Deep-Brain Subthalamic Nucleus Stimulation Enhances Food-Related Motivation by Influencing Neuroinflammation and Anxiety Levels in a Rat Model of Early-Stage Parkinson’s Disease
Abstract
:1. Introduction
2. Results
2.1. PD Model and Electrode Placement Confirmation
2.2. DBS-STN Effects on Motivation for Food and Contralateral Forepaw Impairment
2.3. DBS-STN Affects Anxiety Level
2.4. DBS-STN Influence on Percentage of cFos+ Cells and 6-OHDA Induced-Changes in the Percentage of IL-6+ and Double-Labeled Cells (cFos+/IL-6)
2.5. DBS-STN Affects Plasma Corticosterone Concentration and Peripheral Blood Leukocyte Number
3. Discussion
4. Materials and Methods
4.1. Animals
- 6-OHDA_DBS-group—DBS-STN after intranigral injection of 6-hydroxydopamine (6-OHDA) to mimic PD (n = 6),
- 6-OHDA_SHAM group—unstimulated rats with intranigral injection of 6-OHDA (n = 6) as control group.
4.2. Stereotaxic Implantation of Cannulae into the SNpc and Stimulating Electrode into the STN
4.3. Unilateral Model of Partial Nigral Depletion
4.4. Deep-Brain Stimulation of Subthalamic Nucleus
4.5. Elevated Plus Maze (EPM)
4.6. Vermicelli Handling Tests (VHT)
4.7. Blood Collection
4.8. Plasma Corticosterone Determination
4.9. Brain Tissue Preparation
4.10. Immunohistochemistry for TH-Expression
4.11. Immunofluorescence for IL-6 and cFos Protein Colocalization
4.12. Microscopic Analysis
4.13. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hariz, M. My 25 Stimulating Years with DBS in Parkinson’s Disease. J. Parkinson’s Dis. 2017, 7, 33–41. [Google Scholar] [CrossRef]
- Mosley, P.E.; Akram, H. Neuropsychiatric effects of subthalamic deep brain stimulation. Hand. Clin. Neurol. 2021, 180, 417–431. [Google Scholar] [CrossRef]
- Rossi, P.J.; Gunduz, A.; Okun, M.S. The Subthalamic Nucleus, Limbic Function, and Impulse Control. Neuropsychol. Rev. 2015, 25, 398–410. [Google Scholar] [CrossRef] [PubMed]
- Polosan, M.; Droux, F.; Kibleur, A.; Chabardes, S.; Bougerol, T.; David, O.; Krack, P.; Voon, V. Afective modulation of the associative-limbic subthalamic nucleus: Deep brain stimulation in obsessive-compulsive disorder. Transl. Psychiatry 2019, 9, 73. [Google Scholar] [CrossRef]
- Caminiti, S.P.; Presotto, L.; Baroncini, D.; Garibotto, V.; Moresco, R.M.; Gianolli, L.; Volonté, M.A.; Antonini, A.; Perani, D. Axonal damage and loss of connectivity in nigrostriatal and mesolimbic dopamine pathways in early Parkinson’s disease. Neuroimage Clin. 2017, 14, 734–740. [Google Scholar] [CrossRef] [PubMed]
- Barbier, M.; Chometton, S.; Pautrat, A.; Miguet-Alfonsi, C.; Datiche, F.; Gascuel, J.; Fellmann, D.; Peterschmitt, Y.; Coizet, V.; Risold, P.Y. A basal ganglia-like cortical-amygdalar-hypothalamic network mediates feeding behavior. Proc. Natl. Acad. Sci. USA 2020, 117, 15967–15976. [Google Scholar] [CrossRef] [PubMed]
- Emmi, A.; Antonini, A.; Macchi, V.; Porzionato, A.; De Caro, R. Anatomy and connectivity of the subthalamic nucleus in humans and non-human primates. Front. Neuroanat. 2020, 14, 13. [Google Scholar] [CrossRef]
- Cavdar, S.; Özgür, M.; Çakmak, Y.Ö.; Kuvvet, Y.; Kunt, S.K.; Sağlam, G. Afferent projections of the subthalamic nucleus in the rat: Emphasis on bilateral and interhemispheric connections. Acta Neurobiol. Exp. 2018, 78, 251–263. [Google Scholar] [CrossRef]
