Spectrophotometric Assay for the Detection of 2,5-Diformylfuran and Its Validation through Laccase-Mediated Oxidation of 5-Hydroxymethylfurfural
Abstract
:1. Introduction
2. Results and Discussion
2.1. Rationale and Set-Up of the Assay Methodology towards DFF
2.2. Linearity and Sensitivity of the Assay
2.3. Robustness of the Assay: Interference of Side Products
2.4. Application of the Colorimetric Assay: Kinetics Measurements
3. Materials and Methods
3.1. Colorimetric Assay Conditions
3.2. Determination of LOD and LOQ Values
3.3. Determination of Z’ Values
3.4. Laccase Activity Assay
3.5. Reaction Progress Curves for the Laccase–Mediator Systems and Initial Rate Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
Appendix C
References
- van Putten, R.-J.; van der Waal, J.C.; de Jong, E.; Rasrendra, C.B.; Heeres, H.J.; de Vries, J.G. Hydroxymethylfurfural, A Versatile Platform Chemical Made from Renewable Resources. Chem. Rev. 2013, 113, 1499–1597. [Google Scholar] [CrossRef]
- Gérardy, R.; Debecker, D.P.; Estager, J.; Luis, P.; Monbaliu, J.-C.M. Continuous Flow Upgrading of Selected C2-C6 Platform Chemicals Derived from Biomass. Chem. Rev. 2020, 120, 7219–7347. [Google Scholar] [CrossRef]
- Dedes, G.; Karnaouri, A.; Topakas, E. Novel Routes in Transformation of Lignocellulosic Biomass to Furan Platform Chemicals: From Pretreatment to Enzyme Catalysis. Catalysts 2020, 10, 743. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, S.; Bornscheuer, U.T. Recent Advances in (Chemo)Enzymatic Cascades for Upgrading Bio-Based Resources. Chem. Commun. 2021, 57, 10661–10674. [Google Scholar] [CrossRef] [PubMed]
- Kucherov, F.A.; Romashov, L.V.; Galkin, K.I.; Ananikov, V.P. Chemical Transformations of Biomass-Derived C6-Furanic Platform Chemicals for Sustainable Energy Research, Materials Science, and Synthetic Building Blocks. ACS Sustain. Chem. Eng. 2018, 6, 8064–8092. [Google Scholar] [CrossRef]
- Delidovich, I.; Hausoul, P.J.C.; Deng, L.; Pfützenreuter, R.; Rose, M.; Palkovits, R. Alternative Monomers Based on Lignocellulose and Their Use for Polymer Production. Chem. Rev. 2016, 116, 1540–1599. [Google Scholar] [CrossRef] [PubMed]
- Dhers, S.; Vantomme, G.; Avérous, L. A Fully Bio-Based Polyimine Vitrimer Derived from Fructose. Green Chem. 2019, 21, 1596–1601. [Google Scholar] [CrossRef]
- Danielli, C.; van Langen, L.; Boes, D.; Asaro, F.; Anselmi, S.; Provenza, F.; Renzi, M.; Gardossi, L. 2,5-Furandicarboxaldehyde as a Bio-Based Crosslinking Agent Replacing Glutaraldehyde for Covalent Enzyme Immobilization. RSC Adv. 2022, 12, 35676–35684. [Google Scholar] [CrossRef]
- Hopkins, K.T.; Wilson, W.D.; Bender, B.C.; McCurdy, D.R.; Hall, J.E.; Tidwell, R.R.; Kumar, A.; Bajic, M.; Boykin, D.W. Extended Aromatic Furan Amidino Derivatives as Anti-Pneumocystis carinii Agents. J. Med. Chem. 1998, 41, 3872–3878. [Google Scholar] [CrossRef]
- Gauthier, D.R.; Szumigala, R.H.; Dormer, P.G.; Armstrong, J.D.; Volante, R.P.; Reider, P.J. Synthesis of 5-Pyridyl-2-Furaldehydes via Palladium-Catalyzed Cross-Coupling with Triorganozincates. Org. Lett. 2002, 4, 375–378. [Google Scholar] [CrossRef]
- Ma, J.; Wang, M.; Du, Z.; Chen, C.; Gao, J.; Xu, J. Synthesis and Properties of Furan-Based Imine-Linked Porous Organic Frameworks. Polym. Chem. 2012, 3, 2346–2349. [Google Scholar] [CrossRef]
- Zhang, J.; Jia, W.; Yu, X.; Wang, Q.; Sun, Y.; Yang, S.; Li, Z.; Tang, X.; Zeng, X.; Lin, L. Facile One-Pot Synthesis of Furan Double Schiff Base from 5-Hydroxymethylfurfural via an Amination-Oxidation-Amination Strategy in Water. ACS Sustain. Chem. Eng. 2022, 10, 6835–6842. [Google Scholar] [CrossRef]
