Commonalities and Disparities between Endometriosis and Chronic Endometritis: Therapeutic Potential of Novel Antibiotic Treatment Strategy against Ectopic Endometrium
Abstract
:1. Introduction
2. Prevalence of CE in Women with and without Endometriosis
3. Local Inflammatory Profiling in Endometriosis and CE
3.1. Cellular and Humoral Immunology in Non-Pathologic Endometrium
3.2. Cellular and Humoral Immunity in Eutopic Endometrium of Endometriosis
3.3. Cellular and Humoral Immunity in Endometrium with CE
4. Reproductive Tract Microbiota in CE and Endometriosis
4.1. Reproductive Tract Microbiota in Healthy Women with Well-Being
4.2. Reproductive Tract Microbiota in Women with Endometriosis
4.3. Reproductive Tract Microbiota in Women with CE
5. Pharmacotherapy against Endometriosis and CE
5.1. Antibiotic Treatment against Endometriosis
5.2. Antibiotic Treatment against CE
6. Commonalities and Disparities between Women with Endometriosis and CE
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bayer-Garner, I.B.; Nickell, J.A.; Korourian, S. Routine syndecan-1 immunohistochemistry aids in the diagnosis of chronic endometritis. Arch. Pathol. Lab. Med. 2004, 128, 1000–1003. [Google Scholar] [CrossRef] [PubMed]
- Andrews, W.W.; Goldenberg, R.L.; Hauth, J.C.; Cliver, S.P.; Conner, M.; Goepfert, A.R. Endometrial microbial colonization and plasma cell endometritis after spontaneous or indicated preterm versus term delivery. Am. J. Obstet. Gynecol. 2005, 193, 739–745. [Google Scholar] [CrossRef] [PubMed]
- Pirtea, P.; Cicinelli, E.; De Nola, R.; de Ziegler, D.; Ayoubi, J.M. Endometrial causes of recurrent pregnancy losses: Endometriosis, adenomyosis, and chronic endometritis. Fertil. Steril. 2021, 115, 546–560. [Google Scholar] [CrossRef] [PubMed]
- Vitagliano, A.; Saccardi, C.; Noventa, M.; Sardo, A.D.S.; Saccone, G.; Cicinelli, E.; Pizzi, S.; Andrisani, A.; Litta, P.S. Effects of chronic endometritis therapy on in vitro fertilization outcome in women with repeated implantation failure: A systematic review and meta-analysis. Fertil. Steril. 2018, 110, 103–112.e1. [Google Scholar] [CrossRef]
- Yasuo, T.; Kitaya, K. Challenges in clinical diagnosis and management of chronic endometritis. Diagnostics 2022, 12, 2711. [Google Scholar] [CrossRef]
- Johnston-MacAnanny, E.B.; Hartnett, J.; Engmann, L.L.; Nulsen, J.C.; Sanders, M.M.; Benadiva, C.A. Chronic endometritis is a frequent finding in women with recurrent implantation failure after in vitro fertilization. Fertil. Steril. 2010, 93, 437–441. [Google Scholar] [CrossRef]
- Kitaya, K.; Yasuo, T. Aberrant expression of selectin E, CXCL1, and CXCL13 in chronic endometritis. Mod. Pathol. 2010, 23, 1136–1146. [Google Scholar] [CrossRef] [Green Version]
- Cicinelli, E.; Matteo, M.; Tinelli, R.; Lepera, A.; Alfonso, R.; Indraccolo, U.; Marrocchella, S.; Greco, P.; Resta, L. Prevalence of chronic endometritis in repeated unexplained implantation failure and the IVF success rate after antibiotic therapy. Hum. Reprod. 2015, 30, 323–330. [Google Scholar] [CrossRef] [Green Version]
- Morimune, A.; Kimura, F.; Moritani, S.; Tsuji, S.; Katusra, D.; Hoshiyama, T.; Nakamura, A.; Kitazawa, J.; Hanada, T.; Amano, T.; et al. The association between chronic deciduitis and preeclampsia. J. Reprod. Immunol. 2022, 150, 103474. [Google Scholar] [CrossRef]
- Salafia, C.; Ernst, L.; Pezzullo, J.; Wolf, E.; Rosenkrantz, T.; Vintzileos, A. The very low birthweight infant: Maternal complications leading to preterm birth, placental lesions, and intrauterine growth. Am. J. Perinatol. 1995, 12, 106–110. [Google Scholar] [CrossRef]
- Kitaya, K.; Takeuchi, T.; Mizuta, S.; Matsubayashi, H.; Ishikawa, T. Endometritis: New time, new concepts. Fertil. Steril. 2018, 110, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Taylor, H.S.; Kotlyar, A.M.; Flores, V.A. Endometriosis is a chronic systemic disease: Clinical challenges and novel innovations. Lancet 2021, 397, 839–852. [Google Scholar] [CrossRef] [PubMed]
- Guerriero, S.; Ajossa, S.; Pagliuca, M.; Borzacchelli, A.; Deiala, F.; Springer, S.; Pilloni, M.; Taccori, V.; Pascual, M.A.; Graupera, B.; et al. Advances in imaging for assessing pelvic endometriosis. Diagnostics 2022, 12, 2960. [Google Scholar] [CrossRef] [PubMed]