- Roh, E.; Song, D.K.; Kim, M.S. Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism. Exp. Mol. Med. 2016, 48, e216. [Google Scholar] [CrossRef]
- Battaglia, S.; Schmidt, A.; Hassel, S.; Tanaka, M. Editorial: Case reports in neuroimaging and stimulation. Front. Psychiatry 2023, 14, 1264669. [Google Scholar] [CrossRef]
- Hashimoto, T.; Elder, C.M.; Okun, M.S.; Patrick, S.K.; Vitek, J.L. Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. J. Neurosci. 2003, 23, 1916–1923. [Google Scholar] [CrossRef]
- Windels, F.; Bruet, N.; Poupard, A.; Urbain, N.; Chouvet, G.; Feuerstein, C.; Savasta, M. Effects of high frequency stimulation of subthalamic nucleus on extracellular glutamate and GABA in substantia nigra and globus pallidus in the normal rat. Eur. J. Neurosci. 2000, 12, 4141–4146. [Google Scholar] [CrossRef]
- Salin, P.; Manrique, C.; Forni, C.; Kerkerian-Le Goff, L. High-frequency stimulation of the subthalamic nucleus selectively reverses dopamine denervation-induced cellular defects in the output structures of the basal ganglia in the rat. J. Neurosci. 2002, 22, 5137–5148. [Google Scholar] [CrossRef] [PubMed]
- Meissner, W.; Harnack, D.; Paul, G.; Reum, T.; Sohr, R.; Morgenstern, R.; Kupsch, A. Deep brain stimulation of subthalamic neurons increases striatal dopamine metabolism and induces contralateral circling in freely moving 6-hydroxydopamine-lesioned rats. Neurosci. Lett. 2002, 328, 105–108. [Google Scholar] [CrossRef]
- Zhang, H.; Ren, Y.; Lv, M.; Xie, M.; Wang, K.; Yang, M.; Lv, C.; Li, X. Anti-depression effect and mechanism of Suanzaoren Decoction on mice with depression. IOP Conf. Ser Earth Environ. Sci. 2021, 714, 022065. [Google Scholar] [CrossRef]
- Baunez, C.; Dias, C.; Cador, M.; Amalric, M. The subthalamic nucleus exerts opposite control on cocaine and ‘natural’ rewards. Nat. Neurosci. 2005, 8, 484–489. [Google Scholar] [CrossRef] [PubMed]
- Vachez, Y.M.; Creed, M.C. Deep Brain Stimulation of the Subthalamic Nucleus Modulates Reward-Related Behavior: A Systematic Review. Front. Hum. Neurosci. 2020, 14, 578564. [Google Scholar] [CrossRef] [PubMed]
- Rouaud, T.; Lardeux, S.; Panayotis, N.; Paleressompoulle, D.; Cador, M.; Baunez, C. Reducing the desire for cocaine with subthalamic nucleus deep brain stimulation. Proc. Natl. Acad. Sci. USA 2010, 107, 1196–1200. [Google Scholar] [CrossRef]
- Baunez, C.; Amalric, M.; Robbins, T.W. Enhanced food-related motivation after bilateral lesions of the subthalamic nucleus. J. Neurosci. 2002, 22, 562–568. [Google Scholar] [CrossRef]
- Uslaner, J.M.; Dell’Orco, J.M.; Pevzner, A.; Robinson, T.E. The influence of subthalamic nucleus lesions on sign-tracking to stimuli paired with food and drug rewards: Facilitation of incentive salience attribution? Neuropsychopharmacology 2008, 33, 2353–2361. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Zhang, X.; Xie, A. Apathy following Bilateral Deep Brain Stimulation of Subthalamic Nucleus in Parkinson’s Disease: A Meta-Analysis. Parkinson’s Dis. 2018, 2018, 9756468. [Google Scholar] [CrossRef]
