. Disord. 2013, 148, 357–367. [Google Scholar] [CrossRef]
- Neufeld, K.-A.M.; Kang, N.; Bienenstock, J.; Foster, J.A. Effects of intestinal microbiota on anxiety-like behavior. Commun. Integr. Biol. 2011, 4, 492–494. [Google Scholar] [CrossRef] [PubMed]
- Cryan, J.F.; O’Riordan, K.J.; Cowan, C.S.M.; Sandhu, K.V.; Bastiaanssen, T.F.S.; Boehme, M.; Codagnone, M.G.; Cussotto, S.; Fulling, C.; Golubeva, A.V.; et al. The Microbiota-Gut-Brain Axis. Physiol. Rev. 2019, 99, 1877–2013. [Google Scholar] [CrossRef] [PubMed]
- Cryan, J.F.; O’Riordan, K.J.; Sandhu, K.; Peterson, V.; Dinan, T.G. The gut microbiome in neurological disorders. Lancet Neurol. 2020, 19, 179–194. [Google Scholar] [CrossRef] [PubMed]
- Reigstad, C.S.; Salmonson, C.E.; Rainey, J.F., 3rd; Szurszewski, J.H.; Linden, D.R.; Sonnenburg, J.L.; Farrugia, G.; Kashyap, P.C. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J. 2015, 29, 1395–1403. [Google Scholar] [CrossRef] [PubMed]
- Macfarlane, G.T.; Macfarlane, S. Bacteria, colonic fermentation, and gastrointestinal health. J. AOAC Int. 2012, 95, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Duboc, H.; Rajca, S.; Rainteau, D.; Benarous, D.; Maubert, M.A.; Quervain, E.; Thomas, G.; Barbu, V.; Humbert, L.; Despras, G.; et al. Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases. Gut 2013, 62, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Tung, T.H.; Chen, Y.C.; Lin, Y.T.; Huang, S.Y. N-3 PUFA Ameliorates the Gut Microbiota, Bile Acid Profiles, and Neuropsychiatric Behaviours in a Rat Model of Geriatric Depression. Biomedicines 2022, 10, 1594. [Google Scholar] [CrossRef]
- Baydas, G.; Reiter, R.J.; Yasar, A.; Tuzcu, M.; Akdemir, I.; Nedzvetskii, V.S. Melatonin reduces glial reactivity in the hippocampus, cortex, and cerebellum of streptozotocin-induced diabetic rats. Free Radic. Biol. Med. 2003, 35, 797–804. [Google Scholar] [CrossRef]
- Zetner, D.; Andersen, L.P.; Rosenberg, J. Melatonin as Protection Against Radiation Injury: A Systematic Review. Drug Res. 2016, 66, 281–296. [Google Scholar] [CrossRef]
- Zetner, D.; Andersen, L.P.; Rosenberg, J. Pharmacokinetics of Alternative Administration Routes of Melatonin: A Systematic Review. Drug Res. 2016, 66, 169–173. [Google Scholar] [CrossRef]
- Wedell-Neergaard, A.S.; Lang Lehrskov, L.; Christensen, R.H.; Legaard, G.E.; Dorph, E.; Larsen, M.K.; Launbo, N.; Fagerlind, S.R.; Seide, S.K.; Nymand, S.; et al. Exercise-Induced Changes in Visceral Adipose Tissue Mass Are Regulated by IL-6 Signaling: A Randomized Controlled Trial. Cell Metab. 2019, 29, 844–855.e843. [Google Scholar] [CrossRef] [PubMed]
