Altered Gene Expression of the Parasitoid Pteromalus puparum after Entomopathogenic Fungus Beauveria bassiana Infection
Abstract
:1. Introduction
2. Results
2.1. Parasitoid Survival Post-Exposure to Fungal Conidia
2.2. Overview of Sequencing Data
2.3. Analysis of DEGs
2.4. GO and KEGG Enrichment Analysis
2.5. Differentially Expressed Immunity-Related Genes
- Differential expression of immune genes involved in recognition molecules: Several immune-related genes involved in recognition molecules showed differential expression in response to fungal infection, including scavenger receptors (PpSCRBs), peptidoglycan recognition proteins (PpPGRPs), and C-type lectins (PpCTLs). Most of these genes exhibited reduced expression levels after pathogen challenge.
- Toll and IMD pathway activation: The expression levels of genes involved in the Toll and IMD immune signaling pathways, such as PpTollB, PpSPZ4, PpCactus, PpDorsal1, and PpDorsal3, associated with the Toll pathway, and PpRelish, PpFADD, and PpTAK, which participated in the IMD pathway, were enhanced during both early and late stages of infection (Figure 4). This indicates the activation of these pathways in response to B. bassiana.
- Upregulation of AMP genes: Genes encoding hymenoptaecin-like, defensin-like, and abaecin-like AMPs were significantly upregulated in response to infection (Figure 4). Hymenoptaecin-like genes exhibited a sharp induction upon infection, with a fold change ranging from 4.5 to 8.1.
- Involvement of autophagy: The upregulation of PpFIP200-1, a gene involved in autophagy, suggests the importance of autophagy in the host’s defense against fungal pathogens.
- Serine proteases (SPs) and serine protease homologs (SPHs): In total, 55 SPs and 15 SPHs were identified among the differentially expressed genes. These genes showed enrichment in both upregulated and downregulated GO terms. We also observed a significant reduction in DEGs related to clip domain SPs/SPHs, particularly in the late infected stage, indicating the impairment of the prophenoloxidase pathway (Figure 4).
- Downregulation of antioxidant enzymes: Genes associated with antioxidant enzymes, including SODs, catalase and HPXs, were downregulated in the late stage of infection, possibly indicating a reduced antioxidant defense response.
2.6. Differentially Expressed Cuticular Genes
2.7. Differentially Expressed Detoxification Genes
- Glutathione S-transferases: Out of the 20 GSTs identified in P. puparum, 7 were found to be differentially expressed in at least one infected sample. Remarkably, all of these differentially expressed GST genes exhibited downregulated expression upon infection. Glutathione S-transferases are known to play a crucial role in the detoxification of xenobiotics, and their reduced expression may signify a disruption in the host’s detoxification processes.
- Cytochrome P450s: In total, 61 differentially expressed genes were annotated to the P450 family in the infected samples. The majority of these P450 genes exhibited significantly reduced expression levels following infection. Cytochrome P450 enzymes are essential for the metabolism of various toxic compounds, and their downregulation suggests a potential impairment of detoxification pathways.
- ATP-binding cassette transporters: ATP-binding cassette transporters are known to be involved in the transport of xenobiotics and other molecules across biological membranes. Briefly, 15 out of 20 identified ABC transporters showed decreased expression after infection. This downregulation may affect the host’s ability to transport and eliminate toxic substances.
- Carboxylesterases: Carboxylesterases are enzymes involved in the hydrolysis of ester bonds and are associated with detoxification processes. Five out of six identified CarEs exhibited reduced expression in response to infection. Similarly to the case for GSTs, P450s, and ABC transporters, the downregulation of CarEs suggests a potential compromise in detoxification pathways.
- Late-stage downregulation: It is noteworthy that most of these detoxification-related genes were differentially downregulated during the late stages of infection. This temporal pattern may indicate that the fungus has evolved mechanisms to suppress the host’s detoxification responses as the infection progresses.