- Amarasekara, A.S.; Green, D.; Williams, L.D. Renewable Resources Based Polymers: Synthesis and Characterization of 2,5-Diformylfuran-Urea Resin. Eur. Polym. J. 2009, 45, 595–598. [Google Scholar] [CrossRef]
- Lucherelli, M.A.; Duval, A.; Averous, L. Combining Associative and Dissociative Dynamic Linkages in Covalent Adaptable Networks from Biobased 2,5-Furandicarboxaldehyde. ACS Sustain. Chem. Eng. 2023, 11, 2334–2344. [Google Scholar] [CrossRef]
- Xu, C.; Paone, E.; Rodríguez-Padrón, D.; Luque, R.; Mauriello, F. Recent Catalytic Routes for the Preparation and the Upgrading of Biomass Derived Furfural and 5-Hydroxymethylfurfural. Chem. Soc. Rev. 2020, 49, 4273–4306. [Google Scholar] [CrossRef]
- Dutta, S.; Wu, L.; Mascal, M. Production of 5-(Chloromethyl)Furan-2-Carbonyl Chloride and Furan-2,5-Dicarbonyl Chloride from Biomass-Derived 5-(Chloromethyl)Furfural (CMF). Green Chem. 2015, 17, 3737–3739. [Google Scholar] [CrossRef]
- Le, N.-T.; Byun, A.; Han, Y.; Lee, K.-I.; Kim, H. Preparation of 2,5-Bis(Aminomethyl)Furan by Direct Reductive Amination of 2,5-Diformylfuran over Nickel-Raney Catalysts. Green Sustain. Chem. 2015, 5, 115–127. [Google Scholar] [CrossRef]
- Li, C.; Xu, G.; Liu, X.; Zhang, Y.; Fu, Y. Hydrogenation of Biomass-Derived Furfural to Tetrahydrofurfuryl Alcohol over Hydroxyapatite-Supported Pd Catalyst under Mild Conditions. Ind. Eng. Chem. Res. 2017, 56, 8843–8849. [Google Scholar] [CrossRef]
- Xu, Y.; Jia, X.; Ma, J.; Gao, J.; Xia, F.; Li, X.; Xu, J. Efficient Synthesis of 2,5-Dicyanofuran from Biomass-Derived 2,5-Diformylfuran via an Oximation–Dehydration Strategy. ACS Sustain. Chem. Eng. 2018, 6, 2888–2892. [Google Scholar] [CrossRef]
- Xu, Y.; Jia, X.; Ma, J.; Gao, J.; Xia, F.; Li, X.; Xu, J. Selective Synthesis of 2,5-Bis(Aminomethyl)Furan via Enhancing the Catalytic Dehydration–Hydrogenation of 2,5-Diformylfuran Dioxime. Green Chem. 2018, 20, 2697–2701. [Google Scholar] [CrossRef]
- Rout, P.K.; Nannaware, A.D.; Prakash, O.; Kalra, A.; Rajasekharan, R. Synthesis of Hydroxymethylfurfural from Cellulose Using Green Processes: A Promising Biochemical and Biofuel Feedstock. Chem. Eng. Sci. 2016, 142, 318–346. [Google Scholar] [CrossRef]
- Gómez Millán, G.; Hellsten, S.; Llorca, J.; Luque, R.; Sixta, H.; Balu, A.M. Recent Advances in the Catalytic Production of Platform Chemicals from Holocellulosic Biomass. ChemCatChem 2019, 11, 2022–2042. [Google Scholar] [CrossRef]
- Ma, J.; Shi, S.; Jia, X.; Xia, F.; Ma, H.; Gao, J.; Xu, J. Advances in Catalytic Conversion of Lignocellulose to Chemicals and Liquid Fuels. J. Energy Chem. 2019, 36, 74–86. [Google Scholar] [CrossRef]
- Kong, X.; Zhu, Y.; Fang, Z.; Kozinski, J.A.; Butler, I.S.; Xu, L.; Song, H.; Wei, X. Catalytic Conversion of 5-Hydroxymethylfurfural to Some Value-Added Derivatives. Green Chem. 2018, 20, 3657–3682. [Google Scholar] [CrossRef]
- Jiang, Z.; Zeng, Y.; Hu, D.; Guo, R.; Yan, K.; Luque, R. Chemical Transformations of 5-Hydroxymethylfurfural into Highly Added Value Products: Present and Future. Green Chem. 2023, 25, 871–892. [Google Scholar] [CrossRef]
- Ventura, M.; Dibenedetto, A.; Aresta, M. Heterogeneous Catalysts for the Selective Aerobic Oxidation of 5-Hydroxymethylfurfural to Added Value Products in Water. Inorg. Chim. Acta 2018, 470, 11–21. [Google Scholar] [CrossRef]
- Arias, P.L.; Cecilia, J.A.; Gandarias, I.; Iglesias, J.; López Granados, M.; Mariscal, R.; Morales, G.; Moreno-Tost, R.; Maireles-Torres, P. Oxidation of Lignocellulosic Platform Molecules to Value-Added Chemicals Using Heterogeneous Catalytic Technologies. Catal. Sci. Technol. 2020, 10, 2721–2757. [Google Scholar] [CrossRef]