- Zhan, S.; Wu, Y.; Sun, P.; Lin, H.; Zhu, Y.; Han, X. Decrease in Circulating Fatty Acids Is Associated with Islet Dysfunction in Chronically Sleep-Restricted Rats. Int. J. Mol. Sci. 2016, 17, 2102. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, A.C.; Banks, S. Total sleep deprivation, chronic sleep restriction and sleep disruption. Prog. Brain Res. 2010, 185, 91–103. [Google Scholar] [CrossRef] [PubMed]
- Essawy, A.E.; Mohamed, A.I.; Ali, R.G.; Ali, A.M.; Abdou, H.M. Analysis of Melatonin-Modulating Effects Against Tartrazine-Induced Neurotoxicity in Male Rats: Biochemical, Pathological and Immunohistochemical Markers. Neurochem. Res. 2023, 48, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, V.; Smits, M.; Spence, W.; Lowe, A.D.; Kayumov, L.; Pandi-Perumal, S.R.; Parry, B.; Cardinali, D.P. Melatonin in mood disorders. World J. Biol. Psychiatry 2006, 7, 138–151. [Google Scholar] [CrossRef] [PubMed]
- De Crescenzo, F.; Lennox, A.; Gibson, J.C.; Cordey, J.H.; Stockton, S.; Cowen, P.J.; Quested, D.J. Melatonin as a treatment for mood disorders: A systematic review. Acta Psychiatr. Scand. 2017, 136, 549–558. [Google Scholar] [CrossRef]
- Kalmbach, D.A.; Cuamatzi-Castelan, A.S.; Tonnu, C.V.; Tran, K.M.; Anderson, J.R.; Roth, T.; Drake, C.L. Hyperarousal and sleep reactivity in insomnia: Current insights. Nat. Sci. Sleep 2018, 10, 193–201. [Google Scholar] [CrossRef]
- Hansen, M.V.; Halladin, N.L.; Rosenberg, J.; Gogenur, I.; Moller, A.M. Melatonin for pre- and postoperative anxiety in adults. Cochrane Database Syst. Rev. 2015, 2015, CD009861. [Google Scholar] [CrossRef]
- Zhang, L.; Guo, H.L.; Zhang, H.Q.; Xu, T.Q.; He, B.; Wang, Z.H.; Yang, Y.P.; Tang, X.D.; Zhang, P.; Liu, F.E. Melatonin prevents sleep deprivation-associated anxiety-like behavior in rats: Role of oxidative stress and balance between GABAergic and glutamatergic transmission. Am. J. Transl. Res. 2017, 9, 2231–2242. [Google Scholar]
- Rawashdeh, O.; Maronde, E. The hormonal Zeitgeber melatonin: Role as a circadian modulator in memory processing. Front. Mol. Neurosci. 2012, 5, 27. [Google Scholar] [CrossRef]
- Youngblood, B.D.; Zhou, J.; Smagin, G.N.; Ryan, D.H.; Harris, R.B. Sleep deprivation by the “flower pot” technique and spatial reference memory. Physiol. Behav. 1997, 61, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Peck, J.S.; LeGoff, D.B.; Ahmed, I.; Goebert, D. Cognitive effects of exogenous melatonin administration in elderly persons: A pilot study. Am. J. Geriatr. Psychiatry 2004, 12, 432–436. [Google Scholar] [CrossRef] [PubMed]
- Alzoubi, K.H.; Mayyas, F.A.; Khabour, O.F.; Bani Salama, F.M.; Alhashimi, F.H.; Mhaidat, N.M. Chronic Melatonin Treatment Prevents Memory Impairment Induced by Chronic Sleep Deprivation. Mol. Neurobiol. 2016, 53, 3439–3447. [Google Scholar] [CrossRef] [PubMed]