- Kitaya, K.; Yasuo, T. Immunohistochemistrical and clinicopathological characterization of chronic endometritis. Am. J. Reprod. Immunol. 2011, 66, 410–415. [Google Scholar] [CrossRef]
- Takebayashi, A.; Kimura, F.; Kishi, Y.; Ishida, M.; Takahashi, A.; Yamanaka, A.; Takahashi, K.; Suginami, H.; Murakami, T. The association between endometriosis and chronic endometritis. PLoS ONE 2014, 9, e88354. [Google Scholar] [CrossRef] [Green Version]
- Khan, K.N.; Fujishita, A.; Kitajima, M.; Hiraki, K.; Nakashima, M.; Masuzaki, H. Intra-uterine microbial colonization, and occurrence of endometritis in women with endometriosis. Hum. Reprod. 2014, 29, 2446–2456. [Google Scholar] [CrossRef] [Green Version]
- Cicinelli, E.; Trojano, G.; Mastromauro, M.; Vimercati, A.; Marinaccio, M.; Mitola, P.C.; Resta, L.; de Ziegler, D. Higher prevalence of chronic endometritis in women with endometriosis: A possible etiopathogenetic link. Fertil. Steril. 2017, 108, 289–295.e1. [Google Scholar] [CrossRef] [Green Version]
- Freitag, N.; Pour, S.J.; Fehm, T.N.; Toth, B.; Markert, U.R.; Weber, M.; Togawa, R.; Kruessel, J.-S.; Baston-Buest, D.M.; Bielfeld, A.P. Are uterine natural killer and plasma cells in infertility patients associated with endometriosis, repeated implantation failure, or recurrent pregnancy loss? Arch. Gynecol. Obstet. 2020, 302, 1487–1494. [Google Scholar] [CrossRef]
- Khan, K.N.; Fujishita, A.; Muto, H.; Masumoto, H.; Ogawa, K.; Koshiba, A.; Mori, T.; Itoh, K.; Teramukai, S.; Matsuda, K.; et al. Levofloxacin or gonadotropin-Releasing hormone agonist treatment decreases intrauterine microbial colonization in human endometriosis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021, 264, 103–116. [Google Scholar] [CrossRef]
- American Society for Reproductive Medicine. Revised American Society for Reproductive Medicine classification of endometriosis. Fertil. Steril. 1996, 67, 817–821. [Google Scholar]
- Holzer, I.; Ott, J.; Kurz, C.; Hofstetter, G.; Hager, M.; Kuessel, L.; Parry, J.P. Is chronic endometritis associated with tubal infertility? a prospective cohort study. J. Minimally Invasive Gynecol. 2021, 28, 1876–1881. [Google Scholar] [CrossRef] [PubMed]
- Qiao, X.; Wu, L.; Liu, D.; Pei, T.; Huang, W. Existence of chronic endometritis and its influence on pregnancy outcomes in infertile women with minimal/mild endometriosis. Int. J. Gynecol. Obstet. 2022, in press. [Google Scholar] [CrossRef]
- Wang, S.; Li, F.; Zhang, W.; Sui, X.; Hao, C. Investigation of the relationship between chronic endometritis manifestations under hysteroscope and CD138 expression. Appl. Bionics Biomech. 2022, 2022, 8323017. [Google Scholar] [CrossRef] [PubMed]
- Xiang, R.; Li, M.; Gu, Z.; Liu, H.; Zeng, H.; Peng, J. Chronic endometritis positively correlates with the aggravation of intrauterine adhesions but has limited effects on reproductive prognosis with antibiotic application. Int. J. Gynecol. Obstet. 2022. [Google Scholar] [CrossRef]
- Kitaya, K.; Yamaguchi, T.; Yasuo, T.; Okubo, T.; Honjo, H. Post-ovulatory rise of endometrial CD16(−) natural killer cells: In situ proliferation of residual cells or selective recruitment from circulating peripheral blood? J. Reprod. Immunol. 2007, 76, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Kitaya, K.; Yasuo, T.; Tada, Y.; Hayashi, T.; Iwaki, Y.; Karita, M.; Funabiki, M.; Taguchi, S.; Spillers, D.; Nakamura, Y.; et al. Unusual inflammation in gynecologic pathology associated with defective endometrial receptivity. Histol. Histopathol. 2014, 29, 1113–1127. [Google Scholar]
- McQueen, D.B.; Maniar, K.P.; Hutchinson, A.; Confino, R.; Bernardi, L.; Pavone, M.E. Redefining chronic endometritis: The importance of endometrial stromal changes. Fertil. Steril. 2021, 116, 855–861. [Google Scholar] [CrossRef]
- Shen, M.; O’Donnell, E.; Leon, G.; Kisovar, A.; Melo, P.; Zondervan, K.; Granne, I.; Southcombe, J. The role of endometrial B cells in normal endometrium and benign female reproductive pathologies: A systematic review. Hum. Reprod. Open. 2022, 2022, hoab043. [Google Scholar] [CrossRef]
