The Prospect of Hydrolytic Enzymes from Bacillus Species in the Biological Control of Pests and Diseases in Forest and Fruit Tree Production
Abstract
:1. Introduction
2. Hydrolytic Enzymes in Biological Control
2.1. The Bio-Fungicide Role of Hydrolytic Enzymes
2.2. The Entomopathogenic Role of Hydrolytic Enzymes
3. The Major Lytic Enzymes and Their Antimicrobial and Insecticidal Activity
3.1. The Prospect of Chitinases as Antifungal and Insecticidal Agents
3.2. The Prospect of Proteases from Bacillus sp. as Antifungal and Insecticidal/Nematocidal Agents
3.3. The Prospect of β-Glucanases from Bacillus sp. in Biological Control
3.4. The Role of Lipases from Bacillus sp. in Biological Control
3.5. The Role of Amylases from Bacillus sp. in Biological Control
3.6. The Role of Cellulases from Bacillus sp. in Biological Control
4. Prospects for the Practical Application of Lytic Enzymes from Bacillus sp. as Alternatives to Chemical Pesticides in Forest and Fruit Tree Production
4.1. The Biocontrol Prospect of Hydrolytic Enzymes from Bacillus sp. against Fungal/Oomycete Phytopathogens and Insect Pests
4.2. The Biocontrol Prospect of Hydrolytic Enzymes from Bacillus sp. against Viral Diseases and Virus-Transmitting Vectors
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cerda, R.; Avelino, J.; Gary, C.; Tixier, P.; Lechevallier, E.; Allinne, C. Primary and secondary yield losses caused by pests and diseases: Assessment and modeling in coffee. PLoS ONE 2017, 12, e0169133. [Google Scholar] [CrossRef] [PubMed]
- Brown, B.; Wylie, F. Diseases and pests of Australian forest nurseries: Past and present. In Proceedings of the First Meeting of IUFRO Working Party S2.07–09 (Diseases and Insects in Forest Nurseries), Victoria, BC, Canada, 22–30 August 1990; pp. 3–15. [Google Scholar]
- Poteri, M.; Lilja, A.; Petäistö, R. Control of nursery diseases and pests in Finnish forest tree nurseries. Work. Pap. Finn. For. Res. Inst. 2005, 11, 19–26. [Google Scholar]
- South, D.B.; Zwolinksi, J.B. Chemicals used in southern forest nurseries. South. J. Appl. For. 1996, 20, 127–135. [Google Scholar] [CrossRef]
- Weiland, J.E.; Santamaria, L.; Grünwald, N.J. Sensitivity of Pythium irregulare, P. sylvaticum, and P. ultimum from forest nurseries to mefenoxam and fosetyl-Al, and control of Pythium damping-off. Plant Dis. 2014, 98, 937–942. [Google Scholar] [CrossRef]
- Pimentel, D. Green revolution agriculture and chemical hazards. Sci. Total Environ. 1996, 188, S86–S98. [Google Scholar] [CrossRef]
- Dhaliwal, G.; Jindal, V.; Dhawan, A. Insect pest problems and crop losses: Changing trends. Indian J. Ecol. 2010, 37, 1–7. [Google Scholar]
- Abubakar, Y.; Tijjani, H.; Egbuna, C.; Adetunji, C.O.; Kala, S.; Kryeziu, T.L.; Ifemeje, J.C.; Patrick-Iwuanyanwu, K.C. Pesticides, history, and classification. In Natural Remedies for Pest, Disease and Weed Control; Chukwuebuka, E., Barbara, S., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 29–42. [Google Scholar] [CrossRef]
- Moyer, M.; O’Neal, S. Pest Management Strategic Plan for Washington State Wine Grape Production; Summary of a Workshop Held on 8 July 2014; Washington State University: Prosser, WA, USA, 2014. [Google Scholar]
- Kole, R.; Roy, K.; Panja, B.; Sankarganesh, E.; Mandal, T.; Worede, R. Use of pesticides in agriculture and emergence of resistant pests. Indian J. Anim. Hlth 2019, 58, 53–70. [Google Scholar] [CrossRef]
- Hawkins, N.J.; Bass, C.; Dixon, A.; Neve, P. The evolutionary origins of pesticide resistance. Biol. Rev. 2019, 94, 135–155. [Google Scholar] [CrossRef]
- Guedes, R.N.C.; Walse, S.S.; Throne, J.E. Sublethal exposure, insecticide resistance, and community stress. Curr. Opin. Insect Sci. 2017, 21, 47–53. [Google Scholar] [CrossRef]
- Thakore, Y. The biopesticide market for global agricultural use. Ind. Biotechnol. 2006, 2, 194–208. [Google Scholar] [CrossRef]
- Zaller, J.G. Daily Poison: Pesticides—An Underestimated Danger, 1st ed.; Springer Nature: Cham, Switzerland, 2020; p. 315. [Google Scholar] [CrossRef]
- Kumar, V.; Kumar, P. Pesticides in agriculture and environment: Impacts on human health. In Contaminants in Agriculture and Environment: Health Risks and Remediation; Kumar, V., Kumar, R., Singh, J., Kumar, P., Eds.; Agro Environ Media, Agriculture and Environmental Science Academy: Haridwar, India, 2019; Volume 1, p. 76. [Google Scholar] [CrossRef]
- Berini, F.; Katz, C.; Gruzdev, N.; Casartelli, M.; Tettamanti, G.; Marinelli, F. Microbial and viral chitinases: Attractive biopesticides for integrated pest management. Biotechnol. Adv. 2018, 36, 818–838. [Google Scholar] [CrossRef] [PubMed]
- Copping, L.G.; Menn, J.J. Biopesticides: A review of their action, applications and efficacy. Pest Manag. Sci. 2000, 56, 651–676. [Google Scholar] [CrossRef]
- Gupta, S.; Dikshit, A. Biopesticides: An ecofriendly approach for pest control. J. Biopestic. 2010, 3, 186–188. [Google Scholar]
- Ferreira, V.B.; Estrella, L.F.; Alves, M.G.R.; Gallistl, C.; Vetter, W.; Silva, T.T.C.; Malm, O.; Torres, J.P.M.; Abadio Finco, F.D.B. Residues of legacy organochlorine pesticides and DDT metabolites in highly consumed fish from the polluted Guanabara Bay, Brazil: Distribution and assessment of human health risk. J. Environ. Sci. Health B 2020, 55, 30–41. [Google Scholar] [CrossRef] [PubMed]
- Bempah, C.K.; Asomaning, J.; Boateng, J. Market basket survey for some pesticides residues in fruits and vegetables from Ghana. J. Microbiol. Biotechnol. Food Sci. 2020, 9, 850–871. [Google Scholar]
- Scheepmaker, J.; Butt, T. Natural and released inoculum levels of entomopathogenic fungal biocontrol agents in soil in relation to risk assessment and in accordance with EU regulations. Biocontrol Sci. Technol. 2010, 20, 503–552. [Google Scholar] [CrossRef]
- Bren, A.; Hart, Y.; Dekel, E.; Koster, D.; Alon, U. The last generation of bacterial growth in limiting nutrient. BMC Syst. Biol. 2013, 7, 27. [Google Scholar] [CrossRef]
- Köhl, J.; Booij, K.; Kolnaar, R.; Ravensberg, W.J. Ecological arguments to reconsider data requirements regarding the environmental fate of microbial biocontrol agents in the registration procedure in the European Union. BioControl 2019, 64, 469–487. [Google Scholar] [CrossRef]
- Confortin, T.C.; Spannemberg, S.S.; Todero, I.; Luft, L.; Brun, T.; Alves, E.A.; Kuhn, R.C.; Mazutti, M.A. Microbial enzymes as control agents of diseases and pests in organic agriculture. In New and Future Developments in Microbial Biotechnology and Bioengineering: Microbial Secondary Metabolites Biochemistry and Applications; Gupta, V.K., Pandey, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 321–332. [Google Scholar] [CrossRef]