- Obayashi, K.; Saeki, K.; Iwamoto, J.; Tone, N.; Tanaka, K.; Kataoka, H.; Morikawa, M.; Kurumatani, N. Physiological Levels of Melatonin Relate to Cognitive Function and Depressive Symptoms: The HEIJO-KYO Cohort. J. Clin. Endocrinol. Metab. 2015, 100, 3090–3096. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.H.; Feenstra, M.G.; Zhou, J.N.; Liu, R.Y.; Torano, J.S.; Van Kan, H.J.; Fischer, D.F.; Ravid, R.; Swaab, D.F. Molecular changes underlying reduced pineal melatonin levels in Alzheimer disease: Alterations in preclinical and clinical stages. J. Clin. Endocrinol. Metab. 2003, 88, 5898–5906. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Yuan, S.; Zhang, J. The interplay between sleep and gut microbiota. Brain Res. Bull. 2022, 180, 131–146. [Google Scholar] [CrossRef] [PubMed]
- Lai, W.-D.; Tung, T.-H.; Teng, C.-Y.; Chang, C.-H.; Chen, Y.-C.; Huang, H.-Y.; Lee, H.-C.; Huang, S.-Y. Fish oil ameliorates neuropsychiatric behaviors and gut dysbiosis by elevating selected microbiota–derived metabolites and tissue tight junctions in rats under chronic sleep deprivation. Food Funct. 2022, 13, 2662–2680. [Google Scholar] [CrossRef]
- Silva, Y.P.; Bernardi, A.; Frozza, R.L. The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication. Front. Endocrinol. 2020, 11, 25. [Google Scholar] [CrossRef]
- MahmoudianDehkordi, S.; Arnold, M.; Nho, K.; Ahmad, S.; Jia, W.; Xie, G.; Louie, G.; Kueider-Paisley, A.; Moseley, M.A.; Thompson, J.W.; et al. Altered bile acid profile associates with cognitive impairment in Alzheimer’s disease-An emerging role for gut microbiome. Alzheimer’s Dement. 2019, 15, 76–92. [Google Scholar] [CrossRef]
- Zhao, W.; Hu, Y.; Li, C.; Li, N.; Zhu, S.; Tan, X.; Li, M.; Zhang, Y.; Xu, Z.; Ding, Z.; et al. Transplantation of fecal microbiota from patients with alcoholism induces anxiety/depression behaviors and decreases brain mGluR1/PKC epsilon levels in mouse. Biofactors 2019, 46, 38–54. [Google Scholar] [CrossRef]
- Carmody, R.N.; Gerber, G.K.; Luevano, J.M., Jr.; Gatti, D.M.; Somes, L.; Svenson, K.L.; Turnbaugh, P.J. Diet dominates host genotype in shaping the murine gut microbiota. Cell Host Microbe 2015, 17, 72–84. [Google Scholar] [CrossRef] [PubMed]
- Tung, T.H.; Tung, Y.T.; Lin, I.H.; Shih, C.K.; Nguyen, N.T.K.; Shabrina, A.; Huang, S.Y. Fish Oil, but Not Olive Oil, Ameliorates Depressive-Like Behavior and Gut Microbiota Dysbiosis in Rats under Chronic Mild Stress. Biomolecules 2019, 9, 516. [Google Scholar] [CrossRef] [PubMed]
- Qin, N.; Song, G.; Ren, X.; Zhang, L.; Gao, J.; Xia, X.; Zhu, B. Fish oil extracted from Coregonus peled improves obese phenotype and changes gut microbiota in a high-fat diet-induced mouse model of recurrent obesity. Food Funct. 2020, 11, 6158–6169. [Google Scholar] [CrossRef] [PubMed]
