Detectable Lipidomes and Metabolomes by Different Plasma Exosome Isolation Methods in Healthy Controls and Patients with Advanced Prostate and Lung Cancer
Abstract
:1. Introduction
2. Results
2.1. Various Exosome Concentrations and Size Distributions among Different Isolation Methods
2.2. Batch Effects from Mass Spectrometry Data
2.3. Significant Difference in Detectable Lipidome and Metabolome among Different Exosome Isolation Methods
2.4. Overlap of Detectable Lipidome and Metabolome among Different Exosome Isolation Methods
2.5. Enrichment of Unique Lipids and Metabolites from Each Exosome Isolation Method
2.6. Differential Lipidomes and Metabolomes between Different Exosome Isolation Methods in Different Cancer Types
2.7. Enrichment of Cancer-Related Exosomes in Patients with Cancer
3. Discussion
4. Materials and Methods
4.1. Plasma Collection and Storage
4.2. Plasma Exosome Extraction
4.3. NanoSight Characterization of Exosome Size and Concentration
4.4. Mass Spectrometry Sample Preparation
4.5. Mass Spectrometry Analysis
4.6. Normalization and Principal Component Analysis for Outliers
4.7. Overlap between Different Exosome Isolation Methods
4.8. Exosome Enrichment Index
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alix-Panabières, C.; Pantel, K. Liquid biopsy: From discovery to clinical implementation. Mol. Oncol. 2021, 15, 1617–1621. [Google Scholar] [CrossRef] [PubMed]
- Guibert, N.; Pradines, A.; Favre, G.; Mazieres, J. Current and future applications of liquid biopsy in nonsmall cell lung cancer from early to advanced stages. Eur. Respir. Rev. 2020, 29, 190052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martins, I.; Ribeiro, I.P.; Jorge, J.; Gonçalves, A.C.; Sarmento-Ribeiro, A.B.; Melo, J.B.; Carreira, I.M. Liquid Biopsies: Applications for Cancer Diagnosis and Monitoring. Genes 2021, 12, 349. [Google Scholar] [CrossRef] [PubMed]
- Pantel, K.; Alix-Panabières, C. Circulating tumour cells in cancer patients: Challenges and perspectives. Trends Mol. Med. 2010, 16, 398–406. [Google Scholar] [CrossRef]
- Kilgour, E.; Rothwell, D.G.; Brady, G.; Dive, C. Liquid Biopsy-Based Biomarkers of Treatment Response and Resistance. Cancer Cell 2020, 37, 485–495. [Google Scholar] [CrossRef] [PubMed]
- LeBleu, V.S.; Kalluri, R. Exosomes as a Multicomponent Biomarker Platform in Cancer. Trends Cancer 2020, 6, 767–774. [Google Scholar] [CrossRef] [PubMed]
- Doyle, L.M.; Wang, M.Z. Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis. Cells 2019, 8, 727. [Google Scholar] [CrossRef] [Green Version]
- Kalluri, R.; LeBleu Valerie, S. The biology, function, and biomedical applications of exosomes. Science 2020, 367, eaau6977. [Google Scholar] [CrossRef]
- Akers, J.C.; Gonda, D.; Kim, R.; Carter, B.S.; Chen, C.C. Biogenesis of extracellular vesicles (EV): Exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J. Neuro-Oncol. 2013, 113, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Kosaka, N.; Iguchi, H.; Ochiya, T. Circulating microRNA in body fluid: A new potential biomarker for cancer diagnosis and prognosis. Cancer Sci. 2010, 101, 2087–2092. [Google Scholar] [CrossRef]