- Thobois, S.; Ardouin, C.; Lhommée, E.; Klinger, H.; Lagrange, C.; Xie, J.; Fraix, V.; Coelho Braga, M.C.; Hassani, R.; Kistner, A.; et al. Non-motor dopamine withdrawal syndrome after surgery for Parkinson’s disease: Predictors and underlying mesolimbic denervation. Brain 2010, 133, 1111–1127. [Google Scholar] [CrossRef]
- Chagraoui, A.; Boukhzar, L.; Thibaut, F.; Anouar, Y.; Maltête, D. The pathophysiological mechanisms of motivational deficits in Parkinson’s disease. Prog. Neuropsychopharmacol. Biol. Psychiatry 2018, 81, 138–152. [Google Scholar] [CrossRef]
- Castelli, L.; Lanotte, M.; Zibetti, M.; Caglio, M.; Rizzi, L.; Ducati, A.; Bergamasco, B.; Lopiano, L. Apathy and verbal fluency in STN-stimulated PD patients. An observational follow-up study. J. Neurol. 2007, 254, 1238–1243. [Google Scholar] [CrossRef]
- Zoon, T.J.C.; van Rooijen, G.; Balm, G.M.F.C.; Bergfeld, I.O.; Daams, J.G.; Krack, P.; Denys, D.A.J.P.; de Bie, R.M.A. Apathy Induced by Subthalamic Nucleus Deep Brain Stimulation in Parkinson’s Disease: A Meta-Analysis. Mov. Disord. 2021, 36, 317–326. [Google Scholar] [CrossRef]
- Růžička, F.; Jech, R.; Nováková, L.; Urgošík, D.; Bezdíček, O.; Vymazal, J.; Růžička, E. Chronic stress-like syndrome as a consequence of medial site subthalamic stimulation in Parkinson’s disease. Psychoneuroendocrinology 2015, 52, 302–310. [Google Scholar] [CrossRef] [PubMed]
- Steinhardt, J.; Münte, T.F.; Schmid, S.M.; Wilms, B.; Brüggemann, N. A systematic review of body mass gain after deep brain stimulation of the subthalamic nucleus in patients with Parkinson’s disease. Obes. Rev. 2020, 21, e12955. [Google Scholar] [CrossRef] [PubMed]
- Tran, K.N.; Nguyen, N.P.K.; Nguyen, L.T.H.; Shin, H.M.; Yang, I.J. Screening for Neuroprotective and Rapid Antidepressant-like Effects of 20 Essential Oils. Biomedicines 2023, 11, 1248. [Google Scholar] [CrossRef]
- Troubat, R.; Barone, P.; Leman, S.; Desmidt, T.; Cressant, A.; Atanasova, B.; Brizard, B.; El Hage, W.; Surget, A.; Belzung, C.; et al. Neuroinflammation and depression: A review. Eur. J. Neurosci. 2021, 53, 151–171. [Google Scholar] [CrossRef] [PubMed]
- Grembecka, B.; Glac, W.; Listowska, M.; Jerzemowska, G.; Plucińska, K.; Majkutewicz, I.; Badtke, P.; Wrona, D. Subthalamic Deep Brain Stimulation Affects Plasma Corticosterone Concentration and Peripheral Immunity Changes in Rat Model of Parkinson’s Disease. J. Neuroimmune Pharmacol. 2021, 16, 454–469. [Google Scholar] [CrossRef] [PubMed]
- Wrona, D. Neural-immune interactions: An integrative view of the bidirectional relationship between the brain and immune systems. J. Neuroimmunol. 2006, 172, 38–58. [Google Scholar] [CrossRef] [PubMed]
- Jerzemowska, G.; Plucińska, K.; Piwka, A.; Ptaszek, K.; Podlacha, M.; Orzeł-Gryglewska, J. NMDA receptor modulation of the pedunculopontine tegmental nucleus underlies the motivational drive for feeding induced by midbrain dopaminergic neurons. Brain Res. 2019, 1715, 134–147. [Google Scholar] [CrossRef] [PubMed]
- Bartl, M.; Xylaki, M.; Bähr, M.; Weber, S.; Trenkwalder, C.; Mollenhauer, B. Evidence for immune system alterations in peripheral biological fluids in Parkinson’s disease. Neurobiol. Dis. 2022, 170, 105744. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro Campos, A.C.; Martinez, R.C.R.; Auada, A.V.V.; Lebrun, I.; Fonoff, E.T.; Hamani, C.; Pagano, R.L. Effect of Subthalamic Stimulation and Electrode Implantation in the Striatal Microenvironment in a Parkinson’s Disease Rat Model. Int. J. Mol. Sci. 2022, 23, 12116. [Google Scholar] [CrossRef] [PubMed]