- Bjercke, S.; Brandtzaeg, P. Glandular distribution of immunoglobulins, J chain, secretory component, and HLA—DR in the human endometrium throughout the menstrual cycle. Hum. Reprod. 1993, 8, 1420–1425. [Google Scholar] [CrossRef]
- Kitaya, K.; Tada, Y.; Hayashi, T.; Taguchi, S.; Funabiki, M.; Nakamura, Y. Comprehensive endometrial immunoglobulin subclass analysis in infertile women suffering from repeated implantation failure with or without chronic endometritis. Am. J. Reprod. Immunol. 2014, 72, 386–391. [Google Scholar] [CrossRef]
- Zheng, Y.; Liu, B.; Deng, X.; Chen, Y.; Huang, Y.; Zhang, Y.; Xu, Y.; Sang, L.; Liu, X.; Li, Y. Construction and validation of a robust prognostic model based on immune features in sepsis. Front. Immunol. 2022, 13, 994295. [Google Scholar] [CrossRef] [PubMed]
- Takebayashi, A.; Kimura, F.; Kishi, Y.; Ishida, M.; Takahashi, A.; Yamanaka, A.; Wu, D.; Zheng, L.; Takahashi, K.; Suginami, H.; et al. Subpopulations of macrophages within eutopic endometrium of endometriosis patients. Am. J. Reprod. Immunol. 2014, 73, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Vallvé-Juanico, J.; Santamaria, X.; Vo, K.C.; Houshdaran, S.; Giudice, L.C. Macrophages display proinflammatory phenotypes in the eutopic endometrium of women with endometriosis with relevance to an infectious etiology of the disease. Fertil. Steril. 2019, 112, 1118–1128. [Google Scholar] [CrossRef]
- Poli-Neto, O.B.; Meola, J.; Rosa-e-Silva, J.C.; Tiezzi, D. Transcriptome meta-analysis reveals differences of immune profile between eutopic endometrium from stage I-II and III-IV endometriosis independently of hormonal milieu. Sci. Rep. 2020, 10, 313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nie, M.-F.; Xie, Q.; Wu, Y.-H.; He, H.; Zou, L.-J.; She, X.-L.; Wu, X.-Q. Serum and ectopic endometrium from women with endometriosis modulate macrophage M1/M2 polarization via the Smad2/Smad3 pathway. J. Immunol. Res. 2018, 2018, 6285813. [Google Scholar] [CrossRef]
- Laganà, A.S.; Salmeri, F.M.; Frangež, H.B.; Ghezzi, F.; Vrtačnik-Bokal, E.; Granese, R. Evaluation of M1 and M2 macrophages in ovarian endometriomas from women affected by endometriosis at different stages of the disease. Gynecol. Endocrinol. 2020, 36, 441–444. [Google Scholar] [CrossRef]
- Agostinis, C.; Balduit, A.; Mangogna, A.; Zito, G.; Romano, F.; Ricci, G.; Kishore, U.; Bulla, R. Immunological basis of the endometriosis: The complement system as a potential therapeutic target. Front. Immunol. 2021, 11, 599117. [Google Scholar] [CrossRef]
- Odukoya, O.A.; Wheatcroft, N.; Weetman, A.P.; Cooke, I.D. The prevalence of endometrial immunoglobulin G antibodies in patients with endometriosis. Hum. Reprod. 1995, 10, 1214–1219. [Google Scholar] [CrossRef]
- Mathur, S.; Garza, D.E.; Smith, L.F. Endometrial autoantigens eliciting immunoglobulin (Ig) G, IgA, and IgM responses in endometriosis. Fertil. Steril. 1990, 54, 56–63. [Google Scholar] [CrossRef]
- Weed, J.C.; Arquembourg, P.C. Endometriosis: Can it produce an autoimmune response resulting in infertility? Clin. Obstet. Gynecol. 1980, 23, 885–893. [Google Scholar] [CrossRef]
- Disep, B.; Innes, B.A.; Cochrane, H.R.; Tijani, S.; Bulmer, J.N. Immunohistochemical Characterization of Endometrial Leucocytes in Endometritis. Histopathology 2004, 45, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yu, S.; Huang, C.; Lian, R.; Chen, C.; Liu, S.; Li, L.; Diao, L.; Markert, U.R.; Zeng, Y. Evaluation of peripheral and uterine immune status of chronic endometritis in patients with recurrent reproductive failure. Fertil. Steril. 2020, 11, 187–196.e1. [Google Scholar] [CrossRef]
- McQueen, D.B.; Perfetto, C.O.; Hazard, F.K.; Lathi, R.B. Pregnancy outcomes in women with chronic endometritis and recurrent pregnancy loss. Fertil. Steril. 2015, 104, 927–931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tortorella, C.; Piazzolla, G.; Matteo, M.; Pinto, V.; Tinelli, R.; Sabbà, C.; Fanelli, M.; Cicinelli, E. Interleukin-6, interleukin-1β, and tumor necrosis factor α in menstrual effluents as biomarkers of chronic endometritis. Fertil. Steril. 2014, 101, 242–247. [Google Scholar] [CrossRef] [PubMed]