- Shen, M.; Di, K.; He, H.; Xia, Y.; Xie, H.; Huang, R.; Liu, C.; Yang, M.; Zheng, S.; He, N.; et al. Progress in exosome associated tumor markers and their detection methods. Mol. Biomed. 2020, 1, 3. [Google Scholar] [CrossRef] [PubMed]
- Logozzi, M.; Mizzoni, D.; Di Raimo, R.; Fais, S. Exosomes: A Source for New and Old Biomarkers in Cancer. Cancers 2020, 12, 2566. [Google Scholar] [CrossRef] [PubMed]
- Nakai, W.; Yoshida, T.; Diez, D.; Miyatake, Y.; Nishibu, T.; Imawaka, N.; Naruse, K.; Sadamura, Y.; Hanayama, R. A novel affinity-based method for the isolation of highly purified extracellular vesicles. Sci. Rep. 2016, 6, 33935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurunathan, S.; Kang, M.H.; Jeyaraj, M.; Qasim, M.; Kim, J.H. Review of the Isolation, Characterization, Biological Function, and Multifarious Therapeutic Approaches of Exosomes. Cells 2019, 8, 307. [Google Scholar] [CrossRef] [Green Version]
- Sidhom, K.; Obi, P.O.; Saleem, A. A Review of Exosomal Isolation Methods: Is Size Exclusion Chromatography the Best Option? Int. J. Mol. Sci. 2020, 21, 6466. [Google Scholar] [CrossRef]
- Cheng, L.; Zhang, K.; Qing, Y.; Li, D.; Cui, M.; Jin, P.; Xu, T. Proteomic and lipidomic analysis of exosomes derived from ovarian cancer cells and ovarian surface epithelial cells. J. Ovarian Res. 2020, 13, 9. [Google Scholar] [CrossRef]
- Lobasso, S.; Tanzarella, P.; Mannavola, F.; Tucci, M.; Silvestris, F.; Felici, C.; Ingrosso, C.; Corcelli, A.; Lopalco, P. A Lipidomic Approach to Identify Potential Biomarkers in Exosomes From Melanoma Cells With Different Metastatic Potential. Front. Physiol. 2021, 12, 748895. [Google Scholar] [CrossRef] [PubMed]
- Zebrowska, A.; Skowronek, A.; Wojakowska, A.; Widlak, P.; Pietrowska, M. Metabolome of Exosomes: Focus on Vesicles Released by Cancer Cells and Present in Human Body Fluids. Int. J. Mol. Sci. 2019, 20, 3461. [Google Scholar] [CrossRef] [Green Version]
- The Cancer Genome Atlas Research Network. The Molecular Taxonomy of Primary Prostate Cancer. Cell 2015, 163, 1011–1025. [Google Scholar] [CrossRef] [Green Version]
- Collisson, E.A.; Campbell, J.D.; Brooks, A.N.; Berger, A.H.; Lee, W.; Chmielecki, J.; Beer, D.G.; Cope, L.; Creighton, C.J.; Danilova, L.; et al. Comprehensive molecular profiling of lung adenocarcinoma. Nature 2014, 511, 543–550. [Google Scholar] [CrossRef]
- Heo, Y.J.; Hwa, C.; Lee, G.-H.; Park, J.-M.; An, J.-Y. Integrative Multi-Omics Approaches in Cancer Research: From Biological Networks to Clinical Subtypes. Mol. Cells 2021, 44, 433–443. [Google Scholar] [CrossRef]
- Leon-Mimila, P.; Wang, J.; Huertas-Vazquez, A. Relevance of Multi-Omics Studies in Cardiovascular Diseases. Front. Cardiovasc. Med. 2019, 6, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Botha, J.; Handberg, A.; Simonsen, J.B. Lipid-based strategies used to identify extracellular vesicles in flow cytometry can be confounded by lipoproteins: Evaluations of annexin V, lactadherin, and detergent lysis. J. Extracell. Vesicles 2022, 11, e12200. [Google Scholar] [CrossRef] [PubMed]
