Estimating Total Quantitative Protein Content in Escherichia coli, Saccharomyces cerevisiae, and HeLa Cells
Abstract
:1. Introduction
2. Results
2.1. Overview of Selected Proteomic Studies of E. coli, S. cerevisiae, and HeLa Cells
2.2. Comparison of Reported Total Protein Copy Numbers for Selected Model Organisms
2.3. Exploration of Possible Reasons for the Discrepancy in Reported Total Protein Copy Numbers
2.4. Estimation of Total Protein Copy Numbers per Cell from Total Protein Mass per Cell
2.5. Normalization and Integration of Protein Copy Numbers in the Selected Studies
3. Discussion
4. Materials and Methods
4.1. Data Processing
4.2. Core Protein Assignment and Calculation of Pairwise Correlations
4.3. Normalization of Protein Copy Numbers in Individual Datasets
4.4. Estimation of the Number of Ribosomes in E. coli in Selected Conditions
4.5. Calculating Adjusted Copy Numbers of Ribosomal Proteins
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bludau, I.; Aebersold, R. Proteomic and Interactomic Insights into the Molecular Basis of Cell Functional Diversity. Nat. Rev. Mol. Cell Biol. 2020, 21, 327–340. [Google Scholar] [CrossRef] [PubMed]
- Ponomarenko, E.A.; Poverennaya, E.V.; Ilgisonis, E.V.; Pyatnitskiy, M.A.; Kopylov, A.T.; Zgoda, V.G.; Lisitsa, A.V.; Archakov, A.I. The Size of the Human Proteome: The Width and Depth. Int. J. Anal. Chem. 2016, 2016, 7436849. [Google Scholar] [CrossRef] [Green Version]
- Aebersold, R.; Agar, J.N.; Amster, I.J.; Baker, M.S.; Bertozzi, C.R.; Boja, E.S.; Costello, C.E.; Cravatt, B.F.; Fenselau, C.; Garcia, B.A.; et al. How Many Human Proteoforms Are There? Nat. Chem. Biol. 2018, 14, 206–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aebersold, R.; Mann, M. Mass-Spectrometric Exploration of Proteome Structure and Function. Nature 2016, 537, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Bekker-Jensen, D.B.; Kelstrup, C.D.; Batth, T.S.; Larsen, S.C.; Haldrup, C.; Bramsen, J.B.; Sørensen, K.D.; Høyer, S.; Ørntoft, T.F.; Andersen, C.L.; et al. An Optimized Shotgun Strategy for the Rapid Generation of Comprehensive Human Proteomes. Cell Syst. 2017, 4, 587–599.e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, A.; Kochanowski, K.; Vedelaar, S.; Ahrné, E.; Volkmer, B.; Callipo, L.; Knoops, K.; Bauer, M.; Aebersold, R.; Heinemann, M. The Quantitative and Condition-Dependent Escherichia coli Proteome. Nat. Biotechnol. 2016, 34, 104–110. [Google Scholar] [CrossRef] [Green Version]
- Niu, L.; Geyer, P.E.; Gupta, R.; Santos, A.; Meier, F.; Doll, S.; Wewer Albrechtsen, N.J.; Klein, S.; Ortiz, C.; Uschner, F.E.; et al. Dynamic Human Liver Proteome Atlas Reveals Functional Insights into Disease Pathways. Mol. Syst. Biol. 2022, 18, e10947. [Google Scholar] [CrossRef]
- Taniguchi, Y.; Choi, P.J.; Li, G.-W.; Chen, H.; Babu, M.; Hearn, J.; Emili, A.; Xie, X.S. Quantifying E. coli Proteome and Transcriptome with Single-Molecule Sensitivity in Single Cells. Science 2010, 329, 533–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghaemmaghami, S.; Huh, W.-K.; Bower, K.; Howson, R.W.; Belle, A.; Dephoure, N.; O’Shea, E.K.; Weissman, J.S. Global Analysis of Protein Expression in Yeast. Nature 2003, 425, 737–741. [Google Scholar] [CrossRef]
