The Chemical Profile, Antioxidant, and Anti-Lipid Droplet Activity of Fluid Extracts from Romanian Cultivars of Haskap Berries, Bitter Cherries, and Red Grape Pomace for the Management of Liver Steatosis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Composition of Fluid Extracts
2.2. Free Radical Scavenging Capacity
2.3. Cell Culture Testing of Liver Steatosis Modulation
2.3.1. Cytocompatibility of Fluid Extracts in HepG2 Hepatocytes
2.3.2. Hepatoprotective Effect in FFA Steatosis Model
2.3.3. Effect on ROS, Lipid Peroxidation, and Nitric Oxide
3. Materials and Methods
3.1. Plant Material and Reagents
3.2. Preparation of Fluid Extracts
3.3. Determination of Total Phenolic, Flavonoid, Anthocyanin, and Ascorbic Acid Content
3.4. HPLC Analysis
3.5. Determination of Free Radical Scavenging Capacity
3.6. In Vitro Cytotoxicity Testing
3.6.1. Cell Culture and Treatment
3.6.2. MTT Assay
3.7. In Vitro Experimental Model of Steatosis
3.7.1. Cell Culture and Treatment
3.7.2. Determination of Intracellular Lipid Accumulation through Oil Red O Staining
3.7.3. Determination of Intracellular ROS Production Using Flow Cytometry
3.7.4. Determination of Lipid Peroxidation Using TBARSs Assay
3.7.5. Determination of Nitric Oxide Using a Griess Assay
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shil, B.C.; Saha, M.; Ahmed, F.; Dhar, S.C. Nonalcoholic fatty liver disease: Study of demographic and predictive factors. Euroasian J. Hepatogastroenterol. 2015, 5, 4–6. [Google Scholar] [PubMed]
- Reddy, J.K.; Rao, M.S. Lipid metabolism and liver inflammation. II. Fatty liver disease and fatty acid oxidation. Am. J. Physiol. Gastrointest. Liver Physiol. 2006, 290, G852–G858. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Poulsen, K.L.; Wu, L.; Liu, S.; Miyata, T.; Song, Q.; Wei, Q.; Zhao, C.; Lin, C.; Yang, J. Targeted therapeutics and novel signaling pathways in nonalcohol-associated fatty liver/streatohepatitis (NAFL/NASH). Signal Transduct. Target. Ther. 2022, 7, 287. [Google Scholar] [CrossRef] [PubMed]
- Negreanu-Pirjol, B.S.; Oprea, O.C.; Negreanu-Pirjol, T.; Roncea, F.N.; Prelipcean, A.M.; Craciunescu, O.; Iosageanu, A.; Artem, V.; Ranca, A.; Motelica, L.; et al. Health benefits of antioxidant bioactive compounds in the fruits and leaves of Lonicera caerulea L. and Aronia melanocarpa (Michx.) Elliot. Antioxidants 2023, 12, 951. [Google Scholar] [CrossRef]
- Gorzelany, J.; Basara, O.; Kapusta, I.; Pawel, K.; Belcar, J. Evaluation of the chemical composition of selected varieties of L. caerulea var. kamtschatica and L. caerulea var. emplyllocalyx. Molecules 2023, 28, 2525. [Google Scholar]
- Negreanu-Pirjol, B.S.; Negreanu-Pirjol, T.; Popoviciu, D.R.; Artem, V.; Ranca, A.; Craciunescu, O.; Prelipcean, A.M.; Motelica, L.; Vasile, M. Preliminary data regarding bioactive compounds and total antioxidant capacity of some fluid extracts of Lonicera caerulea L. berries. UPB Sci. Bull. 2023, 85, 101–116. [Google Scholar]
- Park, J.Y.; Kang, K.S.; Lee, H.J. Protection effect of cyanidin 3_O-glucoside against oxidative stress-induced HepG2 cell death through activation of Akt and extracellular signal-regulated kinase pathways. Bull. Korean Chem. Soc. 2017, 38, 1316–1320. [Google Scholar] [CrossRef]