- Tran, P.H. Recent Approaches in the Catalytic Transformation of Biomass-Derived 5-Hydroxymethylfurfural into 2,5-Diformylfuran. ChemSusChem 2022, 15, e202200220. [Google Scholar] [CrossRef]
- Takagaki, A.; Takahashi, M.; Nishimura, S.; Ebitani, K. One-Pot Synthesis of 2,5-Diformylfuran from Carbohydrate Derivatives by Sulfonated Resin and Hydrotalcite-Supported Ruthenium Catalysts. ACS Catal. 2011, 1, 1562–1565. [Google Scholar] [CrossRef]
- Antonyraj, C.A.; Kim, B.; Kim, Y.; Shin, S.; Lee, K.-Y.; Kim, I.; Cho, J.K. Heterogeneous Selective Oxidation of 5-Hydroxymethyl-2-Furfural (HMF) into 2,5-Diformylfuran Catalyzed by Vanadium Supported Activated Carbon in MIBK, Extracting Solvent for HMF. Catal. Commun. 2014, 57, 64–68. [Google Scholar] [CrossRef]
- Yuan, Z.; Liu, B.; Zhou, P.; Zhang, Z.; Chi, Q. Aerobic Oxidation of Biomass-Derived 5-Hydroxymethylfurfural to 2,5-Diformylfuran with Cesium-Doped Manganese Dioxide. Catal. Sci. Technol. 2018, 8, 4430–4439. [Google Scholar] [CrossRef]
- Hansen, T.S.; Sádaba, I.; García-Suárez, E.J.; Riisager, A. Cu Catalyzed Oxidation of 5-Hydroxymethylfurfural to 2,5-Diformylfuran and 2,5-Furandicarboxylic Acid under Benign Reaction Conditions. Appl. Catal. A Gen. 2013, 456, 44–50. [Google Scholar] [CrossRef]
- Hou, Q.; Qi, X.; Zhen, M.; Qian, H.; Nie, Y.; Bai, C.; Zhang, S.; Bai, X.; Ju, M. Biorefinery Roadmap Based on Catalytic Production and Upgrading 5-Hydroxymethylfurfural. Green Chem. 2021, 23, 119–231. [Google Scholar] [CrossRef]
- Pal, P.; Saravanamurugan, S. Recent Advances in the Development of 5-Hydroxymethylfurfural Oxidation with Base (Nonprecious)-Metal-Containing Catalysts. ChemSusChem 2019, 12, 145–163. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Qian, H.; Hou, Q.; Ju, M. The Functional and Synergetic Optimization of the Thermal-Catalytic System for the Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Diformylfuran: A Review. Green Chem. 2023, 25, 893–914. [Google Scholar] [CrossRef]
- Dai, J. Synthesis of 2,5-Diformylfuran from Renewable Carbohydrates and Its Applications: A Review. Green Energy Environ. 2021, 6, 22–32. [Google Scholar] [CrossRef]
- Domínguez de María, P.; Guajardo, N. Biocatalytic Valorization of Furans: Opportunities for Inherently Unstable Substrates. ChemSusChem 2017, 10, 4123–4134. [Google Scholar] [CrossRef]
- Hu, L.; He, A.; Liu, X.; Xia, J.; Xu, J.; Zhou, S.; Xu, J. Biocatalytic Transformation of 5-Hydroxymethylfurfural into High-Value Derivatives: Recent Advances and Future Aspects. ACS Sustain. Chem. Eng. 2018, 6, 15915–15935. [Google Scholar] [CrossRef]
- Troiano, D.; Orsat, V.; Dumont, M.-J. Status of Biocatalysis in the Production of 2,5-Furandicarboxylic Acid. ACS Catal. 2020, 10, 9145–9169. [Google Scholar] [CrossRef]
- Carro, J.; Ferreira, P.; Rodríguez, L.; Prieto, A.; Serrano, A.; Balcells, B.; Ardá, A.; Jiménez-Barbero, J.; Gutiérrez, A.; Ullrich, R.; et al. 5-Hydroxymethylfurfural Conversion by Fungal Aryl-alcohol Oxidase and Unspecific Peroxygenase. FEBS J. 2015, 282, 3218–3229. [Google Scholar] [CrossRef]
- Serrano, A.; Calviño, E.; Carro, J.; Sánchez-Ruiz, M.I.; Cañada, F.J.; Martínez, A.T. Complete Oxidation of Hydroxymethylfurfural to Furandicarboxylic Acid by Aryl-Alcohol Oxidase. Biotechnol. Biofuels 2019, 12, 217. [Google Scholar] [CrossRef] [PubMed]
- Ilkaeva, M.; Krivtsov, I.; García-López, E.I.; Marcì, G.; Khainakova, O.; García, J.R.; Palmisano, L.; Díaz, E.; Ordóñez, S. Selective Photocatalytic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxaldehyde by Polymeric Carbon Nitride-Hydrogen Peroxide Adduct. J. Catal. 2018, 359, 212–222. [Google Scholar] [CrossRef]