- Tseng, J.F.; Ryan, I.P.; Milam, T.D.; Murai, J.T.; Schriock, E.D.; Landers, D.V.; Taylor, R.N. Interleukin-6 secretion in vitro is up-regulated in ectopic and eutopic endometrial stromal cells from women with endometriosis. J. Clin. Endocrinol. Metab. 1996, 81, 1118–1122. [Google Scholar] [PubMed] [Green Version]
- Kitaya, K.; Tada, Y.; Taguchi, S.; Funabiki, M.; Hayashi, T.; Nakamura, Y. Local mononuclear cell infiltrates in infertile patients with endometrial macropolyps versus micropolyps. Hum. Reprod. 2012, 27, 3474–3480. [Google Scholar] [CrossRef]
- Cicinelli, E.; Bettocchi, S.; de Ziegler, D.; Loizzi, V.; Cormio, G.; Marinaccio, M.; Trojano, G.; Crupano, F.M.; Francescato, R.; Vitagliano, A.; et al. Chronic endometritis, a common disease hidden behind endometrial polyps in premenopausal women: First evidence from a case-control study. J. Minimal. Invasive. Gynecol. 2019, 26, 1346–1350. [Google Scholar] [CrossRef]
- Di Pietro, C.; Cicinelli, E.; Guglielmino, M.R.; Ragusa, M.; Farina, M.; Palumbo, M.A.; Cianci, A. Altered transcriptional regulation of cytokines, growth factors and apoptotic proteins in the endometrium of infertile women with chronic endometritis. Am. J. Reprod. Immunol. 2013, 69, 509–517. [Google Scholar] [CrossRef]
- Mishra, K.; Wadhwa, N.; Guleria, K.; Agarwal, S. ER, PR and Ki-67 expression status in granulomatous and chronic non-specific endometritis. J. Obstet. Gynecol. Res. 2008, 34, 371–378. [Google Scholar] [CrossRef]
- Pickartz, H.; Beckmann, R.; Fleige, B.; Düe, W.; Gerdes, J.; Stein, H. Steroid receptors and proliferative activity in non-neoplastic and neoplastic endometria. Virchows. Arch. A Pathol. Anat. Histol. 1990, 417, 163–171. [Google Scholar] [CrossRef]
- Pu, H.; Wen, X.; Luo, D.; Guo, Z. Regulation of progesterone receptor expression in endometriosis, endometrial cancer, and breast cancer by estrogen, polymorphisms, transcription factors, epigenetic alterations, and ubiquitin-proteasome system. J. Steroid. Biochem. Mol. Biol. 2022, 227, 106199. [Google Scholar] [CrossRef] [PubMed]
- Lv, Z.; Wu, L.; Lu, Y.; Liu, S.; Li, Q. Bibliometric analysis of IgG4-related disease research from 2003 to 2022 based on Web of Science Core Collection Databases. Clin. Rheumatol. 2022, 42, 15–27. [Google Scholar] [CrossRef]
- Kushnir, V.A.; Solouki, S.; Sarig-Meth, T.; Vega, M.G.; Albertini, D.F.; Darmon, S.K.; Deligdisch, L.; Barad, D.H.; Gleicher, N. Systemic inflammation and autoimmunity in women with chronic endometritis. Am. J. Reprod. Immunol. 2016, 75, 672–677. [Google Scholar] [CrossRef] [PubMed]
- Medina-Bastidas, D.; Camacho-Arroyo, I.; García-Gómez, E. Current findings in endometrial microbiome: Impact on uterine diseases. Reproduction 2022, 163, 81–96. [Google Scholar] [CrossRef] [PubMed]
- Ravel, J.; Gajer, P.; Abdo, Z.; Schneider, G.M.; Koenig, S.S.K.; McCulle, S.L.; Karlebach, S.; Gorle, R.; Russell, J.; Tacket, C.O.; et al. Vaginal microbiome of reproductive-age women. Proc. Natl. Acad. Sci. USA. 2010, 108 (Suppl. 1), 4680–4687. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Song, X.; Wei, W.; Zhong, H.; Dai, J.; Lan, Z.; Li, F.; Yu, X.; Feng, Q.; Wang, Z.; et al. The microbiota continuum along the female reproductive tract and its relation to uterine-related diseases. Nat. Commun. 2017, 8, 875. [Google Scholar] [CrossRef] [Green Version]
- Toson, B.; Simon, C.; Moreno, I. The endometrial microbiome and its impact on human conception. Int. J. Mol. Sci. 2022, 23, 485. [Google Scholar] [CrossRef]
- Wei, W.; Zhang, X.; Tang, H.; Zeng, L.; Wu, R. Microbiota composition and distribution along the female reproductive tract of women with endometriosis. Ann. Clin. Microbiol. Antimicrob. 2020, 19, 15. [Google Scholar] [CrossRef] [Green Version]
- Hernandes, C.; Silveira, P.; Rodrigues Sereia, A.F.; Christoff, A.P.; Mendes, H.; Valter de Oliveira, L.F.; Podgaec, S. Microbiome profile of deep endometriosis patients: Comparison of vaginal fluid, endometrium, and lesion. Diagnostics 2020, 10, 163. [Google Scholar] [CrossRef] [Green Version]
- Wessels, J.M.; Domínguez, M.A.; Leyland, N.A.; Agarwal, S.K.; Foster, W.G. Endometrial microbiota is more diverse in people with endometriosis than symptomatic controls. Sci. Rep. 2021, 11, 18877. [Google Scholar] [CrossRef]