- Allred, R.P.; Adkins, D.L.; Woodlee, M.T.; Husbands, L.C.; Maldonado, M.A.; Kane, J.R.; Schallert, T.; Jones, T.A. The vermicelli handling test: A simple quantitative measure of dexterous forepaw function in rats. J. Neurosci. Methods 2008, 170, 229–244. [Google Scholar] [CrossRef]
- Drui, G.; Carnicella, S.; Carcenac, C.; Favier, M.; Bertrand, A.; Boulet, S.; Savasta, M. Loss of dopaminergic nigrostriatal neurons accounts for the motivational and affective deficits in Parkinson’s disease. Mol. Psychiatry 2014, 19, 358–367. [Google Scholar] [CrossRef]
- Canonica, T.; Zalachoras, I. Motivational disturbances in rodent models of neuropsychiatric disorders. Front. Behav. Neurosci. 2022, 16, 940672. [Google Scholar] [CrossRef]
- Carnicella, S.; Drui, G.; Boulet, S.; Carcenac, C.; Favier, M.; Duran, T.; Savasta, M. Implication of dopamine D3 receptor activation in the reversion of Parkinson’s disease-related motivational deficits. Transl. Psychiatry 2014, 4, e401. [Google Scholar] [CrossRef]
- Favier, M.; Carcenac, C.; Drui, G.; Vachez, Y.; Boulet, S.; Savasta, M.; Carnicella, S. Implication of dorsostriatal D3 receptors in motivational processes: A potential target for neuropsychiatric symptoms in Parkinson’s disease. Sci. Rep. 2017, 7, 41589. [Google Scholar] [CrossRef]
- Pasquereau, B.; Turner, R.S. Neural dynamics underlying self-control in the primate subthalamic nucleus. eLife 2023, 12, e83971. [Google Scholar] [CrossRef]
- Wu, H.; Yan, X.; Tang, D.; Gu, W.; Luan, Y.; Cai, H.; Zhou, C.; Xiao, C. Internal States Influence the Representation and Modulation of Food Intake by Subthalamic Neurons. Neurosci. Bull. 2020, 36, 1355–1368. [Google Scholar] [CrossRef]
- Winter, C.; Mundt, A.; Jalali, R.; Joel, D.; Harnack, D.; Morgenstern, R.; Juckel, G.; Kupsch, A. High frequency stimulation and temporary inactivation of the subthalamic nucleus reduce quinpirole-induced compulsive checking behavior in rats. Exp. Neurol. 2008, 210, 217–228. [Google Scholar] [CrossRef] [PubMed]
- Klavir, O.; Flash, S.; Winter, C.; Joel, D. High frequency stimulation and pharmacological inactivation of the subthalamic nucleus reduces ‘compulsive’ lever-pressing in rats. Exp. Neurol. 2009, 215, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Wade, C.L.; Kallupi, M.; Hernandez, D.O.; Breysse, E.; de Guglielmo, G.; Crawford, E.; Koob, G.F.; Schweitzer, P.; Baunez, C.; George, O. High-Frequency Stimulation of the Subthalamic Nucleus Blocks Compulsive-Like Re-Escalation of Heroin Taking in Rats. Neuropsychopharmacology 2017, 42, 1850–1859. [Google Scholar] [CrossRef] [PubMed]
- Helf, C.; Kober, M.; Markert, F.; Lanto, J.; Overhoff, L.; Badstübner-Meeske, K.; Storch, A.; Fauser, M. Subthalamic nucleus deep brain stimulation induces nigrostriatal dopaminergic plasticity in a stable rat model of Parkinson’s disease. Neuroreport 2023, 34, 506–511. [Google Scholar] [CrossRef] [PubMed]