- Li, G.-W.; Burkhardt, D.; Gross, C.; Weissman, J.S. Quantifying Absolute Protein Synthesis Rates Reveals Principles Underlying Allocation of Cellular Resources. Cell 2014, 157, 624–635. [Google Scholar] [CrossRef]
- Futcher, B.; Latter, G.I.; Monardo, P.; McLaughlin, C.S.; Garrels, J.I. A Sampling of the Yeast Proteome. Mol. Cell. Biol. 1999, 19, 7357–7368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milo, R. What Is the Total Number of Protein Molecules per Cell Volume? A Call to Rethink Some Published Values. Bioessays 2013, 35, 1050–1055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawless, C.; Holman, S.W.; Brownridge, P.; Lanthaler, K.; Harman, V.M.; Watkins, R.; Hammond, D.E.; Miller, R.L.; Sims, P.F.G.; Grant, C.M.; et al. Direct and Absolute Quantification of over 1800 Yeast Proteins via Selected Reaction Monitoring. Mol. Cell. Proteom. MCP 2016, 15, 1309–1322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valgepea, K.; Adamberg, K.; Seiman, A.; Vilu, R. Escherichia coli Achieves Faster Growth by Increasing Catalytic and Translation Rates of Proteins. Mol. Biosyst. 2013, 9, 2344–2358. [Google Scholar] [CrossRef] [PubMed]
- Wiśniewski, J.R.; Rakus, D. Multi-Enzyme Digestion FASP and the ’Total Protein Approach’-Based Absolute Quantification of the Escherichia coli Proteome. J. Proteom. 2014, 109, 322–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soufi, B.; Krug, K.; Harst, A.; Macek, B. Characterization of the E. coli Proteome and Its Modifications during Growth and Ethanol Stress. Front. Microbiol. 2015, 6, 103. [Google Scholar] [CrossRef]
- Radzikowski, J.L.; Vedelaar, S.; Siegel, D.; Ortega, Á.D.; Schmidt, A.; Heinemann, M. Bacterial Persistence Is an Active ΣS Stress Response to Metabolic Flux Limitation. Mol. Syst. Biol. 2016, 12, 882. [Google Scholar] [CrossRef]
- Kulak, N.A.; Pichler, G.; Paron, I.; Nagaraj, N.; Mann, M. Minimal, Encapsulated Proteomic-Sample Processing Applied to Copy-Number Estimation in Eukaryotic Cells. Nat. Methods 2014, 11, 319–324. [Google Scholar] [CrossRef]
- Lahtvee, P.-J.; Sánchez, B.J.; Smialowska, A.; Kasvandik, S.; Elsemman, I.E.; Gatto, F.; Nielsen, J. Absolute Quantification of Protein and MRNA Abundances Demonstrate Variability in Gene-Specific Translation Efficiency in Yeast. Cell Syst. 2017, 4, 495–504.e5. [Google Scholar] [CrossRef] [Green Version]
- Martin-Perez, M.; Villén, J. Determinants and Regulation of Protein Turnover in Yeast. Cell Syst. 2017, 5, 283–294.e5. [Google Scholar] [CrossRef]
- Wang, Y.; Weisenhorn, E.; MacDiarmid, C.; Andreini, C.; Bucci, M.; Taggart, J.; Banci, L.; Russell, J.; Coon, J.J.; Eide, D.J. The Cellular Economy of the Saccharomyces cerevisiae Zinc Proteome. Metallomics 2018, 10, 1755–1776. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Sánchez, B.J.; Chen, Y.; Campbell, K.; Kasvandik, S.; Nielsen, J. Proteome Allocations Change Linearly with the Specific Growth Rate of Saccharomyces cerevisiae under Glucose Limitation. Nat. Commun. 2022, 13, 2819. [Google Scholar] [CrossRef] [PubMed]
- Nagaraj, N.; Wisniewski, J.R.; Geiger, T.; Cox, J.; Kircher, M.; Kelso, J.; Pääbo, S.; Mann, M. Deep Proteome and Transcriptome Mapping of a Human Cancer Cell Line. Mol. Syst. Biol. 2011, 7, 548. [Google Scholar] [CrossRef] [PubMed]