- Li, C.; Na, Y. Recent Advances in Photocatalytic Oxidation of 5-Hydroxymethylfurfural. ChemPhotoChem 2021, 5, 502–511. [Google Scholar] [CrossRef]
- Su, T.; Zhao, D.; Wang, Y.; Lü, H.; Varma, R.S.; Len, C. Innovative Protocols in the Catalytic Oxidation of 5-Hydroxymethylfurfural. ChemSusChem 2021, 14, 266–280. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Xu, R.; Jia, X.; Liu, Z.; Chen, H.; Lu, T. Recent Advances in the Photocatalytic Oxidation of 5-Hydroxymethylfurfural to 2,5-Diformylfuran. In Biomass Conversion and Biorefinery; Springer: Berlin/Heidelberg, Germany, 2023. [Google Scholar] [CrossRef]
- Kisszekelyi, P.; Hardian, R.; Vovusha, H.; Chen, B.; Zeng, X.; Schwingenschlögl, U.; Kupai, J.; Szekely, G. Selective Electrocatalytic Oxidation of Biomass-Derived 5-Hydroxymethylfurfural to 2,5-Diformylfuran: From Mechanistic Investigations to Catalyst Recovery. ChemSusChem 2020, 13, 3127–3136. [Google Scholar] [CrossRef]
- Meng, Y.; Yang, S.; Li, H. Electro- and Photocatalytic Oxidative Upgrading of Bio-Based 5-Hydroxymethylfurfural. ChemSusChem 2022, 15, e202102581. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.-Z.; Li, Y.-M.; Zong, M.-H.; Wu, H.; Li, N. Enzyme-Catalyzed Selective Oxidation of 5-Hydroxymethylfurfural (HMF) and Separation of HMF and 2,5-Diformylfuran Using Deep Eutectic Solvents. Green Chem. 2015, 17, 3718–3722. [Google Scholar] [CrossRef]
- Mathieu, Y.; Offen, W.A.; Forget, S.M.; Ciano, L.; Viborg, A.H.; Blagova, E.; Henrissat, B.; Walton, P.H.; Davies, G.J.; Brumer, H. Discovery of a Fungal Copper Radical Oxidase with High Catalytic Efficiency toward 5-Hydroxymethylfurfural and Benzyl Alcohols for Bioprocessing. ACS Catal. 2020, 10, 3042–3058. [Google Scholar] [CrossRef]
- Viña-Gonzalez, J.; Martinez, A.T.; Guallar, V.; Alcalde, M. Sequential Oxidation of 5-Hydroxymethylfurfural to Furan-2,5-Dicarboxylic Acid by an Evolved Aryl-Alcohol Oxidase. BBA Proteins Proteom. 2020, 1868, 140293. [Google Scholar] [CrossRef]
- Dijkman, W.P.; Fraaije, M.W. Discovery and Characterization of a 5-Hydroxymethylfurfural Oxidase from Methylovorus sp. Strain MP688. Appl. Environ. Microbiol. 2014, 80, 1082–1090. [Google Scholar] [CrossRef]
- Li, N.; Zong, M.-H. (Chemo)Biocatalytic Upgrading of Biobased Furanic Platforms to Chemicals, Fuels, and Materials: A Comprehensive Review. ACS Catal. 2022, 12, 10080–10114. [Google Scholar] [CrossRef]
- Riva, S. Laccases: Blue Enzymes for Green Chemistry. Trends Biotechnol. 2006, 24, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Kudanga, T.; Nemadziva, B.; Le Roes-Hill, M. Laccase Catalysis for the Synthesis of Bioactive Compounds. Appl. Microbiol. Biotechnol. 2017, 101, 13–33. [Google Scholar] [CrossRef]
- Martínková, L.; Křístková, B.; Křen, V. Laccases and Tyrosinases in Organic Synthesis. Int. J. Mol. Sci. 2022, 23, 3462. [Google Scholar] [CrossRef]
- Tromp, S.A.; Matijošytė, I.; Sheldon, R.A.; Arends, I.W.C.E.; Mul, G.; Kreutzer, M.T.; Moulijn, J.A.; de Vries, S. Mechanism of Laccase-TEMPO-Catalyzed Oxidation of Benzyl Alcohol. ChemCatChem 2010, 2, 827–833. [Google Scholar] [CrossRef]
- Mogharabi, M.; Faramarzi, M.A. Laccase and Laccase-Mediated Systems in the Synthesis of Organic Compounds. Adv. Synth. Catal. 2014, 356, 897–927. [Google Scholar] [CrossRef]
- Mate, D.M.; Alcalde, M. Laccase: A Multi-Purpose Biocatalyst at the Forefront of Biotechnology. Microb. Biotechnol. 2017, 10, 1457–1467. [Google Scholar] [CrossRef] [PubMed]
- Cannatelli, M.D.; Ragauskas, A.J. Two Decades of Laccases: Advancing Sustainability in the Chemical Industry. Chem. Rec. 2017, 17, 122–140. [Google Scholar] [CrossRef]