2.8. Differentially Expressed Genes in Olfactory Perception
- Odorant-binding proteins: In total, 33 DEGs related to OBPs were identified in response to fungal infection. Interestingly, the majority of these OBP genes (31 out of 33) exhibited downregulated expression upon infection. Odorant-binding proteins play a crucial role in transporting chemical odorants to olfactory receptors, and their downregulation suggests a potential disruption in the olfactory signaling pathway.
- Odorant receptors (ORs): We also identified 11 DEGs annotated as OR genes in response to fungal infection. Similar to OBPs, the majority of these OR genes (10 out of 11) showed downregulated expression upon infection. Odorant receptors are integral components of the olfactory receptor complex and are responsible for detecting specific odorants.
- Ionotropic receptors (IRs): Additionally, 19 DEGs were annotated as IR genes in response to infection. Of these, 18 IR genes exhibited downregulated expression upon fungal infection. Ionotropic receptors are another class of olfactory receptors involved in detecting various chemical compounds.
2.9. Validation by rt-qPCR
3. Discussion
4. Materials and Methods
4.1. Fungal Strain Culture and Insects Rearing
4.2. Treatment of P. puparum with B. bassiana
4.3. RNA Sample Preparation and Extraction
4.4. Illumina Sequencing and DEG Analysis
4.5. Validation for RNA-Seq Analysis
4.6. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Srinivasan, R.; Sevgan, S.; Ekesi, S.; Tamo, M. Biopesticide based sustainable pest management for safer production of vegetable legumes and brassicas in Asia and Africa. Pest Manag. Sci. 2019, 75, 2446–2454. [Google Scholar] [CrossRef]
- Naqqash, M.N.; Gokce, A.; Bakhsh, A.; Salim, M. Insecticide resistance and its molecular basis in urban insect pests. Parasitol. Res. 2016, 115, 1363–1373. [Google Scholar] [CrossRef] [PubMed]
- Lacey, L.A.; Grzywacz, D.; Shapiro-Ilan, D.I.; Frutos, R.; Brownbridge, M.; Goettel, M.S. Insect pathogens as biological control agents: Back to the future. J. Invertebr. Pathol. 2015, 132, 1–41. [Google Scholar] [CrossRef]
- Quesada-Moraga, E.; Garrido-Jurado, I.; Yousef-Yousef, M.; Gonzalez-Mas, N. Multitrophic interactions of entomopathogenic fungi in biocontrol. Biocontrol 2022, 67, 457–472. [Google Scholar] [CrossRef]
- Qu, S.; Wang, S. Interaction of entomopathogenic fungi with the host immune system. Dev. Comp. Immunol. 2018, 83, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Vilcinskas, A. Evolutionary ecology of parasitic fungi and their host insects. Fungal Ecol. 2019, 38, 12–20. [Google Scholar] [CrossRef]
- Shikano, I.; Rosa, C.; Tan, C.-W.; Felton, G.W. Tritrophic interactions: Microbe-mediated plant effects on insect herbivores. Annu. Rev. Phytopathol. 2017, 55, 313–331. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Jiang, X.; Wang, G.; Luo, Z.; Fan, Y.; Wu, Z.; Pei, Y. Requirement of a mitogen-activated protein kinase for appressorium formation and penetration of insect cuticle by the entomopathogenic fungus Beauveria bassiana. Appl. Environ. Microb. 2010, 76, 2262–2270. [Google Scholar] [CrossRef]