- Bieniek, A.; Grygorieva, O.; Bielska, N. Biological properties of honeysuckle (Lonicera caerulea L.): A review. Agrobiodivers. Improv. Nutr. Health Life Qual. 2021, 2, 287–295. [Google Scholar]
- Dayar, E.; Cebova, M.; Lietava, J.; Panghyova, E.; Pechanova, O. Antioxidant effect of Lonicera caerulea L. in the cardiovascular system of obese zucker rats. Antioxidants 2021, 10, 1199. [Google Scholar] [CrossRef]
- Sharma, A.; Kim, J.W.; Ku, S.K.; Choi, J.S.; Lee, H.J. Anti-diabetic effects of blue honeyberry on high-fed-diet-induced type II diabetic mouse. Nutr. Res. Pract. 2019, 13, 367–376. [Google Scholar] [CrossRef]
- Wang, Y.; Li, B.; Ma, Y.; Wang, X.; Zhang, X.; Zhang, Q.; Meng, X. Lonicera caerulea berry extract attenuates lipopolysaccharide induced inflammation in BRL-3A cells: Oxidative stress, energy metabolism, hepatic function. J. Funct. Food 2016, 24, 1–10. [Google Scholar] [CrossRef]
- Lee, Y.S.; Cho, I.J.; Kim, J.W.; Lee, S.K.; Ku, S.K.; Lee, H.J. Evaluation of in vitro antioxidant and anti-inflammatory activities of Korean and Chinese Lonicera caerulea. Nutr. Res. Pract. 2018, 12, 486–493. [Google Scholar] [CrossRef]
- Rupasinghe, H.P.V.; Boehm, M.M.A.; Sekhon-Loodu, S.; Parmar, I.; Bors, B.; Jamieson, A.R. Anti-inflammatory activity of haskap cultivars is polyphenols-dependent. Biomolecules 2015, 5, 1079–1098. [Google Scholar] [CrossRef] [PubMed]
- Park, M.; Yoo, J.H.; Lee, Y.S.; Lee, H.J. Lonicera caerulea extract attenuates non-alcoholic fatty liver disease in free fatty acid-induced HepG2 hepatocytes and in high fat diet-fed mice. Nutrients 2019, 11, 494. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Lv, Y.; Zheng, M.; Yin, L.; Wang, X.; Fu, Y.; Yu, B.; Li, J. Polyphenols from blue honeysuckle (Lonicera caerulea var. edulis) berry inhibit lipid accumulation in adipocytes by suppressing lipogenesis. J. Ethnopharmacol. 2021, 279, 114403. [Google Scholar] [PubMed]
- Sip, S.; Sip, A.; Szulc, P.; Cielecka-Piontek, J. Haskap berry leaves (Lonicera caerulea L.)–The favorable potential of medical use. Nutrients 2022, 14, 3898. [Google Scholar] [CrossRef] [PubMed]
- An, M.Y.; Eo, H.J.; Son, H.J.; Geum, N.G.; Park, G.H.; Jeong, J.B. Anti-inflammatory effects of leaf and branch extracts of honeyberry (Lonicera caerulea) on lipopolysaccharide-stimulated RAW264.7 cells through ATF3 and Nrf2/HO-1 activation. Mol. Med. Rep. 2020, 22, 5219–5230. [Google Scholar] [CrossRef] [PubMed]
- Park, J.W.; Bae, H.; Lee, G.; Hong, B.G.; Yoo, H.H.; Lim, S.J.; Lee, K.; Kim, J.; Ryu, B.; Lee, B.J.; et al. Prophylactic effects of Lonicera japonica extract on dextran sulphate sodium-induced colitis in a mouse model by the inhibition of the Th1/Th17 response. Br. J. Nutr. 2013, 109, 283–292. [Google Scholar] [CrossRef]
- Corneanu, M.; Iurea, E.; Sirbu, S. Romanian wild cherry genotypes (Prunus avium var. sylvestris Ser.) suitable for processing. Hort. Sci. 2022, 49, 95–101. [Google Scholar]
- Negreanu-Pirjol, T.; Negreanu-Pirjol, B.S.; Popescu, A.; Bratu, M.M.; Udrea, M.; Busuricu, F. Comparative antioxidant properties of some Romanian fruits extracts. J. Environ. Prot. Ecol. 2014, 15, 1139–1148. [Google Scholar]
- Wessam, M.; Amira, L. Improvement of liver injury induced by acetaminophen using black cherry (Prunus serotina Ehrh.) powder and extract in rats. J. Specific Edu. Technol. 2020, 7, 558–574. [Google Scholar]