- Jadhav, H.; Shaikh, S.; Sayyed, R. Role of hydrolytic enzymes of rhizoflora in biocontrol of fungal phytopathogens: An overview. In Rhizotrophs: Plant Growth Promotion to Bioremediation. Microorganisms for Sustainability; Mehnaz, S., Ed.; Springer Nature: Singapore, 2017; Volume 2, pp. 183–203. [Google Scholar] [CrossRef]
- Lopes, F.C.; Martinelli, A.H.S.; John, E.B.O.; Ligabue-Braun, R. Microbial hydrolytic enzymes: Powerful weapons against insect pests. In Microbes for Sustainable Insect Pest Management. Sustainability in Plant and Crop Protection; Khan, M.A., Ahmad, W., Eds.; Springer: Basel, Switzerland, 2021; Volume 17, pp. 1–31. [Google Scholar] [CrossRef]
- Ajuna, H.B.; Kim, I.; Han, Y.S.; Maung, C.E.H.; Kim, K.Y. Aphicidal activity of Bacillus thuringiensis strain AH-2 against cotton aphid (Aphis gossypii). Entomol. Res. 2021, 51, 151–160. [Google Scholar] [CrossRef]
- Bonaterra, A.; Badosa, E.; Daranas, N.; Francés, J.; Roselló, G.; Montesinos, E. Bacteria as biological control agents of plant diseases. Microorganisms 2022, 10, 1759. [Google Scholar] [CrossRef]
- Lee, J.; Kim, S.; Jung, H.; Koo, B.-K.; Han, J.A.; Lee, H.-S. Exploiting bacterial genera as biocontrol agents: Mechanisms, interactions and applications in sustainable agriculture. J. Plant Biol. 2023, 66, 1–14. [Google Scholar] [CrossRef]
- Moon, J.-H.; Won, S.-J.; Maung, C.E.H.; Choi, J.-H.; Choi, S.-I.; Ajuna, H.B.; Ahn, Y.S.; Jo, Y.H. The role of Lysobacter antibioticus HS124 on the control of fall webworm (Hyphantria cunea Drury) and growth promotion of Canadian poplar (Populus canadensis Moench) at Saemangeum reclaimed land in Korea. Microorganisms 2021, 9, 1580. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.-H.; Won, S.-J.; Moon, J.-H.; Kim, C.-W.; Ahn, Y.S. Control of fungal diseases and increase in yields of a cultivated jujube fruit (Zizyphus jujuba Miller var. inermis Rehder) orchard by employing Lysobacter antibioticus HS124. Forests 2019, 10, 1146. [Google Scholar] [CrossRef]
- Simon, J.-C.; Marchesi, J.R.; Mougel, C.; Selosse, M.-A. Host-microbiota interactions: From holobiont theory to analysis. Microbiome 2019, 7, 5. [Google Scholar] [CrossRef] [PubMed]
- Dolatabadian, A. Plant–Microbe Interaction. Biology 2021, 10, 15. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Shao, D.; Jiang, C.; Shi, J.; Li, Q.; Huang, Q.; Rajoka, M.S.R.; Yang, H.; Jin, M. Biological activity of lipopeptides from Bacillus. Appl. Microbiol. Biotechnol. 2017, 101, 5951–5960. [Google Scholar] [CrossRef] [PubMed]
- Villegas-Escobar, V.; González-Jaramillo, L.M.; Ramírez, M.; Moncada, R.N.; Sierra-Zapata, L.; Orduz, S.; Romero-Tabarez, M. Lipopeptides from Bacillus sp. EA-CB0959: Active metabolites responsible for in vitro and in vivo control of Ralstonia solanacearum. Biol. Control 2018, 125, 20–28. [Google Scholar] [CrossRef]
- Ongena, M.; Jacques, P. Bacillus lipopeptides: Versatile weapons for plant disease biocontrol. Trends Microbiol. 2008, 16, 115–125. [Google Scholar] [CrossRef]
- Chen, X.-H.; Scholz, R.; Borriss, M.; Junge, H.; Mögel, G.; Kunz, S.; Borriss, R. Difficidin and bacilysin produced by plant-associated Bacillus amyloliquefaciens are efficient in controlling fire blight disease. J. Biotechnol. 2009, 140, 38–44. [Google Scholar] [CrossRef]
- Miao, S.; Liang, J.; Xu, Y.; Yu, G.; Shao, M. Bacillaene, sharp objects consist in the arsenal of antibiotics produced by Bacillus. J. Cell. Physiol. 2023, 238, 1–15. [Google Scholar] [CrossRef]
- Salazar, F.; Ortiz, A.; Sansinenea, E. A strong antifungal activity of 7-O-Succinyl macrolactin A vs macrolactin A from Bacillus amyloliquefaciens ELI149. Curr. Microbiol. 2020, 77, 3409–3413. [Google Scholar] [CrossRef] [PubMed]
- Choub, V.; Won, S.-J.; Ajuna, H.B.; Moon, J.-H.; Choi, S.-I.; Lim, H.-I.; Ahn, Y.S. Antifungal activity of volatile organic compounds from Bacillus velezensis CE 100 against Colletotrichum gloeosporioides. Horticulturae 2022, 8, 557. [Google Scholar] [CrossRef]
- Zhao, P.; Li, P.; Wu, S.; Zhou, M.; Zhi, R.; Gao, H. Volatile organic compounds (VOCs) from Bacillus subtilis CF-3 reduce anthracnose and elicit active defense responses in harvested litchi fruits. AMB Express 2019, 9, 119. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-Y.; Mao, Z.-C.; Wu, Y.-X.; Ho, H.-H.; He, Y.-Q. Comprehensive volatile organic compounds profiling of Bacillus species with biocontrol properties by head space solid phase microextraction with gas chromatography-mass spectrometry. Biocontrol Sci. Technol. 2015, 25, 132–143. [Google Scholar] [CrossRef]
- Syed, T.; Askari, M.; Meng, Z.; Li, Y.; Abid, M.A.; Wei, Y.; Guo, S.; Liang, C.; Zhang, R. Current insights on vegetative insecticidal proteins (Vip) as next generation pest killers. Toxins 2020, 12, 522. [Google Scholar] [CrossRef] [PubMed]
- Palma, L.; Muñoz, D.; Berry, C.; Murillo, J.; De Escudero, I.R.; Caballero, P. Molecular and insecticidal characterization of a novel cry-related protein from Bacillus thuringiensis toxic against Myzus persicae. Toxins 2014, 6, 3144–3156. [Google Scholar] [CrossRef] [PubMed]
- Brar, S.K.; Verma, M.; Tyagi, R.; Valéro, J. Recent advances in downstream processing and formulations of Bacillus thuringiensis based biopesticides. Process Biochem. 2006, 41, 323–342. [Google Scholar] [CrossRef]
- Bravo, A.; Likitvivatanavong, S.; Gill, S.S.; Soberón, M. Bacillus thuringiensis: A story of a successful bioinsecticide. Insect Biochem. Mol. Biol. 2011, 41, 423–431. [Google Scholar] [CrossRef]
- Carrière, Y.; Sisterson, M.; Tabashnik, B. Resistance management. In Insect Pest Management; Horowitz, A.R., Ishaaya, I., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 65–95. [Google Scholar] [CrossRef]
- Gui-ming, L.; Xiang-yue, Z.; Lu-quan, W. The use of Bacillus thuringiensis on forest integrated pest management. J. For. Res. 2001, 12, 51–54. [Google Scholar] [CrossRef]
- Martin, P.A.; Travers, R.S. Worldwide abundance and distribution of Bacillus thuringiensis isolates. Appl. Environ. Microbiol. 1989, 55, 2437–2442. [Google Scholar] [CrossRef]
- Blum, B.; Nicot, P.C.; Köhl, J.; Ruocco, M. Identified difficulties and conditions for field success of biocontrol. 3. Economic aspects: Cost analysis. In Classical and Augmentative Biological Control against Diseases and Pests: Critical Status Analysis and Review of Factors; Nicot, P.C., Ed.; IOBC/WPRS, 2011; p. 58. ISBN 978-92-9067-243-2. Available online: https://iobc-wprs.org/publications/ (accessed on 1 October 2023).