- Tung, T.H.; Lai, W.D.; Lee, H.C.; Su, K.P.; Panunggal, B.; Huang, S.Y. Attenuation of Chronic Stress-Induced Depressive-like Symptoms by Fish Oil via Alleviating Neuroinflammation and Impaired Tryptophan Metabolism in Aging Rats. J. Agric. Food Chem. 2023, 71, 14550–14561. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Long, W.; Zhang, C.; Liu, S.; Zhao, L.; Hamaker, B.R. Fiber-utilizing capacity varies in Prevotella- versus Bacteroides-dominated gut microbiota. Sci. Rep. 2017, 7, 2594. [Google Scholar] [CrossRef] [PubMed]
- Dinan, T.G.; Stanton, C.; Cryan, J.F. Psychobiotics: A novel class of psychotropic. Biol. Psychiatry 2013, 74, 720–726. [Google Scholar] [CrossRef]
- Fulling, C.; Dinan, T.G.; Cryan, J.F. Gut Microbe to Brain Signaling: What Happens in Vagus. Neuron 2019, 101, 998–1002. [Google Scholar] [CrossRef]
- Hassan, A.M.; Mancano, G.; Kashofer, K.; Frohlich, E.E.; Matak, A.; Mayerhofer, R.; Reichmann, F.; Olivares, M.; Neyrinck, A.M.; Delzenne, N.M.; et al. High-fat diet induces depression-like behaviour in mice associated with changes in microbiome, neuropeptide Y, and brain metabolome. Nutr. Neurosci. 2018, 22, 877–893. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Jiang, Y.J.; Zou, M.S.; Liu, J.; Zhao, H.Q.; Wang, Y.H. Antidepressant actions of melatonin and melatonin receptor agonist: Focus on pathophysiology and treatment. Behav. Brain Res. 2022, 420, 113724. [Google Scholar] [CrossRef]
- Gobbi, G.; Comai, S. Sleep well. Untangling the role of melatonin MT1 and MT2 receptors in sleep. J. Pineal Res. 2019, 66, e12544. [Google Scholar] [CrossRef]
- Cao, Y.; Li, Q.; Zhou, A.; Ke, Z.; Chen, S.; Li, M.; Gong, Z.; Wang, Z.; Wu, X. Notoginsenoside R1 Reverses Abnormal Autophagy in Hippocampal Neurons of Mice With Sleep Deprivation Through Melatonin Receptor 1A. Front. Pharmacol. 2021, 12, 719313. [Google Scholar] [CrossRef]
- Pandi-Perumal, S.R.; Trakht, I.; Srinivasan, V.; Spence, D.W.; Maestroni, G.J.; Zisapel, N.; Cardinali, D.P. Physiological effects of melatonin: Role of melatonin receptors and signal transduction pathways. Prog. Neurobiol. 2008, 85, 335–353. [Google Scholar] [CrossRef] [PubMed]
- Venegas, C.; García, J.A.; Doerrier, C.; Volt, H.; Escames, G.; López, L.C.; Reiter, R.J.; Acuña-Castroviejo, D. Analysis of the daily changes of melatonin receptors in the rat liver. J. Pineal Res. 2013, 54, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.S.; Kim, S.H.; Park, J.W.; Kho, Y.; Seok, P.R.; Shin, J.H.; Choi, Y.J.; Jun, J.H.; Jung, H.C.; Kim, E.K. Melatonin in the colon modulates intestinal microbiota in response to stress and sleep deprivation. Intestig. Res. 2020, 18, 325–336. [Google Scholar] [CrossRef]
- Seibenhener, M.L.; Wooten, M.C. Use of the Open Field Maze to measure locomotor and anxiety-like behavior in mice. J. Vis. Exp. 2015, 96, e52434. [Google Scholar] [CrossRef]