- Goncalves, A.C.; Flores-Felix, J.D.; Costa, A.R.; Falcao, A.; Alves, G.; Silva, L.R. Hepatoprotective effects of sweet cherry extracts (cv. Saco). Foods 2021, 10, 2623. [Google Scholar] [CrossRef] [PubMed]
- Martinelli, I.; Bonaventura, M.V.M.; di Moruzzi, M.; Amantini, C.; Maggi, F.; Gabrielli, M.G.; Fruganti, A.; Marchegiani, A.; Dini, F.; Marini, C.; et al. Effects of Prunus cerasus L. seeds and juice on liver steatosis in an animal model of diet-induced obesity. Nutrients 2020, 12, 1308. [Google Scholar] [CrossRef] [PubMed]
- Wojdylo, A.; Nowicka, P.; Turkiewicz, I.P.; Tkacz, K. Profiling of polyphenols by LC-QTOF/ESI-MS, characteristics of nutritional compounds and in vitro effect on pancreatic lipase, α-glucosidase, α-amylase, cholinesterase and cyclooxygenase activities of sweet (Prunus avium) and sour (P. cerasus) cherries leaves and fruits. Ind. Crops Prod. 2021, 174, 114214. [Google Scholar]
- Lachin, T. Effect of antioxidant extract from cherries on diabetes. Recent Pat. Endocr. Metab. Immune Drug Discov. 2014, 8, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Nunes, A.R.; Flores-Felix, J.D.; Goncalves, A.C.; Falcao, A.; Alves, G.; Silva, L.R. Anti-inflammatory and antimicrobial activities of Portuguese Prunus avium L. (sweet cherry) by-products extracts. Nutrients 2022, 14, 4576. [Google Scholar] [CrossRef]
- Jesus, F.; Goncalves, A.C.; Alves, G.; Silva, L.R. Exploring the phenolic profile, antioxidant, antidiabetic and anti-hemolytic potential of Prunus avium vegetal parts. Food Res. Int. 2019, 116, 600–610. [Google Scholar] [CrossRef]
- Antonic, B.; Jancikova, S.; Dordevic, D.; Tremlova, B. Grape pomace valorization: A systematic review and meta-analysis. Foods 2020, 9, 1627. [Google Scholar] [CrossRef]
- Artem, V.; Negreanu-Pirjol, T.; Ranca, A.; Ciobanu, C.; Bratu, M.M.; Popoviciu, D.R.; Moldovan, L.; Vasile, M.; Negreanu-Pirjol, B.S. Total phenolic content correlated with antioxidant activity of some grape pomace biomass hydroalcoholic extracts, white and red varieties. UPB Sci. Bull. 2021, 83, 61–72. [Google Scholar]
- Correa, R.C.G.; Haminiuk, C.W.I.; Barros, L.; Dias, M.I.; Calhelha, R.C.; Kato, C.G.; Correa, V.G.; Peralta, R.M.; Ferreira, I.C.F.R. Stability and biological activity of Merlot (Vitis vinifera) grape pomace phytochemicals after simulated in vitro gastrointestinal digestion and colonic fermentation. J. Funct. Foods 2017, 36, 410–417. [Google Scholar] [CrossRef]
- Martins, I.M.; Macedo, G.A.; Macedo, J.A.; Roberto, B.S.; Chen, Q.; Blumberg, J.B.; Chen, C.Y.O. Tannase enhances the anti-inflammatory effect of grape pomace in Caco-2 cells treated with IL-1β. J. Funct. Foods 2017, 29, 69–76. [Google Scholar] [CrossRef]
- Builders, M.; Okoli, I.S.; Ede, S.O.; Joseph, O.S.; Ise, U.P. Evaluation of hepatoprotective activity of the aqueous extract of Vitis vinifera against acetaminophen-induced liver damage in rats. Magna Sci. Adv. Res. Rev. 2023, 8, 104–110. [Google Scholar] [CrossRef]
- Liu, T.; Zhao, J.; Ma, L.; Ding, Y.; Su, D. Hepatoprotective effects of total triterpenoids and total flavonoids from Vitis vinifera L against immunological liver injury in mice. Evid. Based Complement. Alternat. Med. 2012, 2012, 969386. [Google Scholar] [CrossRef]