- Choub, V.; Ajuna, H.B.; Won, S.-J.; Moon, J.-H.; Choi, S.-I.; Maung, C.E.H.; Kim, C.-W.; Ahn, Y.S. Antifungal activity of Bacillus velezensis CE 100 against anthracnose disease (Colletotrichum gloeosporioides) and growth promotion of walnut (Juglans regia L.) trees. Int. J. Mol. Sci. 2021, 22, 10438. [Google Scholar] [CrossRef] [PubMed]
- Saxena, A.K.; Kumar, M.; Chakdar, H.; Anuroopa, N.; Bagyaraj, D. Bacillus species in soil as a natural resource for plant health and nutrition. J. Appl. Microbiol. 2020, 128, 1583–1594. [Google Scholar] [CrossRef] [PubMed]
- Won, S.-J.; Moon, J.-H.; Ajuna, H.B.; Choi, S.-I.; Maung, C.E.H.; Lee, S.; Ahn, Y.S. Biological control of leaf blight disease caused by Pestalotiopsis maculans and growth promotion of Quercus acutissima Carruth container seedlings using Bacillus velezensis CE 100. Int. J. Mol. Sci. 2021, 22, 11296. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.-H.; Won, S.-J.; Maung, C.E.H.; Choi, J.-H.; Choi, S.-I.; Ajuna, H.B.; Ahn, Y.S. Bacillus velezensis CE 100 inhibits root rot diseases (Phytophthora spp.) and promotes growth of Japanese cypress (Chamaecyparis obtusa Endlicher) seedlings. Microorganisms 2021, 9, 821. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Kim, T.Y.; Won, S.-J.; Moon, J.-H.; Ajuna, H.B.; Kim, K.Y.; Ahn, Y.S. Control of fungal diseases and fruit yield improvement of strawberry using Bacillus velezensis CE 100. Microorganisms 2022, 10, 365. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-L.; Shih, I.-L.; Liang, T.-W.; Wang, C.-H. Purification and characterization of two antifungal chitinases extracellularly produced by Bacillus amyloliquefaciens V656 in a shrimp and crab shell powder medium. J. Agric. Food Chem. 2002, 50, 2241–2248. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.-T.; Chen, C.-S.; Wang, S.-L. An antifungal chitinase produced by Bacillus cereus with shrimp and crab shell powder as a carbon source. Curr. Microbiol. 2003, 47, 0102–0108. [Google Scholar] [CrossRef]
- Chang, W.-T.; Chen, M.-L.; Wang, S.-L. An antifungal chitinase produced by Bacillus subtilis using chitin waste as a carbon source. World J. Microbiol. Biotechnol. 2010, 26, 945–950. [Google Scholar] [CrossRef]
- Chang, W.-T.; Chen, Y.-C.; Jao, C.-L. Antifungal activity and enhancement of plant growth by Bacillus cereus grown on shellfish chitin wastes. Bioresour. Technol. 2007, 98, 1224–1230. [Google Scholar] [CrossRef]
- Moon, J.-H.; Ajuna, H.B.; Won, S.-J.; Choub, V.; Choi, S.-I.; Yun, J.-Y.; Hwang, W.J.; Park, S.W.; Ahn, Y.S. The anti-termite activity of Bacillus licheniformis PR2 against the subterranean termite, Reticulitermes speratus kyushuensis Morimoto (Isoptera: Rhinotermitidae). Forests 2023, 14, 1000. [Google Scholar] [CrossRef]
- Feofilova, E. The fungal cell wall: Modern concepts of its composition and biological function. Microbiology 2010, 79, 711–720. [Google Scholar] [CrossRef]
- Gow, N.A.; Latge, J.-P.; Munro, C.A. The fungal cell wall: Structure, biosynthesis, and function. Microbiol. Spectr. 2017, 5, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Free, S.J. Fungal cell wall organization and biosynthesis. In Advances in Genetics; Friedmann, T., Dunlap, C.J., Goodwin, S.F., Eds.; Academic Press: Cambridge, MA, USA, 2013; Volume 81, pp. 33–82. [Google Scholar] [CrossRef]
- Rzeszutek, E. Cell Wall Biosynthesis in the Pathogenic Oomycete Saprolegnia parasitica. Ph.D Thesis, Royal Institute of Technology, Stockholm, Sweden, 2019. [Google Scholar]
- Bowman, S.M.; Free, S.J. The structure and synthesis of the fungal cell wall. Bioessays 2006, 28, 799–808. [Google Scholar] [CrossRef] [PubMed]
- Skujins, J.; Potgieter, H.; Alexander, M. Dissolution of fungal cell walls by a streptomycete chitinase and β-(1→3) glucanase. Arch. Biochem. Biophys. 1965, 111, 358–364. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T.; Oyanagi, W.; Suzuki, K.; Tanaka, H. Chitinase system of Bacillus circulans WL-12 and importance of chitinase A1 in chitin degradation. J. Bacteriol. 1990, 172, 4017–4022. [Google Scholar] [CrossRef] [PubMed]
- Velusamy, P.; Das, J. Identification and characterization of antifungal chitinase from Bacillus subtilis JD-09 and their role in inhibition of viable fungal growth. Int. J. Pharm. Sci. 2014, 6, 232–235. [Google Scholar]
- Singh, G.; Arya, S.K. Antifungal and insecticidal potential of chitinases: A credible choice for the eco-friendly farming. Biocatal. Agric. Biotechnol. 2019, 20, 101289. [Google Scholar] [CrossRef]
- Gomaa, E.Z. Chitinase production by Bacillus thuringiensis and Bacillus licheniformis: Their potential in antifungal biocontrol. J. Microbiol. 2012, 50, 103–111. [Google Scholar] [CrossRef]
- Moon, J.-H.; Won, S.-J.; Choub, V.; Choi, S.-I.; Ajuna, H.B.; Ahn, Y.S. Biological control of fall webworm larva (Hyphantria cunea Drury) and growth promotion of poplar seedlings (Populus× canadensis Moench) with Bacillus licheniformis PR2. For. Ecol. Manag. 2022, 525, 120574. [Google Scholar] [CrossRef]
- Moon, J.-H.; Ajuna, H.B.; Won, S.-J.; Choub, V.; Choi, S.-I.; Yun, J.-Y.; Hwang, W.J.; Park, S.W.; Ahn, Y.S. Entomopathogenic potential of Bacillus velezensis CE 100 for the biological control of termite damage in wooden architectural buildings of Korean cultural heritage. Int. J. Mol. Sci. 2023, 24, 8189. [Google Scholar] [CrossRef]
- Choi, S.-I.; Ajuna, H.B.; Won, S.-J.; Choub, V.; Kim, C.-W.; Moon, J.-H.; Ahn, Y.S. The insecticidal potential of Bacillus velezensis CE 100 against Dasineura jujubifolia Jiao & Bu (Diptera: Cecidomyiidae) larvae infestation and its role in the enhancement of yield and fruit quality of jujube (Zizyphus jujuba Miller var. inermis Rehder). Crop. Prot. 2022, 63, 106098. [Google Scholar] [CrossRef]
- Georgopapadakou, N.H. Update on antifungals targeted to the cell wall: Focus on β-1,3-glucan synthase inhibitors. Expert Opin. Investig. Drugs 2001, 10, 269–280. [Google Scholar] [CrossRef] [PubMed]
- Geoghegan, I.; Steinberg, G.; Gurr, S. The role of the fungal cell wall in the infection of plants. Trends Microbiol. 2017, 25, 957–967. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.F.; Wegst, U.G. Design and mechanical properties of insect cuticle. Arthropod Struct. Dev. 2004, 33, 187–199. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.F. Arthropod cuticle: A natural composite shell system. Compos. Part A Appl. Sci. Manuf. 2002, 33, 1311–1315. [Google Scholar] [CrossRef]
- Moussian, B. Chapter 8. The arthropod cuticle. In Arthropod Biology and Evolution: Molecules, Development, Morphology; Minelli, A., Boxshall, G., Fusco, G., Eds.; Springer: Berlin, Germany, 2013; pp. 171–196. [Google Scholar] [CrossRef]
- Mitov, M.; Soldan, V.; Balor, S. Observation of an anisotropic texture inside the wax layer of insect cuticle. Arthropod Struct. Dev. 2018, 47, 622–626. [Google Scholar] [CrossRef]
- Hepburn, H.; Chandler, H. Material properties of arthropod cuticles: The arthrodial membranes. J. Comp. Physiol. 1976, 109, 177–198. [Google Scholar] [CrossRef]
- Beament, J. The waterproofing mechanism of arthropods: I. The effect of temperature on cuticle permeability in terrestrial insects and ticks. J. Exp. Biol. 1959, 36, 391–422. [Google Scholar] [CrossRef]