- Wiśniewski, J.R.; Ostasiewicz, P.; Duś, K.; Zielińska, D.F.; Gnad, F.; Mann, M. Extensive Quantitative Remodeling of the Proteome between Normal Colon Tissue and Adenocarcinoma. Mol. Syst. Biol. 2012, 8, 611. [Google Scholar] [CrossRef] [PubMed]
- Hein, M.Y.; Hubner, N.C.; Poser, I.; Cox, J.; Nagaraj, N.; Toyoda, Y.; Gak, I.A.; Weisswange, I.; Mansfeld, J.; Buchholz, F.; et al. A Human Interactome in Three Quantitative Dimensions Organized by Stoichiometries and Abundances. Cell 2015, 163, 712–723. [Google Scholar] [CrossRef] [Green Version]
- Itzhak, D.N.; Tyanova, S.; Cox, J.; Borner, G.H. Global, Quantitative and Dynamic Mapping of Protein Subcellular Localization. eLife 2016, 5, e16950. [Google Scholar] [CrossRef]
- Morgenstern, M.; Peikert, C.D.; Lübbert, P.; Suppanz, I.; Klemm, C.; Alka, O.; Steiert, C.; Naumenko, N.; Schendzielorz, A.; Melchionda, L.; et al. Quantitative High-Confidence Human Mitochondrial Proteome and Its Dynamics in Cellular Context. Cell Metab. 2021, 33, 2464–2483.e18. [Google Scholar] [CrossRef]
- Arike, L.; Valgepea, K.; Peil, L.; Nahku, R.; Adamberg, K.; Vilu, R. Comparison and Applications of Label-Free Absolute Proteome Quantification Methods on Escherichia coli. J. Proteom. 2012, 75, 5437–5448. [Google Scholar] [CrossRef]
- Kopylov, A.T.; Ponomarenko, E.A.; Ilgisonis, E.V.; Pyatnitskiy, M.A.; Lisitsa, A.V.; Poverennaya, E.V.; Kiseleva, O.I.; Farafonova, T.E.; Tikhonova, O.V.; Zavialova, M.G.; et al. 200+ Protein Concentrations in Healthy Human Blood Plasma: Targeted Quantitative SRM SIS Screening of Chromosomes 18, 13, Y, and the Mitochondrial Chromosome Encoded Proteome. J. Proteome Res. 2019, 18, 120–129. [Google Scholar] [CrossRef]
- Schwanhäusser, B.; Busse, D.; Li, N.; Dittmar, G.; Schuchhardt, J.; Wolf, J.; Chen, W.; Selbach, M. Global Quantification of Mammalian Gene Expression Control. Nature 2011, 473, 337–342. [Google Scholar] [CrossRef]
- Taylor, S.C.; Berkelman, T.; Yadav, G.; Hammond, M. A Defined Methodology for Reliable Quantification of Western Blot Data. Mol. Biotechnol. 2013, 55, 217–226. [Google Scholar] [CrossRef] [Green Version]
- Wiśniewski, J.R.; Hein, M.Y.; Cox, J.; Mann, M. A “Proteomic Ruler” for Protein Copy Number and Concentration Estimation without Spike-in Standards. Mol. Cell. Proteom. MCP 2014, 13, 3497–3506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serres, M.H.; Gopal, S.; Nahum, L.A.; Liang, P.; Gaasterland, T.; Riley, M. A Functional Update of the Escherichia coli K-12 Genome. Genome Biol. 2001, 2, research0035.1. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Yin, X.; Wang, X.; Zhou, P.; Guo, F.-B. Re-Annotation of Protein-Coding Genes in the Genome of Saccharomyces Cerevisiae Based on Support Vector Machines. PLoS ONE 2013, 8, e64477. [Google Scholar] [CrossRef] [Green Version]
- Salzberg, S.L. Open Questions: How Many Genes Do We Have? BMC Biol. 2018, 16, 94. [Google Scholar] [CrossRef] [PubMed]
- Siwiak, M.; Zielenkiewicz, P. A Comprehensive, Quantitative, and Genome-Wide Model of Translation. PLoS Comput. Biol. 2010, 6, e1000865. [Google Scholar] [CrossRef] [Green Version]
- Macromolecular Components of, E. coli and HeLa Cells—KZ. Available online: https://www.thermofisher.com/ru/en/home/references/ambion-tech-support/rna-tools-and-calculators/macromolecular-components-of-e.html (accessed on 21 November 2022).