- Sharma, S.K.; Suman, N.V. Hepatoprotective activity of Vitis vinifera root extract against carbon tetrachloride-induced liver damage in rats. Acta Pol. Pharm. 2012, 69, 933–937. [Google Scholar]
- Orhan, D.D.; Orhan, N.; Ergun, E.; Ergun, F. Hepatoprotective effect of Vitis vinifera L. leaves on carbon tetrachloride-induced acute liver damage in rats. J. Ethnopharmacol. 2007, 112, 145–151. [Google Scholar] [CrossRef]
- Ahmed, M.; Hegde, S.V.; Chavan, A.; Lakshmikantha, R.Y.; Thimmappanahalli, K.B. Evaluation of hepatoprotective activity of Vitis vinifera stem bark. J. Pharm. Res. 2012, 5, 5228–5230. [Google Scholar]
- Alwajwal, A.M.; Elsadek, M.F. Lipid-lowering and hepatoprotective effects of Vitis vinifera dried seeds on paracetamol-induced hepatotoxicity in rats. Nutr. Res. Pract. 2015, 9, 37–42. [Google Scholar] [CrossRef]
- Ahmad, F.; Khan, G.M. Study of aging and hepatoprotective activity of Vitis vinifera L. seeds in albino rats. Asian Pacific J. Trop. Biomed. 2012, 2, S1770–S1774. [Google Scholar] [CrossRef]
- Nassiri-Asl, M.; Hosseinzadeh, H. Review of the pharmacological effects of Vitis vinifera (grape) and its bioactive constituents: An update. Phytother. Res. 2016, 30, 1392–1403. [Google Scholar] [CrossRef]
- Ismail, A.F.M.; Salem, A.A.M.; Eassawy, M.M.T. Hepatoprotective effect of grape seed oil against carbon tetrachloride induced oxidative stress in liver of γ-irradiated rat. J. Photochem. Photobiol. B Biol. 2016, 160, 1–10. [Google Scholar] [CrossRef]
- Miao, W.; Huang, R.; Huang, X.; Gao, F.; Leng, X.; Li, Q. Physicochemical properties and in vivo hepatoprotective effect of polysaccharides from grape pomace. Antioxidants 2023, 12, 394. [Google Scholar] [CrossRef] [PubMed]
- Raudone, L.; Liaudanskas, M.; Vilkickyte, G.; Kviklys, D.; Zvikas, V.; Viskelis, J.; Viskelis, P. Phenolic profiles, antioxidant activity and phenotypic characterization of Lonicera caerulea L. berries, cultivated in Lithuania. Antioxidants 2021, 10, 115. [Google Scholar] [CrossRef] [PubMed]
- Arboleda Mejia, J.A.; Ricci, A.; Figueiredo, A.S.; Versari, A.; Cassano, A.; Parpinello, G.P.; De Pinho, M.N. Recovery of phenolic compounds from red grape pomace extract through nanofiltration membranes. Foods 2020, 9, 1649. [Google Scholar] [CrossRef] [PubMed]
- Acero, N.; Gradillas, A.; Beltran, M.; Garcia, A.; Munoz Mingarro, D. Comparison of phenolic compounds profile and antioxidant properties of different sweet cherry (Prunus avium L.) varieties. Food Chem. 2019, 279, 260–271. [Google Scholar] [CrossRef] [PubMed]
- Jurikova, T.; Mlcek, J.; Balla, S.; Ondrasova, M.; Dokoupil, L.; Sochor, J.; Durisova, L.; Elias, P., Jr.; Aamkova, A.; Baron, M.; et al. The elucidation of total polyphenols, individual phenolic compounds, antioxidant activity of three underutilized fruit species–Black crowberry, honeyberry, European cranberry with their accumulation. Agronomy 2021, 11, 73. [Google Scholar] [CrossRef]
- Mendoza, L.; Yanez, K.; Vivanco, M.; Melo, R.; Cotoras, M. Characterization of extracts from winery by-products with antifungal activity against Botrytis cinerea. Ind. Crops Prod. 2013, 43, 360–364. [Google Scholar] [CrossRef]