- Willms, E.; Johansson, H.J.; Mäger, I.; Lee, Y.; Blomberg, K.E.M.; Sadik, M.; Alaarg, A.; Smith, C.I.E.; Lehtiö, J.; El Andaloussi, S.; et al. Cells release subpopulations of exosomes with distinct molecular and biological properties. Sci. Rep. 2016, 6, 22519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.-H.; Huang, J.-T.; Chen, W.-L.; Wang, R.-H.; Kao, M.-C.; Pan, Y.-R.; Chan, S.-H.; Tsai, K.-W.; Kung, H.-J.; Lin, K.-T.; et al. Dysregulation of cystathionine γ-lyase promotes prostate cancer progression and metastasis. EMBO Rep. 2019, 20, e45986. [Google Scholar] [CrossRef]
- Ali, I.; Conrad, R.J.; Verdin, E.; Ott, M. Lysine Acetylation Goes Global: From Epigenetics to Metabolism and Therapeutics. Chem. Rev. 2018, 118, 1216–1252. [Google Scholar] [CrossRef] [Green Version]
- Di Martile, M.; Del Bufalo, D.; Trisciuoglio, D. The multifaceted role of lysine acetylation in cancer: Prognostic biomarker and therapeutic target. Oncotarget 2016, 7, 55789–55810. [Google Scholar] [CrossRef] [Green Version]
- Soekmadji, C.; Russell, P.J.; Nelson, C.C. Exosomes in prostate cancer: Putting together the pieces of a puzzle. Cancers 2013, 5, 1522–1544. [Google Scholar] [CrossRef] [Green Version]
- Reclusa, P.; Taverna, S.; Pucci, M.; Durendez, E.; Calabuig, S.; Manca, P.; Serrano, M.J.; Sober, L.; Pauwels, P.; Russo, A.; et al. Exosomes as diagnostic and predictive biomarkers in lung cancer. J. Thorac. Dis. 2017, 9, S1373–S1382. [Google Scholar] [CrossRef] [Green Version]
- Yamashita, T.; Kamada, H.; Kanasaki, S.; Maeda, Y.; Nagano, K.; Abe, Y.; Inoue, M.; Yoshioka, Y.; Tsutsumi, Y.; Katayama, S.; et al. Epidermal growth factor receptor localized to exosome membranes as a possible biomarker for lung cancer diagnosis. Pharmazie 2013, 68, 969–973. [Google Scholar]
- Welsh, E.A.; Eschrich, S.A.; Berglund, A.E.; Fenstermacher, D.A. Iterative rank-order normalization of gene expression microarray data. BMC Bioinform. 2013, 14, 153. [Google Scholar] [CrossRef]
- Johnson, W.E.; Li, C.; Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 2007, 8, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Gaud, C.; Sousa, B.C.; Nguyen, A.; Fedorova, M.; Ni, Z.; O’Donnell, V.B.; Wakelam, M.; Andrews, S.; Lopez-Clavijo, A. BioPAN: A web-based tool to explore mammalian lipidome metabolic pathways on LIPID MAPS. F1000Research 2021, 10, 4. [Google Scholar] [CrossRef] [PubMed]
- Ni, Z.; Fedorova, M. LipidLynxX: A data transfer hub to support integration of large scale lipidomics datasets. bioRxiv 2020. [Google Scholar] [CrossRef]
Kit | Sample | Dilution | Particles per Frame | SE | Centers per Frame | SE | Concentration (p/mL Dilution) | SE | Original Concentration (p/mL Elution) | Average Original Concentration (p/mL Elution) |
---|---|---|---|---|---|---|---|---|---|---|
SEC | Control 1 | 1/150 | 11.1 | 1.1 | 14.3 | 1.5 | 1.03 × 1010 | 1.00 × 109 | 1.55 × 1012 | 3.51 × 1012 |
Control 2 | 1/75 | 165.6 | 7.6 | 180.2 | 5.7 | 7.30 × 1010 | 3.40 × 109 | 5.48 × 1012 | ||
Lectin binding | Control 1 | 1/4 | 61.8 | 2 | 62.5 | 1.8 | 1.81 × 109 | 8.10 × 107 | 7.24 × 109 | 1.03 × 1010 |