- Cañas, A.I.; Camarero, S. Laccases and Their Natural Mediators: Biotechnological Tools for Sustainable Eco-Friendly Processes. Biotechnol. Adv. 2010, 28, 694–705. [Google Scholar] [CrossRef]
- Arnold, F.H. Innovation by Evolution: Bringing New Chemistry to Life (Nobel Lecture). Angew. Chem. Int. Ed. 2018, 130, 14420–14426. [Google Scholar] [CrossRef]
- Ali, M.; Ishqi, H.M.; Husain, Q. Enzyme Engineering: Reshaping the Biocatalytic Functions. Biotechnol. Bioeng. 2020, 117, 1877–1894. [Google Scholar] [CrossRef] [PubMed]
- Gargiulo, S.; Soumillion, P. Directed Evolution for Enzyme Development in Biocatalysis. Curr. Opin. Chem. Biol. 2021, 61, 107–113. [Google Scholar] [CrossRef]
- Bornscheuer, U.T.; Huisman, G.W.; Kazlauskas, R.J.; Lutz, S.; Moore, J.C.; Robins, K. Engineering the Third Wave of Biocatalysis. Nature 2012, 485, 185–194. [Google Scholar] [CrossRef]
- Bunzel, H.A.; Garrabou, X.; Pott, M.; Hilvert, D. Speeding up Enzyme Discovery and Engineering with Ultrahigh-Throughput Methods. Curr. Opin. Struct. Biol. 2018, 48, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Hecko, S.; Schiefer, A.; Badenhorst, C.P.S.; Fink, M.J.; Mihovilovic, M.D.; Bornscheuer, U.T.; Rudroff, F. Enlightening the Path to Protein Engineering: Chemoselective Turn-On Probes for High-Throughput Screening of Enzymatic Activity. Chem. Rev. 2023, 123, 2832–2901. [Google Scholar] [CrossRef]
- Birmingham, W.R.; Pedersen, A.T.; Dias Gomes, M.; Madsen, M.B.; Breuer, M.; Woodley, J.M.; Turner, N.J. Toward Scalable Biocatalytic Conversion of 5-Hydroxymethylfurfural by Galactose Oxidase Using Coordinated Reaction and Enzyme Engineering. Nat. Commun. 2021, 12, 4946. [Google Scholar] [CrossRef] [PubMed]
- Delagrave, S.; Murphy, D.J.; Pruss, J.L.R.; Maffia, A.M.; Marrs, B.L.; Bylina, E.J.; Coleman, W.J.; Grek, C.L.; Dilworth, M.R.; Yang, M.M.; et al. Application of a Very High-Throughput Digital Imaging Screen to Evolve the Enzyme Galactose Oxidase. Protein Eng. 2001, 14, 261–267. [Google Scholar] [CrossRef]
- Hui, Z.; Gandini, A. Polymeric Schiff Bases Bearing Furan Moieties. Eur. Polym. J. 1992, 28, 1461–1469. [Google Scholar] [CrossRef]
- Sánchez-Viesca, F.; Gómez, R. Reactivities Involved in the Seliwanoff Reaction. Mod. Chem. 2018, 6, 1–5. [Google Scholar] [CrossRef]
- Gerwig, G.J. The Art of Carbohydrate Analysis. In Techniques in Life Science and Biomedicine for the Non-Expert; Kalyuzhny, A.E., Ed.; Springer International Publishing: Cham, Switzerland, 2021; ISBN 978-3-030-77790-6. [Google Scholar]
- Wagner, B.; Beil-Seidler, S. Agent and Method for Identifying Furfurals. WO2006042600A1, 27 April 2006. [Google Scholar]
- Castoldi, K.; Milani, M.I.; Rossini, E.L.; Pezza, L.; Pezza, H.R. Flow Injection Analysis of 5-(Hydroxymethyl)-2-Furaldehyde in Honey by a Modified Winkler Method. Anal. Sci. 2016, 32, 413–417. [Google Scholar] [CrossRef]
- Méalares, C.; Gandini, A. Polymeric Schiff Bases Bearing Furan Moieties 2. Polyazines and Polyazomethines. Polym. Int. 1996, 40, 33–39. [Google Scholar] [CrossRef]
- Xiang, T.; Liu, X.; Yi, P.; Guo, M.; Chen, Y.; Wesdemiotis, C.; Xu, J.; Pang, Y. Schiff Base Polymers Derived from 2,5-Diformylfuran. Polym. Int. 2013, 62, 1517–1523. [Google Scholar] [CrossRef]
- Li, G.; Yu, K.; Noordijk, J.; Meeusen-Wierts, M.H.M.; Gebben, B.; oude Lohuis, P.A.M.; Schotman, A.H.M.; Bernaerts, K.V. Hydrothermal Polymerization towards Fully Biobased Polyazomethines. Chem. Commun. 2020, 56, 9194–9197. [Google Scholar] [CrossRef]