- Saeed, R.A.; Khan, M.I.; Butt, M.S.; Faisal, M.N. Phytochemical screening of Prunus avium for its antioxidative and anti-mutagenic potential against DMBA-induced hepatocarcinogenesis. Front. Nutr. 2023, 10, 1132356. [Google Scholar] [CrossRef]
- Mulabagal, V.; Lang, G.A.; DeWitt, D.L.; Dalavoy, S.S.; Nair, M.G. Anthocyanin content, lipid peroxidation and cyclooxygenase enzyme inhibitory activities of sweet and sour cherries. J. Agric. Food Chem. 2009, 57, 1239–1246. [Google Scholar] [CrossRef]
- Ky, I.; Teissedre, P.L. Characterisation of Mediterranean grape pomace ssed and skin extracts: Polyphenolic content and antioxidant activity. Molecules 2015, 20, 2190–2207. [Google Scholar] [CrossRef]
- Badmus, O.O.; Hillhouse, S.A.; Anderson, C.D.; Hinds, T.D., Jr.; Stec, D.E. Molecular mechanisms of metabolic associated fatty liver disease (MAFLD): Functional analysis of lipid metabolism pathways. Clin. Sci. 2022, 136, 1347–1366. [Google Scholar] [CrossRef]
- Seo, M.J.; Lee, Y.J.; Hwang, J.H.; Kim, K.J.; Lee, B.Y. The inhibitory effects of quercetin on obesity and obesity-induced inflammation by regulation of MAPK signaling. J. Nutr. Biochem. 2015, 26, 1308–1316. [Google Scholar] [CrossRef]
- Basu, T.; Selman, A.; Reddy, A.P.; Reddy, P.H. Current status of obesity: Protective role of catechins. Antioxidants 2023, 12, 474. [Google Scholar] [CrossRef]
- Yang, C.S.; Zhang, J.; Zhang, L.; Huang, J.; Wang, Y. Mechanisms of body weight reduction and metabolic syndrome alleviation by tea. Mol. Nutr. Food Res. 2016, 60, 160–174. [Google Scholar] [CrossRef]
- Ham, J.R.; Lee, H.I.; Choi, R.Y.; Sim, M.O.; Seo, K.I.; Lee, M.K. Anti-steatotic and anti-inflammatory roles of syringic acid in high-fat diet-induced obese mice. Food Funct. 2016, 7, 689–697. [Google Scholar] [CrossRef]
- Wang, Z.; Lam, K.L.; Hu, J.; Ge, S.; Zhou, A.; Zheng, B.; Zeng, S.; Lin, S. Chlorogenic acid alleviates obesity and modulates gut microbiota in high-fat-fed mice. Food Sci. Nutr. 2019, 7, 579–588. [Google Scholar] [CrossRef]
- Apak, R.; Ozyurek, M.; Guclu, K.; Capanoglu, E. Antioxidant activity/capacity measurement. 1. Classification, physicochemical principles, mechanisms, and electron transfer (ET)-based assays. J. Agric. Food Chem. 2016, 64, 997–1027. [Google Scholar] [CrossRef]
- Clodoveo, M.L.; Crupi, P.; Muraglia, M.; Naeem, M.Y.; Tardugno, R.; Limongelli, F.; Corbo, F. The main phenolic compounds responsible for the antioxidant capacity of sweet cherry (Prunus avium L.) pulp. LWT Food Sci. Technol. 2023, 185, 115085. [Google Scholar] [CrossRef]
- Schultze, R.J.; Schott, M.B.; Casey, C.A.; Tuma, P.L.; McNiven, M.A. The cell biology of the hepatocyte: A membrane trafficking machine. J. Cell Biol. 2019, 218, 2096–2112. [Google Scholar] [CrossRef] [PubMed]
- Mashek, D.G. Hepatic lipid droplets: A balancing act between energy storage and metabolic dysfunction in NAFLD. Mol. Metab. 2021, 50, 101115. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Yun, C.; Kwon, D.; Lee, Y.H.; Kwak, J.H.; Jung, Y.S. Effect of isoquercitrin on free fatty acid-induced lipid accumulation in HepG2 cells. Molecules 2023, 28, 1476. [Google Scholar] [CrossRef]
- Abenavoli, L.; Larussa, T.; Corea, A.; Procopio, A.C.; Boccuto, L.; Dallio, M.; Federico, A.; Luzza, F. Dietary polyphenols and non-alcoholic fatty liver disease. Nutrients 2021, 13, 494. [Google Scholar] [CrossRef]