- Moussian, B. Recent advances in understanding mechanisms of insect cuticle differentiation. Insect Biochem. Molec. 2010, 40, 363–375. [Google Scholar] [CrossRef]
- Trienens, M.; Kraaijeveld, K.; Wertheim, B. Defensive repertoire of Drosophila larvae in response to toxic fungi. Mol. Ecol. 2017, 26, 5043–5057. [Google Scholar] [CrossRef]
- Pedrini, N.; Ortiz-Urquiza, A.; Huarte-Bonnet, C.; Fan, Y.; Juarez, P.; Keyhani, N.O. Tenebrionid secretions and a fungal benzoquinone oxidoreductase form competing components of an arms race between a host and pathogen. Proc. Natl. Acad. Sci. USA 2015, 112, E3651–E3660. [Google Scholar] [CrossRef] [PubMed]
- Barbosa Bitencourt, R.d.O.; Salcedo-Porras, N.; Umana-Diaz, C.; Angelo, I.d.C.; Lowenberger, C. Antifungal immune responses in mosquitoes (Diptera: Culicidae): A review. J. Invertebr. Pathol. 2021, 178, 107505. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.L.; St Leger, R.J. Insect Immunity to Entomopathogenic Fungi. In Genetics and Molecular Biology of Entomopathogenic Fungi; Lovett, B., StLeger, R.J., Eds.; Advances in Genetics: San Diego, CA, USA, 2016; Volume 94, pp. 251–285. [Google Scholar]
- Dong, Y.; Morton, J.C., Jr.; Ramirez, J.L.; Souza-Neto, J.A.; Dimopoulos, G. The entomopathogenic fungus Beauveria bassiana activate toll and JAK-STAT pathway-controlled effector genes and anti-dengue activity in Aedes aegypti. Insect Biochem. Molec. 2012, 42, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, J.L.; Muturi, E.J.; Barletta, A.B.F.; Rooney, A.P. The Aedes aegypti IMD pathway is a critical component of the mosquito antifungal immune response. Dev. Comp. Immunol. 2019, 95, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Dubovskiy, I.M.; Whitten, M.M.A.; Yaroslavtseva, O.N.; Greig, C.; Kryukov, V.Y.; Grizanova, E.V.; Mukherjee, K.; Vilcinskas, A.; Glupov, V.V.; Butt, T.M. Can insects develop resistance to insect pathogenic fungi? PLoS ONE 2013, 8, e60248. [Google Scholar] [CrossRef] [PubMed]
- Bulet, P.; Stocklin, R. Insect antimicrobial peptides: Structures, properties and gene regulation. Protein Peptide Lett. 2005, 12, 3–11. [Google Scholar] [CrossRef]
- Butt, T.M.; Coates, C.J.; Dubovskiy, I.M.; Ratcliffe, N.A. Entomopathogenic fungi: New insights into host-pathogen interactions. In Genetics and Molecular Biology of Entomopathogenic Fungi; Lovett, B., StLeger, R.J., Eds.; Advances in Genetics: San Diego, CA, USA, 2016; Volume 94, pp. 307–364. [Google Scholar]
- Geng, T.; Lu, F.; Wu, H.; Lou, D.; Tu, N.; Zhu, F.; Wang, S. Target antifungal peptides of immune signalling pathways in silkworm, Bombyx mori, against Beauveria bassiana. Insect Mol. Biol. 2021, 30, 102–112. [Google Scholar] [CrossRef]
- Wang, Y.; Branicky, R.; Noe, A.; Hekimi, S. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J. Cell Biol. 2018, 217, 1915–1928. [Google Scholar] [CrossRef]
- Zeng, R.S.; Niu, G.; Wen, Z.; Schuler, M.A.; Berenbaum, M.R. Toxicity of aflatoxin B1 to Helicoverpa zea and bioactivation by cytochrome p450 monooxygenases. J. Chem. Ecol. 2006, 32, 1459–1471. [Google Scholar] [CrossRef]