- Ortiz-Urquiza, A.; Keyhani, N.O. Action on the surface: Entomopathogenic fungi versus the insect cuticle. Insects 2013, 4, 357–374. [Google Scholar] [CrossRef]
- Leger, R.S.; Cooper, R.M.; Charnley, A.K. Cuticle-degrading enzymes of entomopathogenic fungi: Cuticle degradation in vitro by enzymes from entomopathogens. J. Invertebr. Pathol. 1986, 47, 167–177. [Google Scholar] [CrossRef]
- Merzendorfer, H. The cellular basis of chitin synthesis in fungi and insects: Common principles and differences. Eur. J. Cell Biol. 2011, 90, 759–769. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Jiang, Z.; Xu, X.; Huang, C.; Yao, Z.; Yang, X.; Zhang, Y.; Wang, D.; Wei, C.; Zhuang, X. Mechano-enzymatic degradation of the chitin from crustacea shells for efficient production of n-acetylglucosamine (GlcNAc). Molecules 2022, 27, 4720. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Zhou, J.; Song, Z.; Huang, Z. Enzymatic properties of β-N-acetylglucosaminidases. Appl. Microbiol. Biotechnol. 2018, 102, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Mitsutomi, M.; Isono, M.; Uchiyama, A.; Nikaidou, N.; Ikegami, T.; Watanabe, T. Chitosanase activity of the enzyme previously reported as β-1,3-1,4-glucanase from Bacillus circulans WL-12. Biosci. Biotechnol. Biochem. 1998, 62, 2107–2114. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Ramírez, A.; Escudero-Abarca, B.; Aguilar-Uscanga, G.; Hayward-Jones, P.; Barboza-Corona, J.E. Antifungal activity of Bacillus thuringiensis chitinase and its potential for the biocontrol of phytopathogenic fungi in soybean seeds. J. Food Sci. 2004, 69, M131–M134. [Google Scholar] [CrossRef]
- Huang, C.-J.; Wang, T.-K.; Chung, S.-C.; Chen, C.-Y. Identification of an antifungal chitinase from a potential biocontrol agent, Bacillus cereus 28-9. BMB Rep. 2005, 38, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Hammami, I.; Siala, R.; Jridi, M.; Ktari, N.; Nasri, M.; Triki, M. Partial purification and characterization of chiIO8, a novel antifungal chitinase produced by Bacillus cereus IO8. J. Appl. Microbiol. 2013, 115, 358–366. [Google Scholar] [CrossRef]
- Ghasemi, S.; Ahmadian, G.; Jelodar, N.B.; Rahimian, H.; Ghandili, S.; Dehestani, A.; Shariati, P. Antifungal chitinases from Bacillus pumilus SG2: Preliminary report. World J. Microbiol. Biotechnol. 2010, 26, 1437–1443. [Google Scholar] [CrossRef]
- Xiao, L.; Xie, C.-C.; Cai, J.; Lin, Z.-J.; Chen, Y.-H. Identification and characterization of a chitinase-produced Bacillus showing significant antifungal activity. Curr. Microbiol. 2009, 58, 528–533. [Google Scholar] [CrossRef]
- Liu, Y.; Tao, J.; Yan, Y.; Li, B.; Li, H.; Li, C. Biocontrol efficiency of Bacillus subtilis SL-13 and characterization of an antifungal chitinase. Chin. J. Chem. Eng. 2011, 19, 128–134. [Google Scholar] [CrossRef]
- Thakur, N.; Nath, A.K.; Chauhan, A.; Gupta, R. Purification, characterization, and antifungal activity of Bacillus cereus strain NK91 chitinase from rhizospheric soil samples of Himachal Pradesh, India. Biotechnol. Appl. Biochem. 2022, 69, 1830–1842. [Google Scholar] [CrossRef] [PubMed]
- Essghaier, B.; Zouaoui, M.; Najjari, A.; Sadfi, N. Potentialities and characterization of an antifungal chitinase produced by a halotolerant Bacillus licheniformis. Curr. Microbiol. 2021, 78, 513–521. [Google Scholar] [CrossRef] [PubMed]
- Senol, M.; Nadaroglu, H.; Dikbas, N.; Kotan, R. Purification of chitinase enzymes from Bacillus subtilis bacteria TV-125, investigation of kinetic properties and antifungal activity against Fusarium culmorum. Ann. Clin. Microbiol. Antimicrob. 2014, 13, 35. [Google Scholar] [CrossRef] [PubMed]
- Karunya, S.K.; Reetha, D.; Saranraj, P.; Milton, D.J. Optimization and purification of chitinase produced by Bacillus subtilis and its antifungal activity against plant pathogens. Int. J. Pharm. Biol. Arch. 2011, 2, 1680–1685. [Google Scholar]
- Melent’ev, A.; Aktuganov, G.; Galimzyanova, N. The role of chitinase in the antifungal activity of Bacillus sp. 739. Microbiology 2001, 70, 548–552. [Google Scholar] [CrossRef]
- Gurav, R.; Tang, J.; Jadhav, J. Novel chitinase producer Bacillus pumilus RST25 isolated from the shellfish processing industry revealed antifungal potential against phyto-pathogens. Int. Biodeterior. Biodegrad. 2017, 125, 228–234. [Google Scholar] [CrossRef]
- Hoster, F.; Schmitz, J.E.; Daniel, R. Enrichment of chitinolytic microorganisms: Isolation and characterization of a chitinase exhibiting antifungal activity against phytopathogenic fungi from a novel Streptomyces strain. Appl. Microbiol. Biotechnol. 2005, 66, 434–442. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Yang, Q.; Zhang, C.; Luo, J.; Shen, Y.; Wang, M. Characterization of antifungal chitinase from Bacillus licheniformis TCCC10016. In Proceedings of the 2012 International Conference on Applied Biotechnology (ICAB 2012), Tianjin, China, 18–19 October 2012; Springer: Berlin/Heidelberg, Germany, 2014; Volume 1, pp. 597–607. [Google Scholar] [CrossRef]
- Cruz-Martín, M.; Rocha, E.; Acosta-Suárez, M.; Pichardo, T.; Rodríguez, E.; Roque, B.; Alvarado-Capó, Y. Role of Bacillus pumilus chitinases in antifungal activity against Pseudocercospora fijiensis Morelet. J. Nat. Pestic. Res. 2023, 3, 100019. [Google Scholar] [CrossRef]
- Morales-Ruiz, E.; Priego-Rivera, R.; Figueroa-López, A.M.; Cazares-Álvarez, J.E.; Maldonado-Mendoza, I.E. Biochemical characterization of two chitinases from Bacillus cereus sensu lato B25 with antifungal activity against Fusarium verticillioides P03. FEMS Microbiol. Lett. 2021, 368, fnaa218. [Google Scholar] [CrossRef]
- Slimene, I.B.; Tabbene, O.; Gharbi, D.; Mnasri, B.; Schmitter, J.M.; Urdaci, M.-C.; Limam, F. Isolation of a chitinolytic Bacillus licheniformis S213 strain exerting a biological control against Phoma medicaginis infection. Appl. Biochem. Biotechnol. 2015, 175, 3494–3506. [Google Scholar] [CrossRef]
- Kwon, J.-H.; Won, S.-J.; Moon, J.-H.; Lee, U.; Park, Y.-S.; Maung, C.E.H.; Ajuna, H.B.; Ahn, Y.S. Bacillus licheniformis PR2 controls fungal diseases and increases production of jujube fruit under field conditions. Horticulturae 2021, 7, 49. [Google Scholar] [CrossRef]
- Won, S.-J.; Choub, V.; Kwon, J.-H.; Kim, D.-H.; Ahn, Y.S. The control of Fusarium root rot and development of coastal pine (Pinus thunbergii Parl.) seedlings in a container nursery by use of Bacillus licheniformis MH48. Forests 2019, 10, 6. [Google Scholar] [CrossRef]
- Won, S.-J.; Kwon, J.-H.; Kim, D.-H.; Ahn, Y.S. The effect of Bacillus licheniformis MH48 on control of foliar fungal diseases and growth promotion of Camellia oleifera seedlings in the coastal reclaimed land of Korea. Pathogens 2019, 8, 6. [Google Scholar] [CrossRef]
- Nisa, R.M.; Irni, M.; Amaryllis, A.; Sugeng, S.; Iman, R. Chitinolytic bacteria isolated from chili rhizosphere: Chitinase characterization and its application as biocontrol for whitefly (Bemisia tabaci Genn.). Am J Agric Biol Sci. 2010, 5, 430–435. [Google Scholar] [CrossRef]