- Noratto, G.D.; Lage, N.N.; Chew, B.P.; Mertens-Talcott, S.U.; Talcott, S.T.; Pedrosa, M.L. Non-anthocyanin phenolics in cherry (Prunus avium L.) modulate IL-6, liver lipids and expression of PPARδ and LXRs in obese diabetic (db/db) mice. Food Chem. 2018, 266, 405–414. [Google Scholar] [CrossRef]
- Yogalakshmi, B.; Sreeja, S.; Geetha, R.; Radika, M.K.; Anuradha, C.V. Grape seed proanthocyanidin rescues rats from steatosis: A comparative and combination study with metformin. J. Lipids 2013, 2013, 153897. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.M.; Cho, B.O.; Jang, S.I. Muscat Bailey A grape stalk extract ameliorates high-fat diet-induced obesity by downregulating PPARγ and C/EPBα in mice. Int. J. Molec. Med 2019, 43, 489–500. [Google Scholar] [CrossRef] [PubMed]
- Benedict, M.; Zhang, X. Non-alcoholic fatty liver disease: An expanded review. World J. Hepatol. 2017, 9, 715–732. [Google Scholar] [CrossRef] [PubMed]
- Kalantari, H.; Salimi, A.; Motaharitabar, E.; Samimi, A.; Rezai, A. Hepatoprotective effect of microemulsion-based system of Prunus cerasus kernel extract on CCl4-induced liver damage in mice. J. Nat. Pharm. Prod. 2017, 12, e14282. [Google Scholar] [CrossRef]
- Balea, S.S.; Parvu, A.E.; Parvu, M.; Vlase, L.; Dehelean, C.A.; Pop, T.I. Antioxidant, anti-inflammatory and antiproliferative effects of the Vitis vinifera L. var. Feteasca Neagra and Pinot Noir pomace extracts. Front. Pharmacol. 2020, 11, 990. [Google Scholar] [CrossRef] [PubMed]
- Gaspar-Pintiliescu, A.; Mihai, E.; Ciucan, T.; Popescu, A.F.; Luntraru, C.; Tomescu, J.; Craciunescu, O. Antioxidant and acetylcholinesterase inhibition capacity of hydrosols from Lamiaceae plants for biopesticide use: Role of phenolics. Int. J. Food Prop. 2022, 25, 996–1008. [Google Scholar] [CrossRef]
- Mihai, E.; Negreanu-Pirjol, B.S.; Craciunescu, O.; Ciucan, T.; Iosageanu, A.; Seciu-Grama, A.M.; Prelipcean, A.M.; Utoiu, E.; Coroiu, V.; Ghenea, A.M.; et al. In Vitro hypoglycemic potential, antioxidant and prebiotic activity after simulated digestion of combined blueberry pomace and chia seed extracts. Processes 2023, 11, 1025. [Google Scholar] [CrossRef]
- Bratu, M.M.; Birghila, S.; Popescu, A.; Negreanu-Pirjol, B.S.; Negreanu-Pirjol, T. Correlation of antioxidant activity of dried berry infusions with polyphenols and selected microelements. Bull. Chem. Soc. Ethiopia 2018, 32, 1–12. [Google Scholar] [CrossRef]
- Brezoiu, A.M.; Bajenaru, L.; Berger, D.; Mitran, R.A.; Deaconu, M.; Lincu, D.; Stoica Guzun, A.; Matei, C.; Moisescu, M.G.; Negreanu-Pirjol, T. Effect of nanoconfinement of polyphenolic extract from grape pomace into functionalized mesoporous silica on its biocompatibility and radical scavenging activity. Antioxidants 2020, 9, 696. [Google Scholar] [CrossRef] [PubMed]
- Ilie, D.; Iosageanu, D.; Craciunescu, O.; Seciu-Grama, A.M.; Sanda, C.; Oancea, F. Free radicals scavenging, redox balance and wound healing activity of bioactive peptides derived from proteinase K-assisted hydrolysis of Hypophthalmichthys molitrix skin collagen. Food Technol. Biotechnol. 2022, 60, 281–292. [Google Scholar] [CrossRef]
- ISO 10993-5: 2009; Biological evaluation of medical devices. Part 5: Tests for in vitro cytotoxicity. ISO: Geneva, Switzerland, 2009.