- Saisawang, C.; Wongsantichon, J.; Ketterman, A.J. A preliminary characterization of the cytosolic glutathione transferase proteome from Drosophila melanogaster. Biochem. J. 2012, 442, 181–190. [Google Scholar] [CrossRef]
- Thompson, S.R.; Brandenburg, R.L. Tunneling responses of Mole crickets (Orthoptera: Gryllotalpidae) to the entomopathogenic fungus, Beauveria bassiana. Environ. Entomol. 2005, 34, 140–147. [Google Scholar] [CrossRef]
- Ormond, E.L.; Thomas, A.P.M.; Pell, J.K.; Freeman, S.N.; Roy, H.E. Avoidance of a generalist entomopathogenic fungus by the ladybird, Coccinella septempunctata. Fems Microbiol. Ecol. 2011, 77, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Pelosi, P.; Zhou, J.J.; Ban, L.P.; Calvello, M. Soluble proteins in insect chemical communication. Cell. Mol. Life Sci. 2006, 63, 1658–1676. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Xie, M.; Eleftherianos, I.; Mohamed, A.; Cao, Y.; Song, B.; Zang, L.-S.; Jia, C.; Bian, J.; Keyhani, N.O.; et al. An odorant binding protein is involved in counteracting detection-avoidance and Toll-pathway innate immunity. J. Adv. Res. 2023, 48, 1–16. [Google Scholar] [CrossRef]
- Ibarra-Cortes, K.H.; Gonzalez-Hernandez, H.; Guzman-Franco, A.W.; Ortega-Arenas, L.D.; Villanueva-Jimenez, J.A.; Robles-Bermudez, A. Interactions between entomopathogenic fungi and Tamarixia radiata (Hymenoptera: Eulophidae) in Diaphorina citri (Hemiptera: Liviidae) populations under laboratory conditions. J. Pest Sci. 2018, 91, 373–384. [Google Scholar] [CrossRef]
- Tamayo-Mejia, F.; Tamez-Guerra, P.; Guzman-Franco, A.W.; Gomez-Flores, R. Developmental stage affects survival of the ectoparasitoid Tamarixia triozae exposed to the fungus Beauveria bassiana. Biol. Control 2016, 93, 30–36. [Google Scholar] [CrossRef]
- Furlong, M.J. Infection of the immature stages of Diadegma semiclausum, an endolarval parasitoid of the diamondback moth, by Beauveria bassiana. J. Invertebr. Pathol. 2004, 86, 52–55. [Google Scholar] [CrossRef]
- Peck, O. A catalogue of the Nearctic Chalcidoidea (Insecta: Hymenoptera). Can. Entomol. 1963, 30, 718–721. [Google Scholar] [CrossRef]
- Ye, X.; Yan, Z.; Yang, Y.; Xiao, S.; Chen, L.; Wang, J.; Wang, F.; Xiong, S.; Mei, Y.; Wang, F.; et al. A chromosome-level genome assembly of the parasitoid wasp Pteromalus puparum. Mol. Ecol. Resour. 2020, 20, 1384–1402. [Google Scholar] [CrossRef]
- Yang, L.; Wang, J.; Jin, H.; Fang, Q.; Yan, Z.; Lin, Z.; Zou, Z.; Song, Q.; Stanley, D.; Ye, G. Immune signaling pathways in the endoparasitoid, Pteromalus puparum. Arch. Insect Biochem. Physiol. 2020, 103, e21629. [Google Scholar] [CrossRef]
- Wang, J.; Jin, H.; Yang, L.; Ye, X.; Xiao, S.; Song, Q.; Stanley, D.; Ye, G.; Fang, Q. Genome-wide identification and analysis of genes encoding cuticular proteins in the endoparasitoid wasp Pteromalus puparum (Hymenoptera: Pteromalidae). Arch. Insect Biochem. Physiol. 2020, 103, e21628. [Google Scholar] [CrossRef]
- Peng, G.; Tong, S.-M.; Zeng, D.; Xia, Y.; Feng, M.-G. Colony heating protects honey bee populations from a risk of contact with wide-spectrum Beauveria bassiana insecticides applied in the field. Pest Manag. Sci. 2020, 76, 2627–2634. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, K.R.; Feldlaufer, M.F.; Kramer, M.; St Leger, R.J. Exposure of bed bugs to Metarhizium anisopliae at different humidities. J. Econ. Entomol. 2014, 107, 2190–2195. [Google Scholar] [CrossRef] [PubMed]