- Bruet, N.; Windels, F.; Carcenac, C.; Feuerstein, C.; Bertrand, A.; Poupard, A.; Savasta, M. Neurochemical mechanisms induced by high frequency stimulation of the subthalamic nucleus: Increase of extracellular striatal glutamate and GABA in normal and hemiparkinsonian rats. J. Neuropathol. Exp. Neurol. 2003, 62, 1228–1240. [Google Scholar] [CrossRef] [PubMed]
- Meissner, W.; Harnack, D.; Reese, R.; Paul, G.; Reum, T.; Ansorge, M.; Kusserow, H.; Winter, C.; Morgenstern, R.; Kupsch, A. High-frequency stimulation of the subthalamic nucleus enhances striatal dopamine release and metabolism in rats. J. Neurochem. 2003, 85, 601–609. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.H.; Blaha, C.D.; Harris, B.T.; Cooper, S.; Hitti, F.L.; Leiter, J.C.; Roberts, D.W.; Kim, U. Dopamine efflux in the rat striatum evoked by electrical stimulation of the subthalamic nucleus: Potential mechanism of action in Parkinson’s disease. Eur. J. Neurosci. 2006, 23, 1005–1014. [Google Scholar] [CrossRef] [PubMed]
- Schulte, T.; Brecht, S.; Herdegen, T.; Illert, M.; Mehdorn, H.M.; Hamel, W. Induction of immediate early gene expression by high-frequency stimulation of the subthalamic nucleus in rats. Neuroscience 2006, 138, 1377–1385. [Google Scholar] [CrossRef] [PubMed]
- Saryyeva, A.; Nakamura, M.; Krauss, J.K.; Schwabe, K. c-Fos expression after deep brain stimulation of the pedunculopontine tegmental nucleus in the rat 6-hydroxydopamine Parkinson model. J. Chem. Neuroanat. 2011, 42, 210–217. [Google Scholar] [CrossRef]
- Shehab, S.; D’souza, C.; Ljubisavljevic, M.; Redgrave, P. High-frequency electrical stimulation of the subthalamic nucleus excites target structures in a model using c-fos immunohistochemistry. Neuroscience 2014, 270, 212–225. [Google Scholar] [CrossRef]
- Espinosa-Oliva, A.M.; de Pablos, R.M.; Sarmiento, M.; Villarán, R.F.; Carrillo-Jiménez, A.; Santiago, M.; Venero, J.L.; Herrera, A.J.; Cano, J.; Machado, A. Role of dopamine in the recruitment of immune cells to the nigro-striatal dopaminergic structures. Neurotoxicology 2014, 41, 89–101. [Google Scholar] [CrossRef] [PubMed]
- Mogi, M.; Harada, M.; Kondo, T.; Riederer, P.; Inagaki, H.; Minami, M.; Nagatsu, T. Interleukin-1 beta, interleukin-6, epidermal growth factor and transforming growth factor-alpha are elevated in the brain from parkinsonian patients. Neurosci. Lett. 1994, 180, 147–150. [Google Scholar] [CrossRef]
- Marogianni, C.; Sokratous, M.; Dardiotis, E.; Hadjigeorgiou, G.M.; Bogdanos, D.; Xiromerisiou, G. Neurodegeneration and Inflammation—An Interesting Interplay in Parkinson’s Disease. Int. J. Mol. Sci. 2020, 21, 8421. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhu, G.; Liu, D.; Zhang, X.; Liu, Y.; Yuan, T.; Du, T.; Zhang, J. Subthalamic nucleus deep brain stimulation suppresses neuroinflammation by Fractalkine pathway in Parkinson’s disease rat model. Brain Behav. Immun. 2020, 90, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Lutz, T.A. The brain needs interleukin-6 (IL-6) to maintain a “healthy” energy balance. Focus on “IL-6 ameliorates defective leptin sensitivity in DIO ventromedial hypothalamic nucleus neurons”. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2016, 311, R989–R991. [Google Scholar] [CrossRef]