- Iosageanu, A.; Ilie, D.; Craciunescu, O.; Seciu-Grama, A.M.; Oancea, A.; Zarnescu, O.; Moraru, I.; Oancea, F. Effect of fish bone bioactive peptides on oxidative, inflammatory and pigmentation processes triggered by UVB irradiation in skin cells. Molecules 2021, 26, 2691. [Google Scholar] [CrossRef]
- Jeong, H.S.; Cho, Y.H.; Kim, K.H.; Kim, Y.; Kim, K.S.; Na, Y.C.; Park, J.; Lee, I.S.; Lee, J.H.; Jang, H.J. Anti-lipoapoptotic effects of Alisma orientalis extract on non-esterified fatty acid-induced HepG2 cells. BMC Complement. Altern. Med. 2016, 16, 239. [Google Scholar] [CrossRef] [PubMed]
- Masour, R.B.; Gargouri, B.; Bouaziz, M.; Elloumi, N.; Jilani, I.B.; Ghrabi, Z.; Lassoued, S. Antioxidant activity of ethanolic extract of inflorescence of Ormenis africana in vitro and in cell cultures. Lipids Health Dis. 2011, 10, 78. [Google Scholar]
Fluid Extract | Total Phenolic Content * (mg CAEs/g Dry Weight) | Total Flavonoid Content * (mg QEs/g Dry Weight) | Total Anthocyanin Content* (mg CGEs/g Dry Weight) | Ascorbic Acid Content (mg/g Dry Weight) |
---|---|---|---|---|
Haskap berries var. Loni | 75.21 ± 2.44 | 5.53 ± 0.60 | 0.41 ± 0.02 | 21.07 ± 1.85 |
Bitter cherries var. Silva | 4.43 ± 0.21 | 0.35 ± 0.02 | 0.16 ± 0.01 | 2.54 ± 0.16 |
Pomace of red grapes var. Mamaia | 247.29 ± 9.16 | 17.16 ± 0.37 | 0.39 ± 0.02 | 15.27 ± 1.15 |
Compound | Quantity (mg/100 g Dry Weight) | ||
---|---|---|---|
Haskap Berries var. Loni | Bitter Cherries var. Silva | Pomace of Red Grapes var. Mamaia | |
Chlorogenic acid | 126.53 ± 5.37 | 63.27 ± 2.73 | N.D. |
Catechin hydrate | 134.01 ± 7.79 | N.D. | 398.49 ± 28.57 |
Caffeic acid | N.D. | 25.24 ± 1.60 | 40.26 ± 3.08 |
Syringic acid | 461.73 ± 21.51 | 15.76 ± 0.98 | 79.96 ± 5.12 |
Rutin trihydrate | 7.16 ± 0.92 | N.D. | N.D. |
Ferulic acid | 9.24 ± 0.86 | N.D. | N.D. |
Apigenin 7-glucoside | 24.64 ± 1.04 | 28.64 ± 2.44 | 39.95 ± 2.39 |
Quercetin 3-β-glucoside | 61.09 ± 4.95 | N.D. | 169.12 ± 8.82 |
Kaempferol 3-β-glucoside | 61.06 ± 3.22 | 16.30 ± 2.72 | 128.28 ± 6.15 |
Myricetin | 2.83 ± 0.33 | N.D. | 32.99 ± 1.71 |
Rosmarinic acid | 14.64 ± 2.80 | N.D. | 70.47 ± 3.81 |
Quercetin dihydrate | 7.21 ± 2.15 | 13.88 ± 1.46 | 23.84 ± 2.26 |
Apigenin | N.D. | N.D. | N.D. |
Kaempferol | N.D. | N.D. | 57.78 ± 4.34 |
Fluid Extract | TEAC * (mM TEs/g Dry Weight) | DPPH Inhibition * (%) | IC50 (μg/mL) |