- Lazzarini, G.M.J.; Rocha, L.F.N.; Luz, C. Impact of moisture on in vitro germination of Metarhizium anisopliae and Beauveria bassiana and their activity on Triatoma infestans. Mycol. Res. 2006, 110, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, S.W.; Oetting, R.D. Susceptibility of natural enemies to infection by Beauveria bassiana and impact of insecticides on Ipheseius degenerans (Acari: Phytoseiidae). J. Agr. Urban Entomol. 2001, 18, 169–178. [Google Scholar]
- Hansen, L.S.; Steenberg, T. Combining larval parasitoids and an entomopathogenic fungus for biological control of Sitophilus granarius (Coleoptera: Curculionidae) in stored grain. Biol. Control 2007, 40, 237–242. [Google Scholar] [CrossRef]
- Koller, J.; Sutter, L.; Gonthier, J.; Collatz, J.; Norgrove, L. Entomopathogens and parasitoids allied in biocontrol: A systematic review. Pathogens 2023, 12, 957. [Google Scholar] [CrossRef]
- Zhang, W.; Zheng, X.; Chen, J.; Keyhani, N.O.; Cai, K.; Xia, Y. Spatial and temporal transcriptomic analyses reveal locust initiation of immune responses to Metarhizium acridum at the pre-penetration stage. Dev. Comp. Immunol. 2020, 104, 103524. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, J.; Yao, Z.; Shi, Y.; Xu, C.; Shao, L.; Jiang, L.; Li, M.; Tong, Y.; Wang, Y. Time-series gene expression patterns and their characteristics of Beauveria bassiana in the process of infecting pest insects. J. Basic Microb. 2022, 62, 1274–1286. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, Q.; Zhang, H.; Qin, L.; Huang, B. Immunotranscriptome analysis of Plutella xylostella reveals differences in innate immune responses to low- and high-virulence Beauveria bassiana strain challenges. Pest Manag. Sci. 2020, 77, 1070–1080. [Google Scholar] [CrossRef]
- Guo, R.; Chen, D.; Diao, Q.; Xiong, C.; Zheng, Y.; Hou, C. Transcriptomic investigation of immune responses of the Apis cerana larval gut infected by Ascosphaera apis. J. Invertebr. Pathol. 2019, 166, 107210. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-C.; Lee, M.-R.; Kim, S.; Park, S.-E.; Lee, S.-J.; Shin, T.-Y.; Kim, W.-J.; Kim, J. T Transcriptome analysis of the Japanese pine sawyer beetle, Monochamus alternatus, infected with the entomopathogenic fungus Metarhizium anisopliae JEF-197. J. Fungi 2021, 7, 373. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.W.; Bian, G.; Raikhel, A.S. A toll receptor and a cytokine, Toll5A and Spz1C, are involved in toll antifungal immune signaling in the mosquito Aedes aegypti. J. Biol. Chem. 2006, 281, 39388–39395. [Google Scholar] [CrossRef] [PubMed]
- Le Bourg, E. The NF-kB like factor DIF has weaker effects on Drosophila melanogaster immune defenses than previously thought. J. Comp. Physiol. B. 2011, 181, 741–750. [Google Scholar] [CrossRef]
- Moghaddam, M.-R.B.; Vilcinskas, A.; Rahnamaeian, M. The insect-derived antimicrobial peptide metchnikowin targets Fusarium graminearum beta(1,3)-glucanosyltransferase Gel1, which is required for the maintenance of cell wall integrity. Biol. Chem. 2017, 398, 491–498. [Google Scholar] [CrossRef]