- Ata, B.; Yildiz, S.; Turkgeldi, E.; Brocal, V.P.; Dinleyici, E.C.; Moya, A.; Urman, B. The endobiota study: Comparison of vaginal, cervical and gut microbiota between women with stage 3/4 endometriosis and healthy controls. Sci. Rep. 2019, 9, 2204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chopra, C.; Bhushan, I.; Mehta, M.; Koushal, T.; Gupta, A.; Sharma, S.; Kumar, M.; Khodor, S.A.; Sharma, S. Vaginal microbiome: Considerations for reproductive health. Future Microbiol. 2022, 17, 1501–1513. [Google Scholar] [CrossRef] [PubMed]
- Winters, A.D.; Romero, R.; Gervasi, M.T.; Gomez-Lopez, N.; Tran, M.R.; Garcia-Flores, V.; Pacora, P.; Jung, E.; Hassan, S.S.; Hsu, C.-D.; et al. Does the endometrial cavity have a molecular microbial signature? Sci. Rep. 2019, 9, 9905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molina, N.M.; Sola-Leyva, A.; Saez-Lara, M.J.; Plaza-Diaz, J.; Tubić-Pavlović, A.; Romero, B.; Clavero, A.; Mozas-Moreno, J.; Fontes, J.; Altmäe, S. New opportunities for endometrial health by modifying uterine microbial composition: Present or future? Biomolecules 2020, 10, 593. [Google Scholar] [CrossRef] [Green Version]
- Walther-António, M.R.S.; Chen, J.; Multinu, F.; Hokenstad, A.; Distad, T.J.; Cheek, E.H.; Keeney, G.L.; Creedon, D.J.; Nelson, H.; Mariani, A.; et al. Potential contribution of the uterine microbiome in the development of endometrial Cancer. Genome Med. 2016, 8, 122. [Google Scholar] [CrossRef] [Green Version]
- Le, N.; Cregger, M.; Brown, V.; Loret de Mola, J.; Bremer, P.; Nguyen, L.; Groesch, K.; Wilson, T.; Diaz-Sylvester, P.; Braundmeier-Fleming, A. Association of microbial dynamics with urinary estrogens and estrogen metabolites in patients with endometriosis. PLoS ONE 2021, 16, e0261362. [Google Scholar] [CrossRef]
- Chang, C.Y.-Y.; Chiang, A.-J.; Lai, M.-T.; Yan, M.-J.; Tseng, C.-C.; Lo, L.-C.; Wan, L.; Li, C.-J.; Tsui, K.-H.; Chen, C.-M.; et al. A more diverse cervical microbiome associated with better clinical outcomes in patients with endometriosis: A pilot study. Biomedicines 2022, 10, 174. [Google Scholar] [CrossRef]
- Lu, F.; Wei, J.; Zhong, Y.; Feng, Y.; Ma, B.; Xiong, Y.; Wei, K.; Tan, B.; Chen, T. Antibiotic therapy and vaginal microbiota transplantation reduce endometriosis disease progression in female mice via NF-B signaling pathway. Front. Med. 2022, 9, 831115. [Google Scholar] [CrossRef]
- Moreno, I.; Codoñer, F.M.; Vilella, F.; Valbuena, D.; Martinez-Blanch, J.F.; Jimenez-Almazán, J.; Alonso, R.; Alamá, P.; Remohí, J.; Pellicer, A.; et al. Evidence that the endometrial microbiota has an effect on implantation success or failure. Am. J. Obstet. Gynecol. 2016, 215, 684–703. [Google Scholar] [CrossRef] [Green Version]
- Fang, R.-L.; Chen, L.-X.; Shu, W.-S.; Yao, S.-Z.; Wang, S.-W.; Chen, Y.-Q. Barcoded sequencing reveals diverse intrauterine microbiomes in patients suffering from endometrial polyps. Am. J. Transl. Res. 2016, 8, 1581–1592. [Google Scholar]
- Liu, Y.; Ko, E.Y.-L.; Wong, K.K.-W.; Chen, X.; Cheung, W.-C.; Law, T.S.-M.; Chung, J.P.-W.; Tsui, S.K.-W.; Li, T.-C.; Chim, S.S.-C. Endometrial microbiota in infertile women with and without chronic endometritis as diagnosed using a quantitative and reference range-based method. Fertil. Steril. 2019, 112, 707–717.e1. [Google Scholar] [CrossRef] [PubMed]
- Lozano, F.M.; Bernabeu, A.; Lledo, B.; Morales, R.; Diaz, M.; Aranda, F.I.; Llacer, J.; Bernabeu, R. Characterization of the vaginal and endometrial microbiome in patients with chronic endometritis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021, 263, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xu, X.; Yu, L.; Shi, X.; Min, M.; Xiong, L.; Pan, J.; Zhang, Y.; Liu, P.; Wu, G.; et al. Vaginal microbiota changes caused by HPV infection in Chinese women. Front. Cell. Infect. Microbiol. 2022, 12, 814668. [Google Scholar] [CrossRef]