Control 2 | 1/4 | 125 | 4.6 | 118.9 | 3.9 | 3.35 × 109 | 1.19 × 108 | 1.34 × 1010 | ||
TIM4 binding | Control 1 | 1/2 | 77.2 | 1.3 | 75.5 | 1.2 | 1.05 × 109 | 2.24 × 107 | 2.10 × 109 | 2.23 × 109 |
Control 2 | 1/2 | 87 | 3.8 | 85.3 | 3.3 | 1.18 × 109 | 5.18 × 107 | 2.36 × 109 |
Lipid Ion | Cancer Mean | Control Mean | Cancer Samples | Control Samples | p-Value | FDR | |
---|---|---|---|---|---|---|---|
NSCLC vs. Controls | Cer(d18:2/22:0)+HCOO | 21.61 | 20.97 | 14 | 10 | 0.0001 | 0.038 |
Cer(d18:1/24:1)+HCOO | 16.13 | 15.28 | 14 | 10 | 0.0002 | 0.038 | |
PC(15:0/18:3)+H | 25.30 | 24.72 | 14 | 10 | 0.0002 | 0.038 | |
SM(d18:2/20:3)+H | 21.88 | 21.02 | 14 | 10 | 0.0001 | 0.038 | |
SM(t18:1/18:1)+H | 17.79 | 16.58 | 14 | 10 | 0.0002 | 0.038 | |
CRPC vs. Controls | Cer(d18:2/23:0)+HCOO | 17.50 | 18.18 | 10 | 10 | 0.0002 | 0.214 |
Cer(d18:1/20:0)+HCOO | 19.10 | 18.16 | 10 | 10 | 0.0033 | 0.997 | |
PE(16:1e/22:6)-H | 18.83 | 19.64 | 10 | 10 | 0.0037 | 0.997 | |
PI(18:1/18:2)-H | 14.69 | 13.70 | 10 | 10 | 0.0056 | 0.997 | |
TG(18:0/18:1/22:5)+NH4 | 18.44 | 19.88 | 10 | 10 | 0.0099 | 0.997 |
Identity Mapped | Cancer Mean | Control Mean | Cancer Samples | Control Samples | p-Value | FDR | |
---|---|---|---|---|---|---|---|
NSCLC vs. Controls | (+) Nalpha-Acetyl-L-Lysine | 17.26 | 18.49 | 13 | 10 | 7.03 × 10−5 | 0.013 |
(+) L-Proline | 29.61 | 29.95 | 13 | 10 | 1.19 × 10−2 | 0.731 | |
(+) L-Lysine | 25.60 | 25.88 | 13 | 10 | 0.0201 | 0.731 | |
(+) O-Acetyl-L-carnitine | 28.31 | 27.66 | 13 | 10 | 0.0255 | 0.731 | |
(−) L-Proline | 22.00 | 22.51 | 13 | 10 | 0.0301 | 0.731 | |
PC vs. Controls | (+) L-Cystathionine | 16.47 | 14.97 | 10 | 10 | 0.0003 | 0.057 |
(−) L-Cystathionine | 16.03 | 14.37 | 10 | 10 | 0.0009 | 0.062 | |
(−) 4-Acetamidobutanoic acid | 18.54 | 17.47 | 10 | 10 | 0.0012 | 0.062 | |
(−) N-Acetyl-L-Alanine | 20.65 | 19.95 | 10 | 10 | 0.0015 | 0.062 | |
(−) Lauric acid | 23.58 | 24.41 | 10 | 10 | 0.0016 | 0.062 |
Omic | Kit | Comparison | Raw | Molecules | Normalized | Up | Down |
---|---|---|---|---|---|---|---|
EEI | |||||||
Lipids | SEC | NSCLC—Control | 435.66 | 50 | 871.33 | 26 | 2 |
CRPC—Control | 248.92 | 50 | 497.83 | 0 | 0 | ||
Lectin binding | NSCLC—Control | 229.83 | 50 | 459.67 | 0 | 0 | |
CRPC—Control | 193.09 | 50 | 386.19 | 0 | 0 | ||
TIM4 binding | NSCLC—Control | 83.47 | 50 | 166.94 | 0 | 0 | |
CRPC—Control | 142.97 | 50 | 285.93 | 0 | 0 | ||
Metabolites | SEC | NSCLC—Control | 173.69 | 50 | 347.37 | 0 | 1 |
CRPC—Control | 285.88 | 50 | 571.77 | 4 | 1 | ||
Lectin binding | NSCLC—Control | 91.09 | 50 | 182.19 | 0 | 0 | |
CRPC—Control | 115.77 | 50 | 231.55 | 0 | 0 | ||
TIM4 binding | NSCLC—Control | 160.91 | 50 | 321.81 | 0 | 0 | |
CRPC—Control | 145.32 | 50 | 290.65 | 0 | 0 |
Sample No. | Group | Gender | Current Age | Age at Diagnosis | Stage at Diagnosis | Treatment Status (Prior to Blood Collection) | Time from Last Treatment to Blood Collection |
---|---|---|---|---|---|---|---|
36 | Control | F | 69 | NA | NA | NA | NA |
26 | Control | F | 64 | NA | NA | NA | NA |
39 | Control | M | 72 | NA | NA | NA | NA |
37 | Control | F | 69 | NA | NA | NA | NA |