- Milić, M.; Byström, E.; Domínguez de María, P.; Kara, S. Enzymatic Cascade for the Synthesis of 2,5-Furandicarboxylic Acid in Biphasic and Microaqueous Conditions: ‘Media-Agnostic’ Biocatalysts for Biorefineries. ChemSusChem 2022, 15, e202102704. [Google Scholar] [CrossRef] [PubMed]
- Tsilomelekis, G.; Josephson, T.R.; Nikolakis, V.; Caratzoulas, S. Origin of 5-Hydroxymethylfurfural Stability in Water/Dimethyl Sulfoxide Mixtures. ChemSusChem 2014, 7, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Despax, S.; Maurer, C.; Estrine, B.; Le Bras, J.; Hoffmann, N.; Marinkovic, S.; Muzart, J. Fast and Efficient DMSO-Mediated Dehydration of Carbohydrates into 5-Hydroxymethylfurfural. Catal. Commun. 2014, 51, 5–9. [Google Scholar] [CrossRef]
- Wei, H.; Wang, Z.; Li, H. Sustainable Biomass Hydrodeoxygenation in Biphasic Systems. Green Chem. 2022, 24, 1930–1950. [Google Scholar] [CrossRef]
- Martínez-Montero, L.; Gotor, V.; Gotor-Fernández, V.; Lavandera, I. But-2-ene-1,4-diamine and But-2-ene-1,4-diol as Donors for Thermodynamically Favored Transaminase- and Alcohol Dehydrogenase-Catalyzed Processes. Adv. Synth. Catal. 2016, 358, 1618–1624. [Google Scholar] [CrossRef]
- Monti, D.; Forchin, M.C.; Crotti, M.; Parmeggiani, F.; Gatti, F.G.; Brenna, E.; Riva, S. Cascade Coupling of Ene-Reductases and ω-Transaminases for the Stereoselective Synthesis of Diastereomerically Enriched Amines. ChemCatChem 2015, 7, 3106–3109. [Google Scholar] [CrossRef]
- Pintor, A.; Cascelli, N.; Volkov, A.; Gotor-Fernández, V.; Lavandera, I. Biotransamination of Furan-Based Aldehydes with Isopropylamine: Enzyme Screening and pH Influence. ChemBioChem 2023, e202300514. [Google Scholar] [CrossRef]
- Albarrán-Velo, J.; López-Iglesias, M.; Gotor, V.; Gotor-Fernández, V.; Lavandera, I. Synthesis of Nitrogenated Lignin-Derived Compounds and Reactivity with Laccases. Study of Their Application in Mild Chemoenzymatic Oxidative Processes. RSC Adv. 2017, 7, 50459–50471. [Google Scholar] [CrossRef]
- Cascelli, N.; Lettera, V.; Sannia, G.; Gotor-Fernández, V.; Lavandera, I. Laccases from Pleurotus ostreatus Applied to the Oxidation of Furfuryl Alcohol for the Synthesis of Key Compounds for Polymer Industry. ChemSusChem 2023, 16, e202300226. [Google Scholar] [CrossRef] [PubMed]
- Lilga, M.A.; Hallen, R.T.; Gray, M. Production of Oxidized Derivatives of 5-Hydroxymethylfurfural (HMF). Top. Catal. 2010, 53, 1264–1269. [Google Scholar] [CrossRef]
- McKenna, S.M.; Leimkühler, S.; Herter, S.; Turner, N.J.; Carnell, A.J. Enzyme Cascade Reactions: Synthesis of Furandicarboxylic Acid (FDCA) and Carboxylic Acids Using Oxidases in Tandem. Green Chem. 2015, 17, 3271–3275. [Google Scholar] [CrossRef]
- Cajnko, M.M.; Novak, U.; Grilc, M.; Likozar, B. Enzymatic Conversion Reactions of 5-Hydroxymethylfurfural (HMF) to Bio-Based 2,5-Diformylfuran (DFF) and 2,5-Furandicarboxylic Acid (FDCA) with Air: Mechanisms, Pathways and Synthesis Selectivity. Biotechnol. Biofuels 2020, 13, 66. [Google Scholar] [CrossRef]
- Saikia, K.; Rathankumar, A.K.; Kumar, P.S.; Varjani, S.; Nizar, M.; Lenin, R.; George, J.; Vaidyanathan, V.K. Recent Advances in Biotransformation of 5-Hydroxymethylfurfural: Challenges and Future Aspects. J. Chem. Technol. Biotechnol. 2022, 97, 409–419. [Google Scholar] [CrossRef]
- Zhang, J.-H.; Chung, T.D.Y.; Oldenburg, K.R. A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assay. J. Biomol. Screen. 1999, 4, 67–73. [Google Scholar] [CrossRef]
- Inglese, J.; Shamu, C.E.; Guy, R.K. Reporting Data from High-Throughput Screening of Small-Molecule Libraries. Nat. Chem. Biol. 2007, 3, 438–441. [Google Scholar] [CrossRef]