- Chen, P.; Chen, P.; Guo, Y.; Fang, C.; Li, T. Interaction between chronic endometritis caused endometrial microbiota disorder and endometrial immune environment change in recurrent implantation failure. Front. Immunol. 2021, 12, 748447. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Wei, K.; He, X.; Wei, J.; Yang, L.; Li, L.; Chen, T.; Tan, B. Identification of uterine microbiota in infertile women receiving in vitro fertilization with and without chronic endometritis. Front. Cell. Dev. Biol. 2021, 9, 693267. [Google Scholar] [CrossRef] [PubMed]
- Chieng, W.K.; Abdul Jalal, M.I.; Bedi, J.S.; Zainuddin, A.A.; Mokhtar, M.H.; Abu, M.A.; Chew, K.T.; Nur Azurah, A.G. Probiotics, a promising therapy to reduce the recurrence of bacterial vaginosis in women? a systematic review and meta-analysis of randomized controlled trials. Front. Nutr. 2022, 9, 938838. [Google Scholar] [CrossRef]
- Yang, R.; Du, X.; Wang, Y.; Song, X.; Yang, Y.; Qiao, J. The hysteroscopy and histological diagnosis and treatment value of chronic endometritis in recurrent implantation failure patients. Arch. Gynecol. Obstet. 2014, 289, 1363–1369. [Google Scholar] [CrossRef]
- Tersoglio, A.E.; Salatino, D.R.; Reinchisi, G.; Gonzalez, A.; Tersoglio, S.; Marlia, C. Repeated implantation failure in oocyte donation. What to do to improve the endometrial receptivity? JBRA. Assist. Reprod. 2015, 19, 44–52. [Google Scholar]
- Kitaya, K.; Matsubayashi, H.; Takaya, Y.; Nishiyama, R.; Yamaguchi, K.; Takeuchi, T.; Ishikawa, T. Live birth rate following oral antibiotic treatment for chronic endometritis in infertile women with repeated implantation failure. Am. J. Reprod. Immunol. 2017, 78, 12719. [Google Scholar] [CrossRef]
- Gay, C.; Hamdaoui, N.; Pauly, V.; Rojat Habib, M.-C.; Djemli, A.; Carmassi, M.; Chau, C.; Bretelle, F. Impact of antibiotic treatment for chronic endometritis on unexplained recurrent pregnancy loss. J. Gynecol. Obstet. Hum. Reprod. 2021, 50, 102034. [Google Scholar] [CrossRef]
- Chadchan, S.B.; Cheng, M.; Parnell, L.A.; Yin, Y.; Schriefer, A.; Mysorekar, I.U.; Kommagani, R. Antibiotic therapy with metronidazole reduces endometriosis disease progression in mice: A potential role for gut microbiota. Hum. Reprod. 2019, 34, 1106–1116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takai, E.; Taniguchi, F.; Nakamura, K.; Uegaki, T.; Iwabe, T.; Harada, T. Parthenolide reduces cell proliferation and prostaglandin E2 in human endometriotic stromal cells and inhibits the development of endometriosis in the murine model. Fertil. Steril. 2013, 100, 1170–1178. [Google Scholar] [CrossRef]
- Cicinelli, E.; Resta, L.; Loizzi, V.; Pinto, V.; Santarsiero, C.; Cicinelli, R.; Greco, P.; Vitagliano, A. Antibiotic therapy versus no treatment for chronic endometritis: A case-control study. Fertil. Steril. 2021, 115, 1541–1548. [Google Scholar] [CrossRef]
- Song, D.; He, Y.; Wang, Y.; Liu, Z.; Xia, E.; Huang, X.; Xiao, Y.; Li, T.-C. Impact of antibiotic therapy on the rate of negative test results for chronic endometritis: A prospective randomized control trial. Fertil. Steril. 2021, 115, 1549–1556. [Google Scholar] [CrossRef] [PubMed]
- Kitaya, K.; Tanaka, S.E.; Sakuraba, Y.; Ishikawa, T. Multi-drug-resistant chronic endometritis in infertile women with repeated implantation failure: Trend over the decade and pilot study for third-line oral antibiotic treatment. J. Assist. Reprod. Genet. 2022, 39, 1839–1848. [Google Scholar] [CrossRef]
- Kitaya, K.; Ishikawa, T. Lincomycin administration against persistent multi-drug resistant chronic endometritis in infertile women with a history of repeated implantation failure. Appl. Microbiol. 2022, 2, 554–560. [Google Scholar] [CrossRef]
- Li, F.; Chen, C.; Wei, W.; Wang, Z.; Dai, J.; Hao, L.; Song, L.; Zhang, X.; Zeng, L.; Du, H.; et al. The metagenome of the female upper reproductive tract. GigaScience 2018, 7, giy107. [Google Scholar] [CrossRef] [Green Version]
- Bouet, P.E.; El Hachem, H.; Monceau, E.; Gariépy, G.; Kadoch, I.J.; Sylvestre, C. Chronic endometritis in women with recurrent pregnancy loss and recurrent implantation failure: Prevalence and role of office hysteroscopy and immunohistochemistry in diagnosis. Fertil. Steril. 2016, 105, 106–110. [Google Scholar] [CrossRef] [Green Version]