- Hussin, N.A.; Ab Majid, A.H. Termiticidal activity of chitinase enzyme of Bacillus licheniformis, a symbiont isolated from the gut of Globitermes sulphureus worker. Biocatal. Agric. Biotechnol. 2020, 24, 101548. [Google Scholar] [CrossRef]
- Suganthi, M.; Arvinth, S.; Senthilkumar, P. Comparative bioefficacy of Bacillus and Pseudomonas chitinase against Helopeltis theivora in tea (Camellia sinensis (L.) O. Kuntze. Physiol. Mol. Biol. Plants 2020, 26, 2053–2060. [Google Scholar] [CrossRef] [PubMed]
- Thamthiankul, S.; Suan-Ngay, S.; Tantimavanich, S.; Panbangred, W. Chitinase from Bacillus thuringiensis subsp. pakistani. Appl. Microbiol. Biotechnol. 2001, 56, 395–401. [Google Scholar] [CrossRef]
- Al-qwabah, A.A.; Al-limoun, M.O.; Al-Mustafa, A.H.; Al-Zereini, W.A. Bacillus atrophaeus A7 crude chitinase, characterization and potential role against Drosophila melanogaster larvae. Jordan J. Biol. Sci. 2018, 11, 451–459. [Google Scholar]
- Chandrasekaran, R.; Revathi, K.; Thanigaivel, A.; Kirubakaran, S.A.; Senthil-Nathan, S. Bacillus subtilis chitinase identified by matrix-assisted laser desorption/ionization time-of flight/time of flight mass spectrometry has insecticidal activity against Spodoptera litura Fab. Pestic. Biochem. Physiol. 2014, 116, 1–12. [Google Scholar] [CrossRef]
- Chandrasekaran, R.; Revathi, K.; Nisha, S.; Kirubakaran, S.A.; Sathish-Narayanan, S.; Senthil-Nathan, S. Physiological effect of chitinase purified from Bacillus subtilis against the tobacco cutworm Spodoptera litura Fab. Pestic. Biochem. Physiol. 2012, 104, 65–71. [Google Scholar] [CrossRef]
- Sampson, M.N.; Gooday, G.W. Involvement of chitinases of Bacillus thuringiensis during pathogenesis in insects. Microbiology 1998, 144, 2189–2194. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, D.; Nagpure, A.; Gupta, R.K. Bacterial chitinases: Properties and potential. Crit. Rev. Biotechnol. 2007, 27, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Arora, N.; Ahmad, T.; Rajagopal, R.; Bhatnagar, R.K. A constitutively expressed 36 kDa exochitinase from Bacillus thuringiensis HD-1. Biochem. Biophys. Res. Commun. 2003, 307, 620–625. [Google Scholar] [CrossRef]
- Herrera-Estrella, A.; Chet, I. Chitinases in biological control. EXS-BASEL- 1999, 87, 171–184. [Google Scholar] [CrossRef]
- Shapiro, M.; Preisler, H.K.; Robertson, J.L. Enhancement of baculovirus activity on gypsy moth (Lepidoptera: Lymantriidae) by chitinase. J. Econ. Entomol. 1987, 80, 1113–1116. [Google Scholar] [CrossRef]
- Abdullah, R.R.; Sukar, N.A.; Ghanim, N.M. Improving the efficiency of Bacillus thuringiensis against insects of different feeding habits by plasmid transfer technique. Life Sci. J. 2014, 11, 308–318. [Google Scholar]
- Plaza, V.; Silva-Moreno, E.; Castillo, L. Breakpoint: Cell wall and glycoproteins and their crucial role in the Phytopathogenic fungi infection. Curr. Protein Pept. Sci. 2020, 21, 227–244. [Google Scholar] [CrossRef]
- Ji, Z.-L.; Peng, S.; Chen, L.-L.; Liu, Y.; Yan, C.; Zhu, F. Identification and characterization of a serine protease from Bacillus licheniformis W10: A potential antifungal agent. Int. J. Biol. Macromol. 2020, 145, 594–603. [Google Scholar] [CrossRef]
- Ling, L.; Cheng, W.; Jiang, K.; Jiao, Z.; Luo, H.; Yang, C.; Pang, M.; Lu, L. The antifungal activity of a serine protease and the enzyme production of characteristics of Bacillus licheniformis TG116. Arch. Microbiol. 2022, 204, 601. [Google Scholar] [CrossRef]
- Basurto-Cadena, M.G.L.; Vázquez-Arista, M.; García-Jiménez, J.; Salcedo-Hernández, R.; Bideshi, D.; Barboza-Corona, J. Isolation of a new Mexican strain of Bacillus subtilis with antifungal and antibacterial activities. Sci. World J. 2012, 2012, 384978. [Google Scholar] [CrossRef]
- Cui, T.-B.; Chai, H.-Y.; Jiang, L.-X. Isolation and partial characterization of an antifungal protein produced by Bacillus licheniformis BS-3. Molecules 2012, 17, 7336–7347. [Google Scholar] [CrossRef] [PubMed]
- Harrison, R.L.; Bonning, B.C. Proteases as insecticidal agents. Toxins 2010, 2, 935–953. [Google Scholar] [CrossRef] [PubMed]
- Fang, W.; Feng, J.; Fan, Y.; Zhang, Y.; Bidochka, M.J.; Leger, R.J.S.; Pei, Y. Expressing a fusion protein with protease and chitinase activities increases the virulence of the insect pathogen Beauveria bassiana. J. Invertebr. Pathol. 2009, 102, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Tian, B.; Yang, J.; Lian, L.; Wang, C.; Li, N.; Zhang, K.-Q. Role of an extracellular neutral protease in infection against nematodes by Brevibacillus laterosporus strain G4. Appl. Microbiol. Biotechnol. 2007, 74, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Doddapaneni, K.K.; Tatineni, R.; Potumarthi, R.; Mangamoori, L.N. Optimization of media constituents through response surface methodology for improved production of alkaline proteases by Serratia rubidaea. J. Chem. Technol. Biotechnol. 2007, 82, 721–729. [Google Scholar] [CrossRef]
- Qiuhong, N.; Xiaowei, H.; Baoyu, T.; Jinkui, Y.; Jiang, L.; Lin, Z.; Keqin, Z. Bacillus sp. B16 kills nematodes with a serine protease identified as a pathogenic factor. Appl. Microbiol. Biotechnol. 2006, 69, 722–730. [Google Scholar] [CrossRef] [PubMed]
- Harrison, R.L.; Bonning, B.C. Use of proteases to improve the insecticidal activity of baculoviruses. Biol. Control 2001, 20, 199–209. [Google Scholar] [CrossRef]
- Lian, L.; Tian, B.; Xiong, R.; Zhu, M.; Xu, J.; Zhang, K. Proteases from Bacillus: A new insight into the mechanism of action for rhizobacterial suppression of nematode populations. Lett. Appl. Microbiol. 2007, 45, 262–269. [Google Scholar] [CrossRef]
- Niu, Q.; Huang, X.; Zhang, L.; Li, Y.; Li, J.; Yang, J.; Zhang, K. A neutral protease from Bacillus nematocida, another potential virulence factor in the infection against nematodes. Arch. Microbiol. 2006, 185, 439–448. [Google Scholar] [CrossRef]
- Niu, Q.; Tian, Y.; Zhang, L.; Xu, X.; Niu, X.; Xia, Z.; Lei, L.; Zhang, K.-Q.; Huang, X. Overexpression of the key virulence proteases Bace16 and Bae16 in Bacillus nematocida B16 to improve its nematocidal activity. J. Mol. Microbiol. Biotechnol. 2012, 21, 130–137. [Google Scholar] [CrossRef]
- Li, L.; Sun, Y.; Chen, F.; Hao, D.; Tan, J. An alkaline protease from Bacillus cereus NJSZ-13 can act as a pathogenicity factor in infection of pinewood nematode. BMC Microbiol. 2023, 23, 10. [Google Scholar] [CrossRef] [PubMed]
- Choi, T.G.; Maung, C.E.H.; Lee, D.R.; Henry, A.B.; Lee, Y.S.; Kim, K.Y. Role of bacterial antagonists of fungal pathogens, Bacillus thuringiensis KYC and Bacillus velezensis CE 100 in control of root-knot nematode, Meloidogyne incognita and subsequent growth promotion of tomato. Biocontrol Sci. Technol. 2020, 30, 685–700. [Google Scholar] [CrossRef]
- Xu, T.; Zhu, T.; Li, S. β-1,3-1,4-glucanase gene from Bacillus velezensis ZJ20 exerts antifungal effect on plant pathogenic fungi. World J. Microbiol. Biotechnol. 2016, 32, 26. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Liu, D.; Liang, Z.; Huang, K.; Wu, X. Antagonistic activity of Bacillus subtilis CW14 and its β-glucanase against Aspergillus ochraceus. Food Control 2022, 131, 108475. [Google Scholar] [CrossRef]
- Kim, P.I.; Chung, K.-C. Production of an antifungal protein for control of Colletotrichum lagenarium by Bacillus amyloliquefaciens MET0908. FEMS Microbiol. Lett. 2004, 234, 177–183. [Google Scholar] [CrossRef]