- Mishra, D.; Richard, J.E.; Maric, I.; Porteiro, B.; Häring, M.; Kooijman, S.; Musovic, S.; Eerola, K.; López-Ferreras, L.; Peris, E.; et al. Parabrachial Interleukin-6 Reduces Body Weight and Food Intake and Increases Thermogenesis to Regulate Energy Metabolism. Cell Rep. 2019, 26, 3011–3026.e5. [Google Scholar] [CrossRef]
- Herrero, M.T.; Estrada, C.; Maatouk, L.; Vyas, S. Inflammation in Parkinson’s disease: Role of glucocorticoids. Front. Neuroanat. 2015, 9, 32. [Google Scholar] [CrossRef]
- Lundström, S.H.; Fürst, C.J. The use of corticosteroids in Swedish palliative care. Acta Oncol. 2006, 45, 430–437. [Google Scholar] [CrossRef]
- Yennurajalingam, S.; Frisbee-Hume, S.; Palmer, J.L.; Delgado-Guay, M.O.; Bull, J.; Phan, A.T.; Tannir, N.M.; Litton, J.K.; Reddy, A.; Hui, D.; et al. Reduction of cancer-related fatigue with dexamethasone: A double-blind, randomized, placebo-controlled trial in patients with advanced cancer. J. Clin. Oncol. 2013, 31, 3076–3082. [Google Scholar] [CrossRef]
- Miller, S.; McNutt, L.; McCann, M.A.; McCorry, N. Use of corticosteroids for anorexia in palliative medicine: A systematic review. J. Palliat. Med. 2014, 17, 482–485. [Google Scholar] [CrossRef]
- Paulsen, O.; Klepstad, P.; Rosland, J.H.; Aass, N.; Albert, E.; Fayers, P.; Kaasa, S. Efficacy of methylprednisolone on pain, fatigue, and appetite loss in patients with advanced cancer using opioids: A randomized, placebo-controlled, double-blind trial. J. Clin. Oncol. 2014, 32, 3221–3228. [Google Scholar] [CrossRef] [PubMed]
- Charmandari, E.; Tsigos, C.; Chrousos, G. Endocrinology of the stress response. Annu. Rev. Physiol. 2005, 67, 259–284. [Google Scholar] [CrossRef]
- Adam, T.C.; Epel, E.S. Stress, eating and the reward system. Physiol. Behav. 2007, 91, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Wardle, J.; Chida, Y.; Gibson, E.L.; Whitaker, K.L.; Steptoe, A. Stress and adiposity: A meta-analysis of longitudinal studies. Obesity 2011, 19, 771–778. [Google Scholar] [CrossRef]
- Dallman, M.F. Stress-induced obesity and the emotional nervous system. Trends Endocrinol. Metab. 2010, 21, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Torres, S.J.; Nowson, C.A. Relationship between stress, eating behavior, and obesity. Nutrition 2007, 23, 887–894. [Google Scholar] [CrossRef]
- Wheeler, D.S.; Ebben, A.L.; Kurtoglu, B.; Lovell, M.E.; Bohn, A.T.; Jasek, I.A.; Baker, D.A.; Mantsch, J.R.; Gasser, P.J.; Wheeler, R.A. Corticosterone regulates both naturally occurring and cocaine-induced dopamine signaling by selectively decreasing dopamine uptake. Eur. J. Neruosci. 2017, 46, 2638–2646. [Google Scholar] [CrossRef] [PubMed]
- Florido, A.; Velasco, E.R.; Monari, S.; Cano, M.; Cardoner, N.; Sandi, C.; Andero, R.; Perez-Caballero, L. Glucocorticoid-based pharmacotherapies preventing PTSD. Neuropharmacology 2023, 224, 109344. [Google Scholar] [CrossRef]
- Chakraborty, S.; Tripathi, S.J.; Raju, T.R.; Shankaranarayana Rao, B.S. Brain stimulation rewarding experience attenuates neonatal clomipramine-induced adulthood anxiety by reversal of pathological changes in the amygdala. Prog. Neuropsychopharmacol. Biol. Psychiatry 2020, 103, 110000. [Google Scholar] [CrossRef]
- Wingo, A.P.; Velasco, E.R.; Florido, A.; Lori, A.; Choi, D.C.; Jovanovic, T.; Ressler, K.J.; Andero, R. Expression of the PPM1F gene is regulated by stress and associated with anxiety and depression. Biol. Psychiatry 2018, 83, 284–295. [Google Scholar] [CrossRef]