- Lu, D.D.; Hou, C.X.; Qin, G.X.; Gao, K.; Chen, T.; Guo, X.J. Molecular cloning, bioinformatic analysis, and expression of Bombyx mori lebocin 5 gene related to Beauveria bassiana infection. Biomed Res. Int. 2017, 2017, 9390803. [Google Scholar]
- Liu, F.F.; Ding, C.; Yang, L.L.; Li, H.; Rao, X.J. Identification and analysis of two lebocins in the oriental armyworm Mythimna separata. Dev. Comp. Immunol. 2021, 116, 103962. [Google Scholar] [CrossRef]
- Maistrou, S.; Paris, V.; Jensen, A.B.; Rolff, J.; Meyling, N.V.; Zanchi, C. A constitutively expressed antifungal peptide protects Tenebrio molitor during a natural infection by the entomopathogenic fungus Beauveria bassiana. Dev. Comp. Immunol. 2018, 86, 26–33. [Google Scholar] [CrossRef]
- Lu, D.; Geng, T.; Hou, C.; Qin, G.; Gao, K.; Guo, X. Expression profiling of Bombyx mori gloverin 2 gene and its synergistic antifungal effect with cecropin A against Beauveria bassiana. Gene 2017, 600, 55–63. [Google Scholar] [CrossRef]
- Lourenco, A.P.; Florecki, M.M.; Simoes, Z.L.P.; Evans, J.D. Silencing of Apis mellifera dorsal genes reveals their role in expression of the antimicrobial peptide defensin-1. Insect Mol. Biol. 2018, 27, 577–589. [Google Scholar] [CrossRef]
- Vomackova Kykalova, B.; Sasso, F.; Volf, P.; Telleria, E.L. RNAi-mediated gene silencing of Phlebotomus papatasi defensins favors Leishmania major infection. Front. Physiol. 2023, 14, 1182141. [Google Scholar] [CrossRef] [PubMed]
- Vabulas, R.M.; Ahmad-Nejad, P.; Ghose, S.; Kirschning, C.J.; Issels, R.D.; Wagner, H. HSP70 as endogenous stimulus of the toll/interleukin-1 receptor signal pathway. J. Biol. Chem. 2002, 277, 15107–15112. [Google Scholar] [CrossRef] [PubMed]
- Lu, A.R.; Zhang, Q.L.; Zhang, J.; Yang, B.; Wu, K.; Xie, W.; Luan, Y.X.; Ling, E.J. Insect prophenoloxidase: The view beyond immunity. Front. Physiol. 2014, 5, 252. [Google Scholar] [CrossRef] [PubMed]
- Reyes, J.; Ayala-Chavez, C.; Sharma, A.; Pham, M.; Nuss, A.B.; Gulia-Nuss, M. Blood digestion by trypsin-like serine proteases in the replete lyme disease vector tick, Ixodes scapularis. Insects 2020, 11, 201. [Google Scholar] [CrossRef]
- Srinivasan, A.; Giri, A.P.; Gupta, V.S. Structural and functional diversities in Lepidopteran serine proteases. Cell. Mol. Biol. Lett. 2006, 11, 132–154. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.P.; Kambris, Z.; Lemaitre, B.; Hashimoto, C. Two proteases defining a melanization cascade in the immune system of Drosophila. J. Biol. Chem. 2006, 281, 28097–28104. [Google Scholar] [CrossRef] [PubMed]
- Vivekanandhan, P.; Swathy, K.; Alford, L.; Pittarate, S.; Subala, S.P.R.R.; Mekchay, S.; Elangovan, D.; Krutmuang, P. Toxicity of Metarhizium flavoviride conidia virulence against Spodoptera litura (Lepidoptera: Noctuidae) and its impact on physiological and biochemical activities. Sci. Rep. 2022, 12, 16775. [Google Scholar] [CrossRef]
- Zhang, J.; Ye, C.; Wang, Z.G.; Ding, B.Y.; Smagghe, G.; Zhang, Y.J.; Niu, J.Z.; Wang, J.J. DsRNAs spray enhanced the virulence of entomopathogenic fungi Beauveria bassiana in aphid control. J. Pest Sci. 2023, 96, 241–251. [Google Scholar] [CrossRef]