- Leelasuphakul, W.; Sivanunsakul, P.; Phongpaichit, S. Purification, characterization and synergistic activity of β-1,3-glucanase and antibiotic extract from an antagonistic Bacillus subtilis NSRS 89-24 against rice blast and sheath blight. Enzym. Microb. Technol. 2006, 38, 990–997. [Google Scholar] [CrossRef]
- Cazorla, F.; Romero, D.; Pérez-García, A.; Lugtenberg, B.; Vicente, A.D.; Bloemberg, G. Isolation and characterization of antagonistic Bacillus subtilis strains from the avocado rhizoplane displaying biocontrol activity. J. Appl. Microbiol. 2007, 103, 1950–1959. [Google Scholar] [CrossRef]
- Fatima, S.; Faryad, A.; Ataa, A.; Joyia, F.A.; Parvaiz, A. Microbial lipase production: A deep insight into the recent advances of lipase production and purification techniques. Biotechnol. Appl. Biochem. 2021, 68, 445–458. [Google Scholar] [CrossRef]
- Aktuganov, G.; Galimzyanova, N.; Melent’Ev, A.; Kuz’mina, L.Y. Extracellular hydrolases of strain Bacillus sp. 739 and their involvement in the lysis of micromycete cell walls. Microbiology 2007, 76, 413–420. [Google Scholar] [CrossRef]
- Helistö, P.; Aktuganov, G.; Galimzianova, N.; Melentjev, A.; Korpela, T. Lytic enzyme complex of an antagonistic Bacillus sp. Xb, isolation and purification of components. J. Chromatogr. B Biomed. Sci. Appl. 2001, 758, 197–205. [Google Scholar] [CrossRef]
- Saha, D.; Purkayastha, G.; Ghosh, A.; Isha, M.; Saha, A. Isolation and characterization of two new Bacillus subtilis strains from the rhizosphere of eggplant as potential biocontrol agents. Plant Pathol. J. 2012, 94, 109–118. [Google Scholar]
- Gupta, R.; Kour, R.; Gani, M.; Guroo, M.; Bali, K. Potential of wax degrading bacteria for management of the citrus mealybug, Planococcus citri. BioControl 2022, 67, 49–61. [Google Scholar] [CrossRef]
- Salunkhe, R.B.; Patil, C.D.; Salunke, B.K.; Rosas-García, N.M.; Patil, S.V. Effect of wax degrading bacteria on life cycle of the pink hibiscus mealybug, Maconellicoccus hirsutus (Green) (Hemiptera: Pseudococcidae). BioControl 2013, 58, 535–542. [Google Scholar] [CrossRef]
- Beerahassan, R.K.; Prabhakaran, V.V.; Pillai, D. Formulation of an exoskeleton degrading bacterial consortium from seafood processing effluent for the biocontrol of crustacean parasite Alitropus typus. Vet. Parasitol. 2021, 290, 109348. [Google Scholar] [CrossRef] [PubMed]
- Velmurugan, S.; Palanikumar, P.; Velayuthani, P.; Donio, M.; Babu, M.M.; Lelin, C.; Sudhakar, S.; Citarasu, T. Bacterial white patch disease caused by Bacillus cereus, a new emerging disease in semi-intensive culture of Litopenaeus vannamei. Aquaculture 2015, 444, 49–54. [Google Scholar] [CrossRef]
- Sapkota, S.; Khadka, S.; Gautam, A.; Maharjan, R.; Shah, R.; Dhakal, S.; Panta, O.P.; Khanal, S.; Poudel, P. Screening and optimization of thermo-tolerant Bacillus sp. For amylase production and antifungal activity. J. Inst. Sci. Technol. 2019, 24, 47–56. [Google Scholar] [CrossRef]
- Mardanova, A.M.; Hadieva, G.F.; Lutfullin, M.T.; Khilyas, I.; Minnullina, L.F.; Gilyazeva, A.G.; Bogomolnaya, L.M.; Sharipova, M.R. Bacillus subtilis strains with antifungal activity against the phytopathogenic fungi. Agric. Sci. 2016, 8, 1–20. [Google Scholar] [CrossRef]
- Song, S.; Jeon, E.K.; Hwang, C.-W. Characteristic analysis of soil-isolated Bacillus velezensis HY-3479 and its antifungal activity against phytopathogens. Curr. Microbiol. 2022, 79, 357. [Google Scholar] [CrossRef]
- Nabti, E.; Mokrane, N.; Ghoul, M.; Manyani, H.; Dary, M.; Megias, M. Isolation and characterization of two halophilic Bacillus (B. licheniformis and Bacillus sp.) with antifungal activity. J. Ecol. Health Environ. 2013, 1, 13–17. [Google Scholar] [CrossRef]
- El-Deeb, B.; Fayez, K.; Gherbawy, Y. Isolation and characterization of endophytic bacteria from Plectranthus tenuiflorus medicinal plant in Saudi Arabia desert and their antimicrobial activities. J. Plant Interact. 2013, 8, 56–64. [Google Scholar] [CrossRef]
- Gharieb, M.M.; Abo-Zaid, G.A.; Bashir, S.I.; Hafez, E.E. Screening and molecular identification of cellulase-producing Bacillus spp. from agricultural soil: Its potential in biological control. Middle East J. Appl. Sci. 2020, 10, 272–278. [Google Scholar] [CrossRef]
- Alfiky, A.; L’Haridon, F.; Abou-Mansour, E.; Weisskopf, L. Disease inhibiting effect of strain Bacillus subtilis EG21 and its metabolites against potato pathogens Phytophthora infestans and Rhizoctonia solani. Phytopathology 2022, 112, 2099–2109. [Google Scholar] [CrossRef]
- Syed-Ab-Rahman, S.F.; Carvalhais, L.C.; Chua, E.; Xiao, Y.; Wass, T.J.; Schenk, P.M. Identification of soil bacterial isolates suppressing different Phytophthora spp. and promoting plant growth. Front. Plant Sci. 2018, 9, 1502. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Huang, X.; Hou, Y.; Xia, X.; Zhu, Z.; Huang, A.; Feng, S.; Li, P.; Shi, L.; Dong, P. Isolation and screening of antagonistic endophytes against Phytophthora infestans and preliminary exploration on anti-oomycete mechanism of Bacillus velezensis 6-5. Plants 2023, 12, 909. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, P.; Sørensen, J. Multi-target and medium-independent fungal antagonism by hydrolytic enzymes in Paenibacillus polymyxa and Bacillus pumilus strains from barley rhizosphere. FEMS Microbiol. Ecol. 1997, 22, 183–192. [Google Scholar] [CrossRef]
- Li, Y.; Feng, X.; Wang, X.; Zheng, L.; Liu, H. Inhibitory effects of Bacillus licheniformis BL06 on Phytophthora capsici in pepper by multiple modes of action. Biol. Control 2020, 144, 104210. [Google Scholar] [CrossRef]
- Xi, X.; Fan, J.; Yang, X.; Liang, Y.; Zhao, X.; Wu, Y. Evaluation of the anti-oomycete bioactivity of rhizosphere soil-borne isolates and the biocontrol of soybean root rot caused by Phytophthora sojae. Biol. Control 2022, 166, 104818. [Google Scholar] [CrossRef]
- Alfonzo, A.; Lo Piccolo, S.; Conigliaro, G.; Ventorino, V.; Burruano, S.; Moschetti, G. Antifungal peptides produced by Bacillus amyloliquefaciens AG1 active against grapevine fungal pathogens. Ann. Microbiol. 2012, 62, 1593–1599. [Google Scholar] [CrossRef]
- Trinh, T.H.T.; Wang, S.-L.; Nguyen, V.B.; Tran, M.D.; Doan, C.T.; Vo, T.P.K.; Huynh, Q.V.; Nguyen, A.D. A potent antifungal rhizobacteria Bacillus velezensis RB. DS29 isolated from black pepper (Piper nigrum L.). Res. Chem. Intermed. 2019, 45, 5309–5323. [Google Scholar] [CrossRef]
- Haddoudi, I.; Cabrefiga, J.; Mora, I.; Mhadhbi, H.; Montesinos, E.; Mrabet, M. Biological control of Fusarium wilt caused by Fusarium equiseti in Vicia faba with broad spectrum antifungal plant-associated Bacillus spp. Biol. Control 2021, 160, 104671. [Google Scholar] [CrossRef]
- Ajuna, H.B. Biopesticide Potential of Bacillus thuringiensis AH-2 against Insect Pests: Hemiptera (Aphis gossypii) and Lepidoptera (Hyphantria cunea and Plutella xylostella). Ph.D. Thesis, Chonnam National University, Gwangju, Republic of Korea, 26 February 2021. Available online: https://dcollection.jnu.ac.kr/public_resource/pdf/000000064026_20231028193648.pdf (accessed on 28 October 2023).