- Wang, H.; Xing, X.; Liang, J.; Bai, Y.; Lui, Z.; Zheng, X. High-dose corticosterone after fear conditioning selectively suppresses fear renewal by reducing anxiety-like response. Pharmacol. Biochem. Behav. 2014, 124, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Danan, D.; Matar, M.A.; Kaplan, Z.; Zohar, J.; Cohen, H. Blunted basal corticosterone pulsatility predicts post-exposure susceptibility to PTSD phenotype in rats. Psychoneuroendocrinology 2018, 87, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Faggiani, E.; Delaville, C.; Benazzouz, A. The combined depletion of monoamines alters the effectiveness of subthalamic deep brain stimulation. Neurobiol. Dis. 2015, 82, 342–348. [Google Scholar] [CrossRef]
- Dhabhar, F.S. Effects of stress on immune function: The good, the bad, and the beautiful. Immunol. Res. 2014, 58, 193–210. [Google Scholar] [CrossRef] [PubMed]
- Williams-Gray, C.H.; Wijeyekoon, R.; Yarnall, A.J.; Lawson, R.A.; Breen, D.P.; Evans, J.R.; Cummins, G.A.; Duncan, G.W.; Khoo, T.K.; Burn, D.J.; et al. Serum immune markers and disease progression in an incident Parkinson’s disease cohort (ICICLE-PD). Mov. Disord. 2016, 31, 995–1003. [Google Scholar] [CrossRef]
- Kustrimovic, N.; Rasini, E.; Legnaro, M.; Bombelli, R.; Aleksic, I.; Blandini, F.; Comi, C.; Mauri, M.; Minafra, B.; Riboldazzi, G.; et al. Dopaminergic receptors on CD4+ T naive and memory lymphocytes correlate with motor impairment in patients with Parkinson’s Disease. Sci. Rep. 2016, 6, 33738. [Google Scholar] [CrossRef]
- Kustrimovic, N.; Comi, C.; Magistrelli, L.; Rasini, E.; Legnaro, M.; Bombelli, R.; Aleksic, I.; Blandini, F.; Minafra, B.; Riboldazzi, G.; et al. Parkinson’s disease patients have a complex phenotypic and functional Th1 bias: Cross-sectional studies of CD4+ Th1/Th2/T17 and Treg in drug-naïve and drug-treated patients. J. Neuroinflamm. 2018, 15, 205. [Google Scholar] [CrossRef]
- Williams-Gray, C.H.; Wijeyekoon, R.S.; Scott, K.M.; Hayat, S.; Barker, R.A.; Jones, J.L. Abnormalities of age-related T cell senescence in Parkinson’s disease. J. Neuroinflamm. 2018, 15, 166. [Google Scholar] [CrossRef]
- Whitley, E.; Ball, J. Statistics review 6: Nonparametric methods. Crit. Care 2002, 6, 509–513. [Google Scholar] [CrossRef]
- Haddadi, R.; Eyvari Brooshghalan, S.; Farajniya, S.; Mohajjel Nayebi, A.; Sharifi, H. Short-term treatment with silymarin improved 6-OHDA-induced catalepsy and motor imbalance in hemi-parkisonian rats. Adv. Pharm. Bull. 2015, 5, 463–469. [Google Scholar] [CrossRef]
- Huang, N.; Zhang, Y.; Chen, M.; Jin, H.; Nie, J.; Luo, Y.; Zhou, S.; Shi, J.; Jin, F. Resveratrol delays 6-hydroxydopamine-induced apoptosis by activating the PI3K/Akt signaling pathway. Exp. Gerontol. 2019, 124, 110653. [Google Scholar] [CrossRef]
- Romero-Sánchez, H.A.; Mendieta, L.; Austrich-Olivares, A.M.; Garza-Mouriño, G.; Benitez-Diaz Mirón, M.; Coen, A.; Godínez-Chaparro, B. Unilateral lesion of the nigroestriatal pathway with 6-OHDA induced allodynia and hyperalgesia reverted by pramipexol in rats. Eur. J. Pharmacol. 2020, 869, 172814. [Google Scholar] [CrossRef] [PubMed]