38 | Control | F | 65 | NA | NA | NA | NA |
40 | Control | M | 73 | NA | NA | NA | NA |
34 | Control | M | 69 | NA | NA | NA | NA |
41 | Control | F | 72 | NA | NA | NA | NA |
33 | Control | M | 70 | NA | NA | NA | NA |
30 | Control | M | 57 | NA | NA | NA | NA |
18 | Lung | F | 79 | 77 | 4 | Y | 3 weeks—6 months |
22 | Lung | M | 75 | 66 | 1A | Y | >1 year |
9 | Lung | M | 65 | 63 | 2B | Y | 3 weeks—6 months |
19 | Lung | F | 76 | 64 | 4 | Y | >1 year |
13 | Lung | F | 70 | 68 | 4 | N | NA |
14 | Lung | F | 58 | 56 | 4B | Y | 3 weeks—6 months |
24 | Lung | F | 69 | 67 | 4B | Y | 3 weeks—6 months |
2 | Lung | M | 78 | 76 | 4A | N | NA |
3 | Lung | M | 82 | 80 | 4A | Y | 3 weeks—6 months |
4 | Lung | F | 62 | 60 | 4B | N | NA |
8 | Lung | F | 63 | 61 | 4B | N | NA |
11 | Lung | F | 68 | 66 | 4A | Y | 3 weeks—6 months |
6 | Lung | F | 76 | 73 | 4A | Y | 3 weeks—6 months |
15 | Lung | F | 71 | 69 | 4A | N | NA |
25 | Prostate | M | 64 | 55 | 2B | Y | >1 year |
16 | Prostate | M | 71 | 64 | 4 | Y | >1 year |
12 | Prostate | M | 79 | 68 | 4 | Y | >1 year |
23 | Prostate | M | 59 | 57 | 4 | Y | 3 weeks—6 months |
5 | Prostate | M | 74 | 70 | 4B | Y | >1 year |
7 | Prostate | M | 80 | 61 | 4 | Y | >1 year |
31 | Prostate | M | 80 | 69 | 4 | Y | >1 year |
28 | Prostate | M | 67 | 55 | 4 | Y | >1 year |
29 | Prostate | M | 88 | 81 | 4 | Y | >1 year |
21 | Prostate | M | 78 | 64 | 1 | Y | >1 year |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soupir, A.C.; Tian, Y.; Stewart, P.A.; Nunez-Lopez, Y.O.; Manley, B.J.; Pellini, B.; Bloomer, A.M.; Zhang, J.; Mo, Q.; Marchion, D.C.; et al. Detectable Lipidomes and Metabolomes by Different Plasma Exosome Isolation Methods in Healthy Controls and Patients with Advanced Prostate and Lung Cancer. Int. J. Mol. Sci. 2023, 24, 1830. https://doi.org/10.3390/ijms24031830
Soupir AC, Tian Y, Stewart PA, Nunez-Lopez YO, Manley BJ, Pellini B, Bloomer AM, Zhang J, Mo Q, Marchion DC, et al. Detectable Lipidomes and Metabolomes by Different Plasma Exosome Isolation Methods in Healthy Controls and Patients with Advanced Prostate and Lung Cancer. International Journal of Molecular Sciences. 2023; 24(3):1830. https://doi.org/10.3390/ijms24031830
Chicago/Turabian StyleSoupir, Alex C., Yijun Tian, Paul A. Stewart, Yury O. Nunez-Lopez, Brandon J. Manley, Bruna Pellini, Amanda M. Bloomer, Jingsong Zhang, Qianxing Mo, Douglas C. Marchion, and et al. 2023. "Detectable Lipidomes and Metabolomes by Different Plasma Exosome Isolation Methods in Healthy Controls and Patients with Advanced Prostate and Lung Cancer" International Journal of Molecular Sciences 24, no. 3: 1830. https://doi.org/10.3390/ijms24031830
APA StyleSoupir, A. C., Tian, Y., Stewart, P. A., Nunez-Lopez, Y. O., Manley, B. J., Pellini, B., Bloomer, A. M., Zhang, J., Mo, Q., Marchion, D. C., Liu, M., Koomen, J. M., Siegel, E. M., & Wang, L. (2023). Detectable Lipidomes and Metabolomes by Different Plasma Exosome Isolation Methods in Healthy Controls and Patients with Advanced Prostate and Lung Cancer. International Journal of Molecular Sciences, 24(3), 1830. https://doi.org/10.3390/ijms24031830