- Singh, R.K.; Kumar, D.P.; Solanki, M.K.; Singh, P.; Srivastva, A.K.; Kumar, S.; Kashyap, P.L.; Saxena, A.K.; Singhal, P.K.; Arora, D.K. Optimization of media components for chitinase production by chickpea rhizosphere associated Lysinibacillus fusiformis B-CM18. J. Basic Microbiol. 2013, 53, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Lakshmi, B.; Sri, P.; Devi, K.A.; Hemalatha, K. Media optimization of protease production by Bacillus licheniformis and partial characterization of Alkaline protease. Int. J. Curr. Microbiol. App. Sci. 2014, 3, 650–659. [Google Scholar]
- Dewi, R.T.K.; Mubarik, N.R.; Suhartono, M.T. Medium optimization of β-glucanase production by Bacillus subtilis SAHA 32.6 used as biological control of oil palm pathogen. Emir. J. Food Agric. 2016, 28, 116–125. [Google Scholar] [CrossRef]
- Lee, D.R.; Chaw, E.H.M.; Ajuna, H.; Kim, K.Y. Effect of large-scale cultivation of Bacillus amlyoliquefaciens Y1 using fertilizer based medium for control of citrus melanose caused by Diaporthe citri. Korean J. Soil. Sci. 2019, 52, 84–92. [Google Scholar] [CrossRef]
- Harish, S.; Kavino, M.; Kumar, N.; Saravanakumar, D.; Soorianathasundaram, K.; Samiyappan, R. Biohardening with plant growth promoting rhizosphere and endophytic bacteria induces systemic resistance against banana bunchy top virus. Appl. Soil Ecol. 2008, 39, 187–200. [Google Scholar] [CrossRef]
- Palukaitis, P.; Yoon, J.Y.; Choi, S.K.; Carr, J.P. Manipulation of induced resistance to viruses. Curr. Opin. Virol. 2017, 26, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wu, H.; Qiao, J.; Ma, L.; Liu, J.; Xia, Y.; Gao, X. Molecular mechanism of plant growth promotion and induced systemic resistance to tobacco mosaic virus by Bacillus spp. J. Microbiol. Biotechnol. 2009, 19, 1250–1258. [Google Scholar] [CrossRef]
- Vinodkumar, S.; Nakkeeran, S.; Renukadevi, P.; Mohankumar, S. Diversity, and antiviral potential of rhizospheric and endophytic Bacillus species and phyto-antiviral principles against tobacco streak virus in cotton. Agric. Ecosyst. Environ. 2018, 267, 42–51. [Google Scholar] [CrossRef]
- Heil, M.; Bostock, R.M. Induced systemic resistance (ISR) against pathogens in the context of induced plant defenses. Ann. Bot. 2002, 89, 503–512. [Google Scholar] [CrossRef]
- Yu, Y.; Gui, Y.; Li, Z.; Jiang, C.; Guo, J.; Niu, D. Induced systemic resistance for improving plant immunity by beneficial microbes. Plants 2022, 11, 386. [Google Scholar] [CrossRef]
- Abdelkhalek, A.; Al-Askar, A.A.; Behiry, S.I. Bacillus licheniformis strain POT1 mediated polyphenol biosynthetic pathways genes activation and systemic resistance in potato plants against Alfalfa mosaic virus. Sci. Rep. 2020, 10, 16120. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Li, Y.; Lou, Y.; Shi, M.; Jiang, Y.; Zhou, J.; Sun, Y.; Xue, Q.; Lai, H. Bacillus amyloliquefaciens Ba13 induces plant systemic resistance and improves rhizosphere microecology against tomato yellow leaf curl virus disease. Appl. Soil Ecol. 2019, 137, 154–166. [Google Scholar] [CrossRef]
- Maksimov, I.; Khairullin, R. The role of Bacillus bacterium in formation of plant defense: Mechanism and reaction. In The handbook of Microbial Bioresources; Gupta, V.K., Sharma, G.D., Tuohy, M.G., Gaur, R., Eds.; CABI: Wallingford, UK, 2016; pp. 56–80. [Google Scholar] [CrossRef]
- Choudhary, D.K.; Johri, B.N. Interactions of Bacillus spp. and plants–with special reference to induced systemic resistance (ISR). Microbiol. Res. 2009, 164, 493–513. [Google Scholar] [CrossRef] [PubMed]
Bacillus Species | Enzyme (s) | Pathogen/Insect Pest (Disease/Damage) | Host Plant | Reference |
---|---|---|---|---|
B. velezensis CE100 | Chitinase, protease, β-1,3-glucanase | Colletotrichum gloeosporioides (anthracnose) | Juglans regia L. | [51] |
Chitinase, β-1,3-glucanase | Macrophomina phaseolina, Fusarium oxysporum f. sp. fragariae (charcoal rot, wilt) | Fragaria × ananassa | [55] | |
Chitinase, protease, β-1,3-glucanase | Pestalotiopsis maculans (Pestalotiopsis blight) | Quercus acutissima | [53] | |
Protease, β-1,3-glucanase | Phytophthora species (Phytophthora wilt) | Chamaecyparis obtusa | [54] | |
Chitinase, protease | Dasineura jujubifolia larvae (leaf roll damage) | Ziziphus jujuba | [73] | |
Chitinase, protease | Reticulitermes speratus kyushuensis (wood tunneling) | Pinus densiflora | [72] | |
B. licheniformis MH48 | Chitinase, β-1,3-glucanase | F. oxysporum (root rot) | Pinus thunbergii | [106] |
Chitinase, β-1,3-glucanase | B. cinerea, Glomerella cingulata, P. diospyri, and P. karstenii (foliar diseases) | Camellia oleifera | [107] | |
B. licheniformis PR2 | Chitinase | B. cinerea, C.gloeosporioides, Phytophthora nicotianae (fruit rot) | Zizyphus jujua | [105] |
Chitinase, protease | R. speratus kyushuensis (wood tunneling) | P. densiflora | [60] | |
Chitinase, proteases | H. cunea larvae (defoliation) | Populus × canadensis | [71] | |
Bacillus subtilis | Glucanase, proteases | Rosellinia necatri, F. oxysporum f.sp. radicis-lycopersici (root rot) | Persea americana, Solanum lycopersicum | [141] |
B. cereus 108 | Chitinase | F. solani (wilt disease) | S. lycopersicum | [90] |
B. pumilus SG2 | Chitinases (ChiS, ChiL) | R. solani, Verticillium sp. and Stemphyllium botryosum (blight and wilt diseases) | Fruit trees | [91] |
B. licheniformis MY75 | Chitinase | Gibberella saubinetii (perfect stage of F. graminearum), A. niger (head blight, black mold) | Cereals, fruits | [92] |
B. amyloliquefaciens AG1 | Protease-like | Aspergillus sp., B. cinerea, F. oxysporum, V. dahlia (grape decay, wilt) | Vitis vinifera | [162] |
B.licheniformis BS-3 | Protease | Aspergillus niger, M. oryzae, Rhizoctonia solani | NS | [125] |
Bacillus cereus 28-9 | Chitinase | B. elliptica | NS | [89] |
B. thuringiensis NM101-19 B. licheniformis NM120-17 | Chitinase | Rhizoctonia sp., F. oxysporum, Penicillum chrysogenum (wilt, mold, mycotoxins) | Glycine max | [70] |
B. subtilis TV-125 | Chitinase | F. culmorum | NS | [96] |
B. amyloliquefaciens V656 | Chitinase | F. oxysporum | NS | [56] |
B. subtilis NPU 001 | Chitinase | F. oxysporum | NS | [58] |
B. cereus YQ308 | chitinase | F. oxysporum and P. ultimum | NS | [57] |
B. thuringiensis var israelensis | Chitinase | S. rolfsii, Rhizopus sp., Fusarium sp., Aspergillus sp. (wilt) | G. max | [88] |