- Slézia, A.; Hegedüs, P.; Rusina, E.; Lengyel, K.; Solari, N.; Kaszas, A.; Balázsfi, D.; Botzanowski, B.; Acerbo, E.; Missey, F.; et al. Behavioral, neural and ultrastructural alterations in a graded-dose 6-OHDA mouse model of early-stage Parkinson’s disease. Sci. Rep. 2023, 13, 19478. [Google Scholar] [CrossRef] [PubMed]
- Blandini, F.; Armentero, M.T.; Martignoni, E. The 6-hydroxydopamine model: News from the past. Parkinsonism. Relat. Disord. 2008, 14 (Suppl. 2), S124–S129. [Google Scholar] [CrossRef] [PubMed]
- Paxinos, G.; Watson, C. The Rat Brain in Stereotaxic Coordinates, 7th ed.; Academic Press: San Diego, CA, USA, 2013. [Google Scholar]
- Podlacha, M.; Glac, W.; Listowska, M.; Grembecka, B.; Majkutewicz, I.; Myślińska, D.; Plucińska, K.; Jerzemowska, G.; Grzybowska, M.; Wrona, D. Medial Septal NMDA Glutamate Receptors are Involved in Modulation of Blood Natural Killer Cell Activity in Rats. J. Neuroimmune Pharmacol. 2016, 11, 121–132. [Google Scholar] [CrossRef]
- Wrona, D.; Majkutewicz, I.; Świątek, G.; Dunacka, J.; Grembecka, B.; Glac, W. Dimethyl Fumarate as the Peripheral Blood Inflammatory Mediators Inhibitor in Prevention of Streptozotocin-Induced Neuroinflammation in Aged Rats. J. Inflamm. Res. 2022, 15, 33–52. [Google Scholar] [CrossRef]
- Jerzemowska, G.; Plucińska, K.; Kulikowski, M.; Trojniar, W.; Wrona, D. Locomotor response to novelty correlates with the number of midbrain tyrosine hydroxylase positive cells in rats. Brain Res. Bull. 2012, 87, 94–102. [Google Scholar] [CrossRef]
- Wrona, D.; Listowska, M.; Kubera, M.; Majkutewicz, I.; Glac, W.; Wojtyła-Kuchta, B.; Plucińska, K.; Grembecka, B.; Podlacha, M. Chronic antidepressant desipramine treatment increases open field-induced brain expression and spleen production of interleukin 10 in rats. Brain Res. Bull. 2013, 99, 117–131. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grembecka, B.; Majkutewicz, I.; Harackiewicz, O.; Wrona, D. Deep-Brain Subthalamic Nucleus Stimulation Enhances Food-Related Motivation by Influencing Neuroinflammation and Anxiety Levels in a Rat Model of Early-Stage Parkinson’s Disease. Int. J. Mol. Sci. 2023, 24, 16916. https://doi.org/10.3390/ijms242316916
Grembecka B, Majkutewicz I, Harackiewicz O, Wrona D. Deep-Brain Subthalamic Nucleus Stimulation Enhances Food-Related Motivation by Influencing Neuroinflammation and Anxiety Levels in a Rat Model of Early-Stage Parkinson’s Disease. International Journal of Molecular Sciences. 2023; 24(23):16916. https://doi.org/10.3390/ijms242316916
Chicago/Turabian StyleGrembecka, Beata, Irena Majkutewicz, Oliwia Harackiewicz, and Danuta Wrona. 2023. "Deep-Brain Subthalamic Nucleus Stimulation Enhances Food-Related Motivation by Influencing Neuroinflammation and Anxiety Levels in a Rat Model of Early-Stage Parkinson’s Disease" International Journal of Molecular Sciences 24, no. 23: 16916. https://doi.org/10.3390/ijms242316916
APA StyleGrembecka, B., Majkutewicz, I., Harackiewicz, O., & Wrona, D. (2023). Deep-Brain Subthalamic Nucleus Stimulation Enhances Food-Related Motivation by Influencing Neuroinflammation and Anxiety Levels in a Rat Model of Early-Stage Parkinson’s Disease. International Journal of Molecular Sciences, 24(23), 16916. https://doi.org/10.3390/ijms242316916