- Jindal, U.N.; Verma, S.; Bala, Y. Favorable infertility outcomes following antitubercular treatment prescribed on the sole basis of a positive polymerase chain reaction test for endometrial tuberculosis. Hum. Reprod. 2012, 27, 1368–1374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qu, D.; Yang, M.; Tong, L.; Yu, X.; Jing, Q.; Yang, Y.; Zhou, H. Combination of dydrogesterone and antibiotic versus antibiotic alone for chronic endometritis: A randomized controlled trial study. Reprod. Sci. 2021, 28, 3073–3080. [Google Scholar] [CrossRef] [PubMed]
Authors [Reference]/ Published Year/Nation/ Study Period/Study Design | Reported Prevalence of CE in Endometriosis Group and (p-Value) | Age (Years) | BMI (kg/m2) | Sample Source | Conditions for IHC-CD138 | Adopted Diagnostic Criteria for CE | Stage of Endometriosis and Relationship with CE * |
---|---|---|---|---|---|---|---|
Kitaya K et al. [14]/ 2011/Japan/ January 2002–December 2010/ retrospective study | 5.00% (1/20, endometriosis group) vs. 11.68% (25/214, non-endometriosis, endometrial benign diseases) (p = 0.7072) | Information unavailable | Information unavailable | Hysterectomy | Paraffin-embedded 4-μm sections/clone B-A38 (Nichirei Corp., Tokyo, Japan), stock solution, 60 min, room temperature | 5 or more ESPCs in 10 high power fields (HPFs) (400-fold magnification) | Information unavailable |
Takebayashi A et al. [15]/ 2014/Japan/ April 2001–December 2012/ retrospective study | 52.94% (18/34, endometriosis group) vs. 27.02% (10/37, non-endometriosis, endometrial benign diseases) (p = 0.0311) | 44.15 ± 3.65 vs. 43.15 ± 2.75 (mean ± SD) | 22.08 ± 4.83 vs. 21.60 ± 3.14 (mean ± SD) | Hysterectomy | Paraffin-embedded 4-μm sections/B-A38, stock solution, 60 min, room temperature | 1 or more ESPCs in 10 HPFs (400-fold magnification) | Stage I-IV, no relationship between the prevalence of CE and stage |
Khan KN et al. [16]/ 2014/Japan/ June 2012–December 2013/ retrospective study | 3.08% (2/65, endometriosis, infertility/dysmenorrhea group) vs. 0% (0/55, non-endometriosis, infertility/dysmenorrhea) (p = 0.4993) | 21–51 vs. 22–51 (range) | Information unavailable | Endometrial curettage | Paraffin-embedded 5-μm sections/clone ab34164 (Abcam, Tokyo, Japan), 1:200 dilution, overnight, 4 °C | 1 or more ESPCs in 15 HPFs (100-fold magnification) in 3 or more sections | Information unavailable |
Cicinelli E et al. [17]/ 2017/Italy/ January 2010–June 2016/ retrospective study | 38.46% (30/78, endometriosis group) vs. 14.10% (11/78, non-endometriosis, endometrial benign diseases) (p < 0.001) * | 44.3 ± 2.8 vs. 44.0 ± 2.3 (mean ± SD) | 27.3 ± 4.2 vs. 27.2 ± 4.3 (mean ± SD) | Hysterectomy | Paraffin-embedded 4-μm sections/clone MI15 (Cell Marque Biocare Medical, Concord, CA)/not available | 1 or more ESPCs in 10 HPFs (100-fold magnification) | Stage IV |
Freitag N et al. [18]/ 2020/Germany (>90% Caucasian)/ January 2013–February 2017/ retrospective study ** | 12.90% (8/62, endometriosis group, infertility) vs. 10.00% (5/50, non-endometriosis, infertility) (p = 0.634) | 26–48 (range) | Information unavailable | Pipelle suction | Paraffin-embedded/ other information not available (sent to laboratory) | 5 or more ESPCs per mm2 section | Information unavailable |
Khan KN et al. [19]/ 2021//Japan/ April 2015–February 2017/ prospective non-randomized study | ≥22.6% (≥12/53) Not examined prior to treatment 33.4% (7/21) (Untreated endometriosis) ≥23.4% (≥11/47) Not examined prior to treatment 27.3% (3/11) Untreated endometriosis | 18–51 vs. 26–51 (range) | Information unavailable | Endometrial curettage | Paraffin-embedded 5-μm sections/ab34164, 1:200 dilution overnight, 4 °C | 1 or more ESPCs in 5 HPFs (200-fold magnification) | Stage I-IV, no relationship between the prevalence of CE and stage |
Authors [Reference]/ Published Year/Nation/ Study Period/Study Design | Dose | Indications | Age (Years) | BMI (kg/m2) | Conditions for IHC-CD138 | Diagnostic Criteria for CE | The Cure Rate of Histopathologic CE |
---|---|---|---|---|---|---|---|