- Inglese, J.; Johnson, R.L.; Simeonov, A.; Xia, M.; Zheng, W.; Austin, C.P.; Auld, D.S. High-Throughput Screening Assays for the Identification of Chemical Probes. Nat. Chem. Biol. 2007, 3, 466–479. [Google Scholar] [CrossRef]
- Médici, R.; Domínguez de María, P.; Otten, L.G.; Straathof, A.J.J. A High-Throughput Screening Assay for Amino Acid Decarboxylase Activity. Adv. Synth. Catal. 2011, 353, 2369–2376. [Google Scholar] [CrossRef]
- Fabbrini, M.; Galli, C.; Gentili, P. Comparing the Catalytic Efficiency of Some Mediators of Laccase. J. Mol. Catal. B: Enzym. 2002, 16, 231–240. [Google Scholar] [CrossRef]
- Kulys, J.; Vidziunaite, R. Kinetics of Laccase-Catalysed TEMPO Oxidation. J. Mol. Catal. B: Enzym. 2005, 37, 79–83. [Google Scholar] [CrossRef]
- Isogai, A.; Hänninen, T.; Fujisawa, S.; Saito, T. Review: Catalytic Oxidation of Cellulose with Nitroxyl Radicals under Aqueous Conditions. Prog. Polym. Sci. 2018, 86, 122–148. [Google Scholar] [CrossRef]
- Díaz-Rodríguez, A.; Martínez-Montero, L.; Lavandera, I.; Gotor, V.; Gotor-Fernández, V. Laccase/2,2,6,6-Tetramethylpiperidinoxyl Radical (TEMPO): An Efficient Catalytic System for Selective Oxidations of Primary Hydroxy and Amino Groups in Aqueous and Biphasic Media. Adv. Synth. Catal. 2014, 356, 2321–2329. [Google Scholar] [CrossRef]
- Kȩdziora, K.; Díaz-Rodríguez, A.; Lavandera, I.; Gotor-Fernández, V.; Gotor, V. Laccase/TEMPO-Mediated System for the Thermodynamically Disfavored Oxidation of 2,2-Dihalo-1-Phenylethanol Derivatives. Green Chem. 2014, 16, 2448–2453. [Google Scholar] [CrossRef]
- Díaz-Rodríguez, A.; Ríos-Lombardía, N.; Sattler, J.H.; Lavandera, I.; Gotor-Fernández, V.; Kroutil, W.; Gotor, V. Deracemisation of Profenol Core by Combining Laccase/TEMPO-Mediated Oxidation and Alcohol Dehydrogenase-Catalysed Dynamic Kinetic Resolution. Catal. Sci. Technol. 2015, 5, 1443–1446. [Google Scholar] [CrossRef]
- Jönsson, L.; Sjöström, K.; Häggström, I.; Nyman, P.O. Characterization of a Laccase Gene from the White-Rot Fungus Trametes versicolor and Structural Features of Basidiomycete Laccases. Biochim. Biophys. Acta-Protein Struct. Molec. Enzym. 1995, 1251, 210–215. [Google Scholar] [CrossRef]
- Garzillo, A.M.; Colao, M.C.; Buonocore, V.; Oliva, R.; Falcigno, L.; Saviano, M.; Santoro, A.M.; Zappala, R.; Bonomo, R.P.; Bianco, C.; et al. Structural and Kinetic Characterization of Native Laccases from Pleurotus ostreatus, Rigidoporus lignosus, and Trametes trogii. J. Protein Chem. 2001, 20, 191–201. [Google Scholar] [CrossRef]
- Troiano, D.; Orsat, V.; Dumont, M.-J. Use of Filamentous Fungi as Biocatalysts in the Oxidation of 5-(Hydroxymethyl)Furfural (HMF). Bioresour. Technol. 2022, 344, 126169. [Google Scholar] [CrossRef]
- Zhang, C.; Chang, X.; Zhu, L.; Xing, Q.; You, S.; Qi, W.; Su, R.; He, Z. Highly Efficient and Selective Production of FFCA from CotA-TJ102 Laccase-Catalyzed Oxidation of 5-HMF. Int. J. Biol. Macromol. 2019, 128, 132–139. [Google Scholar] [CrossRef]
- Wei, J.; Yang, L.; Feng, W. Efficient Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid by a Two-Enzyme System: Combination of a Bacterial Laccase with Catalase. Enzyme Microb. Technol. 2023, 162, 110144. [Google Scholar] [CrossRef] [PubMed]
- Zou, L.; Zheng, Z.; Tan, H.; Xu, Q.; Ouyang, J. Synthesis of 2,5-Furandicarboxylic Acid by a TEMPO/Laccase System Coupled with Pseudomonas putida KT2440. RSC Adv. 2020, 10, 21781–21788. [Google Scholar] [CrossRef] [PubMed]
- Lettera, V.; Piscitelli, A.; Leo, G.; Birolo, L.; Pezzella, C.; Sannia, G. Identification of a New Member of Pleurotus ostreatus Laccase Family from Mature Fruiting Body. Fungal Biol. 2010, 114, 724–730. [Google Scholar] [CrossRef]