- Walf, A.A.; Frye, C.A. The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat. Protoc. 2007, 2, 322–328. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Ge, H.; Sun, M.; Gao, Y. Selecting an Appropriate Animal Model of Depression. Int. J. Mol. Sci. 2019, 20, 4827. [Google Scholar] [CrossRef] [PubMed]
- Slattery, D.A.; Cryan, J.F. Using the rat forced swim test to assess antidepressant-like activity in rodents. Nat. Protoc. 2012, 7, 1009–1014. [Google Scholar] [CrossRef]
- Vorhees, C.V.; Williams, M.T. Morris water maze: Procedures for assessing spatial and related forms of learning and memory. Nat. Protoc. 2006, 1, 848–858. [Google Scholar] [CrossRef]
- Zhao, G.; Nyman, M.; Jönsson, J.A. Rapid determination of short-chain fatty acids in colonic contents and faeces of humans and rats by acidified water-extraction and direct-injection gas chromatography. Biomed. Chromatogr. 2006, 20, 674–682. [Google Scholar] [CrossRef]
Groups | C | SD | SDM |
---|---|---|---|
Relative liver weight (%) | 2.49 ± 0.12 | 2.44 ± 0.10 | 2.34 ± 0.07 |
Relative kidney weight (%) | 0.58 ± 0.01 | 0.62 ± 0.01 | 0.60 ± 0.02 |
Relative fat weight (%) | |||
Perirenal fat | 2.67 ± 0.21 a | 1.53 ± 0.27 b | 1.48 ± 0.24 b |
Epididymal fat | 1.82 ± 0.17 a | 1.15 ± 0.23 b | 1.01 ± 0.14 b |
Relative brain weight (%) | |||
Whole brain | 14.56 ± 0.38 | 15.72 ± 0.61 | 15.99 ± 0.62 |
Hippocampus | 1.90 ± 0.17 | 1.93 ± 0.14 | 2.24 ± 0.25 |
Prefrontal cortex | 1.23 ± 0.19 | 1.09 ± 0.14 | 1.14 ± 0.18 |
Cerebral cortex | 9.49 ± 0.21 a | 11.23 ±0.28 b | 10.87 ± 0.49 ab |
Corpus striatum | 1.61 ± 0.10 | 1.23 ± 0.10 | 1.57 ± 0.20 |
Hypothalamus | 0.63 ± 0.09 | 0.65 ± 0.11 | 0.63 ± 0.04 |
Relative Parameters | Group | ||
---|---|---|---|
C | SD | SDM | |
Serum biochemical variables | |||
TG (mg/dL) | 114.9 ± 16.6 a | 43.1 ± 3.5 b | 34.8 ± 3.9 b |
TC (mg/dL) | 71.0 ± 5.9 | 73.4 ± 6.0 | 76.5 ± 7.4 |
LDL (mg/dL) | 5.24 ± 0.59 | 5.69± 0.82 | 6.66 ± 0.91 |
HDL (mg/dL) | 22.6 ± 1.1 | 23.9 ± 1.4 | 24.1 ± 1.6 |
FFA (mmol/L) | 1.16 ± 0.21 a | 0.72 ± 0.08 b | 0.65 ± 0.01 c |
AST (U/L) | 81.9 ± 6.7 | 75.9 ± 5.4 | 83.3 ± 8.3 |
ALT (U/L) | 28.9 ± 4.1 | 25.9 ± 3.4 | 25.1 ± 2.1 |
TBIL (mg/dL) | 0.04 ± 0.02 | 0.04 ± 0.01 | 0.03 ± 0.01 |
ALB (g/dL) | 4.42 ± 0.10 a | 4.00 ± 0.22 a | 3.58 ± 0.02 b |
BUN (mg/dL) | 22.3 ± 1.3 a | 16.1 ± 1.0 b | 16.4 ± 1.1 b |
CRE (mg/dL) | 0.64 ± 0.06 | 0.61 ± 0.05 | 0.57 ± 0.04 |
Corticosterone (ng/mL) | 156.4 ± 24.8 a | 275.1 ± 28.9 b | 144.8 ± 20.2 a |
Inflammatory status | |||
TNF-α (pg/mL serum) | 1.66 ± 0.59 a | 7.67 ± 1.46 b | 7.89 ± 1.48 b |
IL-1β (pg/mL serum) | 19.8 ± 2.01 a | 60.6 ± 16.8 b | 69.7 ± 6.4 b |
LPS (EU/mL) | 0.078 ± 0.021 ab | 0.010 ± 0.003 b | 0.056 ± 0.002 a |
Neurotransmitter level | |||
NGF (pg/100 mL plasma) | 1.61 ± 0.10 | 1.23 ± 0.10 | 1.57 ± 0.20 |
Dopamine (pg/100 mL plasma) | 0.63 ± 0.09 | 0.65 ± 0.11 | 0.63 ± 0.04 |
Behavioral Test | Group | ||