Johnston-MacAnanny EB et al. [6]/ 2010/USA/ January 2001–December 2007/ retrospective study | 1000 mg/day, 14 days (500 mg, twice) in combination with ciprofloxacin 1000 mg/day, 14 days | Repeated implantation failure (two failed ET cycles), second-line treatment against doxycycline-resistant CE | 34.5 ± 3.27 (mean ± SD) | Information unavailable | Pipelle suction specimens/Immunohistochemistry, paraffin-embedded sections/MI15 Cell Marque (Biocare Medical, Concord, CA)/not available Biocare Medical, Concord, CA)/1:100 dilution/60 min/Room air? | 1 or more ESPCs in 1 HPF observed | 100% (3/3) |
McQueen DB et al. [43]/ 2014/USA (Caucasian and African-American)/ July 2004–February 2012/ prospective study | 1000 mg/day, 14 days (500 mg, twice) in combination with or ofloxacin 800 mg/day, 14 days | Recurrent pregnancy loss, first-line treatment | 22.08 ± 4.83 (mean ± SD) | 25.8 ± 6.4, and 20–47 (mean ± SD, and range) | Not detailed | Not detailed | 73.1% (19/26) |
Yang R et al. [77]/ 2014/China /January 2009–January 2010/prospective study | 1000 mg/day, 14 days (500 mg, twice)in combination with levofloxacin 500 mg/day, 14 days | Repeated implantation failure (three failed ET cycles or 6 or more high-quality transferred embryos), first-line treatment | Not detailed (Two combined studies are reported in one article) | Not detailed (Two combined studies are reported in one article) | Pipelle suction specimens/Immunohistochemistry | 1 or more ESPCs in the section observed | Not re-examined (?/68) |
Tersoglio AE et al. [78]/2015/Argentina/ 2010–2013/ prospective study | 1000 mg/day, 14 days (500 mg, twice)in combination with ciprofloxacin 1000 mg/day, 14 days and precedent 200 mg/day doxycycline along with prednisone 4–8 mg/day | Repeated implantation failure (two or more failed ET cycles) first-line treatment | 36.0 ± 4.08 (mean and SD) | Information unavailable | Not detailed | 1 or more ESPCs in 1 HPF observed | 64.3% (9/14) |
Kitaya K et al. [79]/ 2017/Japan/ November 2011–July 2014/ prospective study | 500 mg/day, 14 days (250 mg, twice) in combination with ciprofloxacin 400 mg/day, 14 days | RIF (three or more 6 or more high-quality transferred embryos and/or blastocysts), second-line treatment against doxycycline-resistant CE | 38.1 ± 3.8 (mean ± SD) | 21.1 ± 1.9 (mean ± SD) | Curette biopsy specimens/ Immunohistochemistry, paraffin-embedded 4-m sections/B-A38 (Nichirei Corp., Tokyo, Japan), stock solution, 60 min, room temperature | endometrial stromal plasmacyte density index (sum of ESPC counts divided by the number of HPF evaluated) 0.25 or more | 88.9% (8/9) |
Gay C et al. [80]/ 2021/France/ January 2013–January 2018/ retrospective study | 1000 mg/day, 14 days (500 mg, twice) in combination with doxycycline 200 mg/day, 14 days (Antibiotic agents were chosen according to antibiogram if bacteria were identified.) | Recurrent pregnancy loss, first-line treatment | 33 and 9 (median and interquartile range) | 24 and 3 (median and interquartile range) | Pipelle suction specimens/Immunohistochemistry, not detailed | 1 or more ESPCs in 1 HPF observed | 100%? Not detailed |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kitaya, K.; Yasuo, T. Commonalities and Disparities between Endometriosis and Chronic Endometritis: Therapeutic Potential of Novel Antibiotic Treatment Strategy against Ectopic Endometrium. Int. J. Mol. Sci. 2023, 24, 2059. https://doi.org/10.3390/ijms24032059
Kitaya K, Yasuo T. Commonalities and Disparities between Endometriosis and Chronic Endometritis: Therapeutic Potential of Novel Antibiotic Treatment Strategy against Ectopic Endometrium. International Journal of Molecular Sciences. 2023; 24(3):2059. https://doi.org/10.3390/ijms24032059
Chicago/Turabian StyleKitaya, Kotaro, and Tadahiro Yasuo. 2023. "Commonalities and Disparities between Endometriosis and Chronic Endometritis: Therapeutic Potential of Novel Antibiotic Treatment Strategy against Ectopic Endometrium" International Journal of Molecular Sciences 24, no. 3: 2059. https://doi.org/10.3390/ijms24032059
APA StyleKitaya, K., & Yasuo, T. (2023). Commonalities and Disparities between Endometriosis and Chronic Endometritis: Therapeutic Potential of Novel Antibiotic Treatment Strategy against Ectopic Endometrium. International Journal of Molecular Sciences, 24(3), 2059. https://doi.org/10.3390/ijms24032059