- Sirasoonthorn, P.; Kamiya, K.; Miura, K. Antifungal roles of adult-specific cuticular protein genes of the red flour beetle, Tribolium castaneum. J. Invertebr. Pathol. 2021, 186, 107674. [Google Scholar] [CrossRef]
- Xiong, G.; Tong, X.; Gai, T.; Li, C.; Qiao, L.; Monteiro, A.; Hu, H.; Han, M.; Ding, X.; Wu, S.; et al. Body shape and coloration of silkworm larvae are influenced by a novel cuticular protein. Genetics 2017, 207, 1053–1066. [Google Scholar] [CrossRef]
- Dubovskiy, I.M.; Whitten, M.M.A.; Kryukov, V.Y.; Yaroslavtseva, O.N.; Grizanova, E.V.; Greig, C.; Mukherjee, K.; Vilcinskas, A.; Mitkovets, P.V.; Glupov, V.V.; et al. More than a colour change: Insect melanism, disease resistance and fecundity. P. Roy. Soc. B-biol Sci. 2013, 280, 1–10. [Google Scholar] [CrossRef]
- Moussian, B. Chitin: Structure, chemistry and biology. In Targeting Chitin-Containing Organisms; Yang, Q., Fukamizo, T., Eds.; Advances in Experimental Medicine and Biology: New York, NY, USA, 2019; Volume 1142, pp. 5–18. [Google Scholar]
- Schmidt, H.R.; Benton, R. Molecular mechanisms of olfactory detection in insects: Beyond receptors. Open Biol. 2020, 10, 200252. [Google Scholar] [CrossRef]
- Tian, J.; Diao, H.; Liang, L.; Hao, C.; Arthurs, S.; Ma, R. Pathogenicity of Isaria fumosorosea to Bemisia tabaci, with some observations on the fungal infection process and host immune response. J. Invertebr. Pathol. 2015, 130, 147–153. [Google Scholar] [CrossRef]
- Liu, L.; Wang, D.H.; Zhao, C.C.; Yan, F.M.; Lei, C.L.; Su, L.J.; Zhang, Y.C.; Huang, Q.Y.; Tang, Q.B. Transcriptomics reveals the killing nechanism by which entomopathogenic fungi manipulate the RNA expression profiles of termites and provides inspiration for green pest management. J. Agric. Food Chem. 2023, 71, 7152–7162. [Google Scholar] [CrossRef]
- Cai, J.; Ye, G.-Y.; Hu, C. Parasitism of Pieris rapae (Lepidoptera: Pieridae) by a pupal endoparasitold Pteromalus puparum (Hymenoptera: Pteromalidae): Effects of parasitization and venom on host hemocytes. J. Insect Physiol. 2004, 50, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Xiao, G.; Ying, S.-H.; Zheng, P.; Wang, Z.-L.; Zhang, S.; Xie, X.-Q.; Shang, Y.; St Leger, R.J.; Zhao, G.-P.; Wang, C.; et al. Genomic perspectives on the evolution of fungal entomopathogenicity in Beauveria bassiana. Sci. Rep. 2012, 2, 483. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.G.; Pu, X.Y.; Ying, S.H.; Wang, Y.G. Field trials of an oil-based emulsifiable formulation of Beauveria bassiana conidia and low application rates of imidacloprid for control of false-eye leafhopper Empoasca vitis on tea in southern China. Crop Prot. 2004, 23, 489–496. [Google Scholar] [CrossRef]
- Shi, W.-B.; Zhang, L.; Feng, M.-G. Time-concentration-mortality responses of carmine spider mite (Acari: Tetranychidae) females to three hypocrealean fungi as biocontrol agents. Biol. Control 2008, 46, 495–501. [Google Scholar] [CrossRef]