B. cereus NK91 | Chitinase | F. oxysporum, R. solani, and C. gloeosporioides | NS | [94] |
B. licheniformis J24 | Chitinase | F. pseudograminearum (Fusarium rot) | Zea mays seeds | [95] |
B. subtilis TV-125 | Chitinase | F. culmorum (root rot) | Vegetables | [96] |
B. subtilis | Chitinase | A. niger, A. flavus, and P. chrysogenum | NS | [97] |
Bacillus sp. 739 | Chitinase | Fusarium sp. and H. sativum | NS | [98] |
B. velezensis RB.DS29 | Protease, β-glucanase, chitinase | Phytophthora sp. (root rot disease) | Piper nigrum | [163] |
B.cereus QQ308 | Chitinase, chitosanase, protease | F. oxysporum, F. solani, and P. ultimum (root, head/soft rot disease) | B. rapa | [59] |
B. subtilis SL-13 | Chitinase | R. solani (foot rot) | S. lycopersicum | [93] |
B. pumilus RST25 | Chitinase | F. solani and A. niger (seed rot) | Triticum aestivum | [99] |
B. chitinolyticus (SGE2, 4, SSL3), B. ehimensis MG1 | Chitinase | A. nidulans, B. cinerea, F. culmorum, S. sclerotiorum, Guignardia bidwellii | NS | [100] |
B. licheniformis TCCC10016 | Chitinase | F. oxysporum | NS | [101] |
B. pumilus CCIBP-C5 | Chitinase | Pseudocercospora fijiensis (black sigatoka) | Musa sp. | [102] |
B. cereus sensu lato B25 | Exochitinase A, endochitinase B | F. verticillioides (rot and wilt diseases) | Z. mays | [103] |
B. licheniformis ATCC 14580 | Chitinase | Phoma medicaginis (damping-off) | Medicago truncatula | [104] |
Bacillus sp. | amylase, protease, pectinase, cellulase | F. equiseti (Fusarium wilt) | Vicia faba | [164] |
Bacillus subtilis | Glucanase, protease | F. oxysporum f.sp. radicis-lycopersici (root, crown rot) | S. lycopersicum | [141] |
B. cereus 1.21 | Chitinase | Bemisia tabaci (sap sacking/leaf curling) | C. annuum | [108] |
B. licheniformis USMW10IK | Chitinase | Globitermes sulphureus (wood tunneling) | Wood, trees | [109] |
B. cereus C-13 | Chitinase | H. theivora (sap-sacking) | C. sinensis | [110] |
B. subtilis | Chitinases (CS1, CS2) | S. litura larvae (defoliation) | Nicotiana tabacum | [113,114] |
B. thuringiensis subsp. israelensis IPS78 | Exochitinase | C. nubeculosus larvae | NS | [115] |
B. thuringiensis subsp. aizawai HD133, HD-1 | Exochitinase | S. littoralis, S. litura (leaf damage) | S. lycopersicum | [115,117] |
Bacillus sp. RH219 | Proteases Apr219, Npr219 | Panagrellus redivivus nematodes | NS | [132] |
B. nematocida B16 | Protease Bae16 | P. redivivus, Bursaphelenchus xylophilus (pine wilt) | Pinus sp. | [133] |
Bacillus sp. B16 | Serine protease | P. redivivus | NS | [130] |
B. cereus NJSZ-13 | Alkaline protease | B. xylophilus (wilt disease) | P. elliottii | [135] |
B. licheniformis W10 | Serine protease | B. cinerea | NS | [122] |
B. licheniformis TG116 | Serine protease | P. capsica, R. solani, F. graminearum, F. oxysporum, B. cinerea | NS | [123] |
B. subtilis 21 | Protease | F. verticillioides, R. solani (wilt, black root rot) | F. ananassa | [124] |
B. velezensis ZJ20 | β-1, 3-1, 4-glucanases | Cryphonectria parasitica, Helicobasidium purpureum, Cylindrocladium quinqueseptatum | NS | [137] |
B. subtilis CW14 | β-glucanase | A. ochraceus (mold, ochratoxins) | G. max | [138] |
B. amyloliquefaciens MET0908 | β-1,3-glucanase | C. lagenarium (anthracnose) | Citrullus lanatus | [139] |
B. subtilis NSRS 89-24 | β-1,3-glucanase | Pyricularia grisea, R. solani (rice blast, sheath blight) | Oryza sativa | [140] |
Bacillus sp. strain 739 | Lipase, chitinase, protease, β-1,3-glucanase | Bipolaris sorokiniana (root rot) | Cereal | [143] |
B. subtilis AI01, AI03 | Lipase, protease | F. solani (Fusarium wilt) | Solanum melongena | [145] |
B. subtilis Ehrenberg | Lipases | Planococcus citri (sap sucking) | Citrus | [146] |
B. subtilis | Lipase | Maconellicoccus hirsutus (sap-sucking) | Gossypium sp., V. vinifera, Z. jujuba. | [147] |
Bacillus sp. KD7 | Amylase | A. flavus (mold and mycotoxin) | Cereals | [150] |
B. subtilis GM2, GM5 | Amylase | Fusarium sp. (wilt disease) | Triticum sp. seedling | [151] |
B. velezensis HY-3479 | Amylase | C. acutatum, Cylindrocarpon destructans, R. solani, S. sclerotiorum | NS | [152] |
B. licheniformis | Amylase | V. dahlia, F. oxysporum, Phytophthora sp., C. acutatum, B. cinerea, Aspergillus sp. | NS | [153] |
B. subtilis B71 | Cellulase | P. spinosium | NS | [155] |
B. subtilis EG21 | Cellulase, pectinase, chitinase | P. infestans (blight disease) | Solanum tuberosum | [156] |
B. amyloliquefaciens UQ154, B. velezensis UQ156 | Cellulase, protease | Phytophthora sp. (Phytophthora blight) | C. annuum | [157] |
B. velezensis 6-5 | Cellulase | P. infestans (blight disease) | S. tuberosum | [158] |
B. pumilus | Cellulase, protease, mannanase | P. ultimum, Aphanomyces cochleoides | NS | [159] |
B. licheniformis BL06 | Cellulase | P. capsica (Phytophthora blight) | C. annuum | [160] |
B. velezensis SN337 | Cellulase | Phytophthora sojae (root rot) | G. max | [161] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ajuna, H.B.; Lim, H.-I.; Moon, J.-H.; Won, S.-J.; Choub, V.; Choi, S.-I.; Yun, J.-Y.; Ahn, Y.S. The Prospect of Hydrolytic Enzymes from Bacillus Species in the Biological Control of Pests and Diseases in Forest and Fruit Tree Production. Int. J. Mol. Sci. 2023, 24, 16889. https://doi.org/10.3390/ijms242316889
Ajuna HB, Lim H-I, Moon J-H, Won S-J, Choub V, Choi S-I, Yun J-Y, Ahn YS. The Prospect of Hydrolytic Enzymes from Bacillus Species in the Biological Control of Pests and Diseases in Forest and Fruit Tree Production. International Journal of Molecular Sciences. 2023; 24(23):16889. https://doi.org/10.3390/ijms242316889
Chicago/Turabian StyleAjuna, Henry B., Hyo-In Lim, Jae-Hyun Moon, Sang-Jae Won, Vantha Choub, Su-In Choi, Ju-Yeol Yun, and Young Sang Ahn. 2023. "The Prospect of Hydrolytic Enzymes from Bacillus Species in the Biological Control of Pests and Diseases in Forest and Fruit Tree Production" International Journal of Molecular Sciences 24, no. 23: 16889. https://doi.org/10.3390/ijms242316889
APA StyleAjuna, H. B., Lim, H. -I., Moon, J. -H., Won, S. -J., Choub, V., Choi, S. -I., Yun, J. -Y., & Ahn, Y. S. (2023). The Prospect of Hydrolytic Enzymes from Bacillus Species in the Biological Control of Pests and Diseases in Forest and Fruit Tree Production. International Journal of Molecular Sciences, 24(23), 16889. https://doi.org/10.3390/ijms242316889