- Pezzella, C.; Giacobelli, V.G.; Lettera, V.; Olivieri, G.; Cicatiello, P.; Sannia, G.; Piscitelli, A. A Step Forward in Laccase Exploitation: Recombinant Production and Evaluation of Techno-Economic Feasibility of the Process. J. Biotechnol. 2017, 259, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Palmeiri, G.; Giardina, P.; Marzullo, L.; Desiderio, B.; Nittii, G.; Cannio, R.; Sannia, G. Stability and Activity of a Phenol Oxidase from the Ligninolytic Fungus Pleurotus ostreatus. Appl. Microbiol. Biotechnol. 1993, 39, 632–636. [Google Scholar] [CrossRef] [PubMed]
- Macellaro, G.; Baratto, M.C.; Piscitelli, A.; Pezzella, C.; Fabrizi de Biani, F.; Palmese, A.; Piumi, F.; Record, E.; Basosi, R.; Sannia, G. Effective Mutations in a High Redox Potential Laccase from Pleurotus ostreatus. Appl. Microbiol. Biotechnol. 2014, 98, 4949–4961. [Google Scholar] [CrossRef]
- Mocak, J.; Bond, A.M.; Mitchell, S.; Scollary, G. A Statistical Overview of Standard (IUPAC and ACS) and New Procedures for Determining the Limits of Detection and Quantification: Application to Voltammetric and Stripping Techniques (Technical Report). Pure Appl. Chem. 1997, 69, 297–328. [Google Scholar] [CrossRef]
- Ershadi, S.; Shayanfar, A. Are LOD and LOQ Reliable Parameters for Sensitivity Evaluation of Spectroscopic Methods? J. AOAC Int. 2018, 101, 1212–1213. [Google Scholar] [CrossRef]
- Piscitelli, A.; Giardina, P.; Mazzoni, C.; Sannia, G. Recombinant Expression of Pleurotus ostreatus Laccases in Kluyveromyces lactis and Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2005, 69, 428–439. [Google Scholar] [CrossRef]
Reaction System | Linear Range (μM) | Calibration Curve a | SD of Calibration Curve | LOD (μM) | LOQ (μM) |
---|---|---|---|---|---|
Plain Buffer b | 6–200 | A = 0.0008 × C − 0.0003 | 2.182 × 10−3 | 8.8 | 26.7 |
DMSO 15% (v/v) | 6–300 | A = 0.0014 × C − 0.0038 | 3.556 × 10−3 | 8.4 | 25.5 |
Side Product Combined with DFF | Z’ Value |
---|---|
HMF | 0.72 |
HFCA | 0.68 |
FFCA | 0.60 |
FDCA | 0.70 |
Laccase | Reaction Medium a | Initial Rate for DFF Production from HMF (μmol DFF·min−1·U−1) |
---|---|---|
LTv | Citrate buffer, 100 mM, pH 5 | 21.7 |
POXC | Phosphate buffer, 100 mM, pH 6.5 | 13.9 |
POXA1b | Citrate buffer, 100 mM, pH 5.5 | 5.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cascelli, N.; Gotor-Fernández, V.; Lavandera, I.; Sannia, G.; Lettera, V. Spectrophotometric Assay for the Detection of 2,5-Diformylfuran and Its Validation through Laccase-Mediated Oxidation of 5-Hydroxymethylfurfural. Int. J. Mol. Sci. 2023, 24, 16861. https://doi.org/10.3390/ijms242316861
Cascelli N, Gotor-Fernández V, Lavandera I, Sannia G, Lettera V. Spectrophotometric Assay for the Detection of 2,5-Diformylfuran and Its Validation through Laccase-Mediated Oxidation of 5-Hydroxymethylfurfural. International Journal of Molecular Sciences. 2023; 24(23):16861. https://doi.org/10.3390/ijms242316861
Chicago/Turabian StyleCascelli, Nicoletta, Vicente Gotor-Fernández, Iván Lavandera, Giovanni Sannia, and Vincenzo Lettera. 2023. "Spectrophotometric Assay for the Detection of 2,5-Diformylfuran and Its Validation through Laccase-Mediated Oxidation of 5-Hydroxymethylfurfural" International Journal of Molecular Sciences 24, no. 23: 16861. https://doi.org/10.3390/ijms242316861
APA StyleCascelli, N., Gotor-Fernández, V., Lavandera, I., Sannia, G., & Lettera, V. (2023). Spectrophotometric Assay for the Detection of 2,5-Diformylfuran and Its Validation through Laccase-Mediated Oxidation of 5-Hydroxymethylfurfural. International Journal of Molecular Sciences, 24(23), 16861. https://doi.org/10.3390/ijms242316861