- Yang, L.; Yang, L.; Wang, X.; Peng, C.; Chen, X.; Wei, W.; Xu, X.; Ye, G.; Xu, J. Toll and IMD immune pathways are important antifungal defense components in a pupal parasitoid, Pteromalus puparum. Int. J. Mol. Sci. 2023, 24, 14088. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, 884–890. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Paggi, J.M.; Park, C.; Bennett, C.; Salzberg, S.L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nature Biotechnol. 2019, 37, 907–915. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Smyth, G.K.; Shi, W. FeatureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Lin, Z.; Fang, Q.; Wang, J.L.; Yan, Z.C.; Zou, Z.; Song, Q.S.; Ye, G.Y. The genomic and transcriptomic analyses of serine proteases and their homologs in an endoparasitoid, Pteromalus puparum. Dev. Comp. Immunol. 2017, 77, 56–68. [Google Scholar] [CrossRef]
- Xu, G.; Teng, Z.-W.; Gu, G.-X.; Guo, L.; Wang, F.; Xiao, S.; Wang, J.-L.; Wang, B.-B.; Fang, Q.; Wang, F.; et al. Genomic and transcriptomic analyses of glutathione S-transferases in an endoparasitoid wasp, Pteromalus puparum. Arch. Insect Biochem. Physiol. 2020, 103, e21634. [Google Scholar] [CrossRef]
- Bateman, A.; Birney, E.; Cerruti, L.; Durbin, R.; Etwiller, L.; Eddy, S.R.; Griffiths-Jones, S.; Howe, K.L.; Marshall, M.; Sonnhammer, E.L.L. The Pfam protein families database. Nucleic Acids Res. 2002, 30, 276–280. [Google Scholar] [CrossRef]
- Boeckmann, B.; Bairoch, A.; Apweiler, R.; Blatter, M.C.; Estreicher, A.; Gasteiger, E.; Martin, M.J.; Michoud, K.; O'Donovan, C.; Phan, I.; et al. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 2003, 31, 365–370. [Google Scholar] [CrossRef]
- Untergasser, A.; Cutcutache, I.; Koressaar, T.; Ye, J.; Faircloth, B.C.; Remm, M.; Rozen, S.G. Primer3-new capabilities and interfaces. Nucleic Acids Res. 2012, 40, e115. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Kaplan, E.L.; Meier, P. Nonparametric-Estimation from incomplete observations. J. Am. Stat. Assoc. 1958, 53, 457–481. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Li, J.; Yang, L.; Wang, X.; Xiao, S.; Xiong, S.; Xu, X.; Xu, J.; Ye, G. Altered Gene Expression of the Parasitoid Pteromalus puparum after Entomopathogenic Fungus Beauveria bassiana Infection. Int. J. Mol. Sci. 2023, 24, 17030. https://doi.org/10.3390/ijms242317030
Yang L, Li J, Yang L, Wang X, Xiao S, Xiong S, Xu X, Xu J, Ye G. Altered Gene Expression of the Parasitoid Pteromalus puparum after Entomopathogenic Fungus Beauveria bassiana Infection. International Journal of Molecular Sciences. 2023; 24(23):17030. https://doi.org/10.3390/ijms242317030
Chicago/Turabian StyleYang, Lei, Jinting Li, Lei Yang, Xiaofu Wang, Shan Xiao, Shijiao Xiong, Xiaoli Xu, Junfeng Xu, and Gongyin Ye. 2023. "Altered Gene Expression of the Parasitoid Pteromalus puparum after Entomopathogenic Fungus Beauveria bassiana Infection" International Journal of Molecular Sciences 24, no. 23: 17030. https://doi.org/10.3390/ijms242317030
APA StyleYang, L., Li, J., Yang, L., Wang, X., Xiao, S., Xiong, S., Xu, X., Xu, J., & Ye, G. (2023). Altered Gene Expression of the Parasitoid Pteromalus puparum after Entomopathogenic Fungus Beauveria bassiana Infection. International Journal of Molecular Sciences, 24(23), 17030. https://doi.org/10.3390/ijms242317030