---|---|---|---|
Haskap berries var. Loni | 1.70 ± 0.11 | 45.07 ± 3.17 | 1310.88 ± 78.39 |
Bitter cherries var. Silva | 0.64 ± 0.02 | 19.86 ± 0.84 | 3308.82 ± 168.06 |
Pomace of red grapes var. Mamaia | 1.88 ± 0.15 | 52.25 ± 2.22 | 922.97 ± 52.18 |
TEAC | DPPH Inhibition | |
---|---|---|
Total phenolic content | 0.6575 | 0.7292 |
Total flavonoid content | 0.6748 | 0.7453 |
Total anthocyanin content | 0.9579 | 0.9211 |
Total ascorbic acid content | 0.8142 | 0.7500 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Craciunescu, O.; Seciu-Grama, A.-M.; Mihai, E.; Utoiu, E.; Negreanu-Pirjol, T.; Lupu, C.E.; Artem, V.; Ranca, A.; Negreanu-Pirjol, B.-S. The Chemical Profile, Antioxidant, and Anti-Lipid Droplet Activity of Fluid Extracts from Romanian Cultivars of Haskap Berries, Bitter Cherries, and Red Grape Pomace for the Management of Liver Steatosis. Int. J. Mol. Sci. 2023, 24, 16849. https://doi.org/10.3390/ijms242316849
Craciunescu O, Seciu-Grama A-M, Mihai E, Utoiu E, Negreanu-Pirjol T, Lupu CE, Artem V, Ranca A, Negreanu-Pirjol B-S. The Chemical Profile, Antioxidant, and Anti-Lipid Droplet Activity of Fluid Extracts from Romanian Cultivars of Haskap Berries, Bitter Cherries, and Red Grape Pomace for the Management of Liver Steatosis. International Journal of Molecular Sciences. 2023; 24(23):16849. https://doi.org/10.3390/ijms242316849
Chicago/Turabian StyleCraciunescu, Oana, Ana-Maria Seciu-Grama, Elena Mihai, Elena Utoiu, Ticuta Negreanu-Pirjol, Carmen Elena Lupu, Victoria Artem, Aurora Ranca, and Bogdan-Stefan Negreanu-Pirjol. 2023. "The Chemical Profile, Antioxidant, and Anti-Lipid Droplet Activity of Fluid Extracts from Romanian Cultivars of Haskap Berries, Bitter Cherries, and Red Grape Pomace for the Management of Liver Steatosis" International Journal of Molecular Sciences 24, no. 23: 16849. https://doi.org/10.3390/ijms242316849
APA StyleCraciunescu, O., Seciu-Grama, A. -M., Mihai, E., Utoiu, E., Negreanu-Pirjol, T., Lupu, C. E., Artem, V., Ranca, A., & Negreanu-Pirjol, B. -S. (2023). The Chemical Profile, Antioxidant, and Anti-Lipid Droplet Activity of Fluid Extracts from Romanian Cultivars of Haskap Berries, Bitter Cherries, and Red Grape Pomace for the Management of Liver Steatosis. International Journal of Molecular Sciences, 24(23), 16849. https://doi.org/10.3390/ijms242316849