---|---|---|---|
C | SD | SDM | |
Open field test | |||
Total distance traveled (m) | 6.56 ± 1.78 a | 11.26 ± 1.28 b | 12.00 ± 1.12 b |
Central zone distance traveled (m) | 1.16 ± 0.51 a | 0.61 ± 0.9 b | 0.46 ± 0.07 b |
Central zone visit duration (s) | 62.3 ± 20.6 a | 24.5 ± 3.0 b | 29.1 ± 3.4 b |
Central zone visit entries | 37.9 ± 12.8 a | 17.9 ± 1.8 b | 16.9 ± 3.8 b |
Elevated plus maze | |||
Percentage of open arm duration (%) | 48.1 ± 10.1 a | 12.9 ± 3.5 a | 47.4 ± 9.9 a |
Percentage of open arm entries (%) | 43.2 ± 8.2 a | 25.6 ± 6.0 b | 36.0 ± 8.4 a |
Sucrose preference test | |||
Week 7 sucrose intake (%) | 98.9 ± 1.7 | 99.1 ± 1.3 | 99.3 ± 1.1 |
Week 10 sucrose intake (%) | 90.2 ± 3.2 a | 71.9 ± 12.1 b | 84.2 ± 4.0 a |
Forced swim test | |||
Escape to immobility (s) | 141.1 ± 16.2 | 112.6 ± 16.9 | 135.3 ± 14.2 |
Total immobility (s) | 55.6 ± 10.2 a | 89.1 ± 20.2 b | 61.1 ± 13.2 a |
Behavioral Test | Cerebral Cortex | Colon | |||
MT1 | MT2 | MT1 | MT2 | ||
Open field test | |||||
Total distance traveled (m) | 0.78 * | 0.21 | 0.31 | 0.24 | |
Central zone visit duration (s) | 0.75 * | 0.23 | 0.31 | 0.23 | |
Percentage of open arm duration (%) | 0.82 * | 0.26 | 0.28 | 0.17 | |
Depression-like behaviors | |||||
Sucrose preference rate (%) | −0.45 * | 0.20 | 0.26 | 0.23 | |
Forced swim test immobility time (s) | 0.28 | 0.17 | 0.31 | 0.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Hsieh, Y.-R.; Lai, W.-D.; Tung, T.-H.; Chen, Y.-X.; Yang, C.-H.; Fang, Y.-C.; Huang, S.-Y. Melatonin Ameliorates Neuropsychiatric Behaviors, Gut Microbiome, and Microbiota-Derived Metabolites in Rats with Chronic Sleep Deprivation. Int. J. Mol. Sci. 2023, 24, 16820. https://doi.org/10.3390/ijms242316820
Li B, Hsieh Y-R, Lai W-D, Tung T-H, Chen Y-X, Yang C-H, Fang Y-C, Huang S-Y. Melatonin Ameliorates Neuropsychiatric Behaviors, Gut Microbiome, and Microbiota-Derived Metabolites in Rats with Chronic Sleep Deprivation. International Journal of Molecular Sciences. 2023; 24(23):16820. https://doi.org/10.3390/ijms242316820
Chicago/Turabian StyleLi, Bingcong, Yin-Ru Hsieh, Wen-De Lai, Te-Hsuan Tung, Yu-Xuan Chen, Chia-Hui Yang, Yu-Chiao Fang, and Shih-Yi Huang. 2023. "Melatonin Ameliorates Neuropsychiatric Behaviors, Gut Microbiome, and Microbiota-Derived Metabolites in Rats with Chronic Sleep Deprivation" International Journal of Molecular Sciences 24, no. 23: 16820. https://doi.org/10.3390/ijms242316820
APA StyleLi, B., Hsieh, Y. -R., Lai, W. -D., Tung, T. -H., Chen, Y. -X., Yang, C. -H., Fang, Y. -C., & Huang, S. -Y. (2023). Melatonin Ameliorates Neuropsychiatric Behaviors, Gut Microbiome, and Microbiota-Derived Metabolites in Rats with Chronic Sleep Deprivation. International Journal of Molecular Sciences, 24(23), 16820. https://doi.org/10.3390/ijms242316820