- Jorgensen, P.; Nishikawa, J.L.; Breitkreutz, B.-J.; Tyers, M. Systematic Identification of Pathways That Couple Cell Growth and Division in Yeast. Science 2002, 297, 395–400. [Google Scholar] [CrossRef] [PubMed]
- Di Bartolomeo, F.; Malina, C.; Campbell, K.; Mormino, M.; Fuchs, J.; Vorontsov, E.; Gustafsson, C.M.; Nielsen, J. Absolute Yeast Mitochondrial Proteome Quantification Reveals Trade-off between Biosynthesis and Energy Generation during Diauxic Shift. Proc. Natl. Acad. Sci. USA 2020, 117, 7524–7535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, L.; Kroenke, C.D.; Song, J.; Piwnica-Worms, D.; Ackerman, J.J.H.; Neil, J.J. Intracellular Water Specific MR of Microbead-Adherent Cells: The HeLa Cell Intracellular Water Exchange Lifetime. NMR Biomed. 2008, 21, 159–164. [Google Scholar] [CrossRef] [Green Version]
- Volkmer, B.; Heinemann, M. Condition-Dependent Cell Volume and Concentration of Escherichia Coli to Facilitate Data Conversion for Systems Biology Modeling. PLoS ONE 2011, 6, e23126. [Google Scholar] [CrossRef]
- Taheri-Araghi, S.; Bradde, S.; Sauls, J.T.; Hill, N.S.; Levin, P.A.; Paulsson, J.; Vergassola, M.; Jun, S. Cell-Size Control and Homeostasis in Bacteria. Curr. Biol. 2015, 25, 385–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basan, M.; Zhu, M.; Dai, X.; Warren, M.; Sévin, D.; Wang, Y.-P.; Hwa, T. Inflating Bacterial Cells by Increased Protein Synthesis. Mol. Syst. Biol. 2015, 11, 836. [Google Scholar] [CrossRef] [PubMed]
- Ho, B.; Baryshnikova, A.; Brown, G.W. Unification of Protein Abundance Datasets Yields a Quantitative Saccharomyces cerevisiae Proteome. Cell Syst. 2018, 6, 192–205.e3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perry, R.P. Balanced production of ribosomal proteins. Gene 2007, 401, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, M.; Namiki, Y.; Okada, H.; Mori, Y.; Furukawa, H.; Wang, J.; Ohkusu, M.; Kawamoto, S. Structome of Saccharomyces cerevisiae Determined by Freeze-Substitution and Serial Ultrathin-Sectioning Electron Microscopy. J. Electron. Microsc. 2011, 60, 321–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duncan, R.; Hershey, J.W. Identification and Quantitation of Levels of Protein Synthesis Initiation Factors in Crude HeLa Cell Lysates by Two-Dimensional Polyacrylamide Gel Electrophoresis. J. Biol. Chem. 1983, 258, 7228–7235. [Google Scholar] [CrossRef]
- Wolf, S.F.; Schlessinger, D. Nuclear Metabolism of Ribosomal RNA in Growing, Methionine-Limited, and Ethionine-Treated HeLa Cells. Biochemistry 1977, 16, 2783–2791. [Google Scholar] [CrossRef]
- von der Haar, T. A Quantitative Estimation of the Global Translational Activity in Logarithmically Growing Yeast Cells. BMC Syst. Biol. 2008, 2, 87. [Google Scholar] [CrossRef] [Green Version]
- Lu, P.; Vogel, C.; Wang, R.; Yao, X.; Marcotte, E.M. Absolute Protein Expression Profiling Estimates the Relative Contributions of Transcriptional and Translational Regulation. Nat. Biotechnol. 2007, 25, 117–124. [Google Scholar] [CrossRef]
- Peng, M.; Taouatas, N.; Cappadona, S.; van Breukelen, B.; Mohammed, S.; Scholten, A.; Heck, A.J.R. Protease Bias in Absolute Protein Quantitation. Nat. Methods 2012, 9, 524–525. [Google Scholar] [CrossRef]
- Ezkurdia, I.; Rodriguez, J.M.; Carrillo-de Santa Pau, E.; Vázquez, J.; Valencia, A.; Tress, M.L. Most Highly Expressed Protein-Coding Genes Have a Single Dominant Isoform. J. Proteome Res. 2015, 14, 1880–1887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakshi, S.; Siryaporn, A.; Goulian, M.; Weisshaar, J.C. Superresolution Imaging of Ribosomes and RNA Polymerase in Live Escherichia Coli Cells. Mol. Microbiol. 2012, 85, 21–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, X.-P.; Dourado, H.; Schubert, P.; Lercher, M.J. The Protein Translation Machinery Is Expressed for Maximal Efficiency in Escherichia Coli. Nat. Commun. 2020, 11, 5260. [Google Scholar] [CrossRef] [PubMed]
- Diaconu, M.; Kothe, U.; Schlünzen, F.; Fischer, N.; Harms, J.M.; Tonevitsky, A.G.; Stark, H.; Rodnina, M.V.; Wahl, M.C. Structural Basis for the Function of the Ribosomal L7/12 Stalk in Factor Binding and GTPase Activation. Cell 2005, 121, 991–1004. [Google Scholar] [CrossRef] [Green Version]
- Woolford, J.L.; Baserga, S.J. Ribosome Biogenesis in the Yeast Saccharomyces Cerevisiae. Genetics 2013, 195, 643–681. [Google Scholar] [CrossRef] [Green Version]
- Nakao, A.; Yoshihama, M.; Kenmochi, N. RPG: The Ribosomal Protein Gene Database. Nucleic Acids Res. 2004, 32, D168–D170. [Google Scholar] [CrossRef]
Cell Type | Study | Code | Method | Strategy for Calculation of Protein Copies | Proteins Quantified | Total Protein Copies per Cell | Ref. |
---|---|---|---|---|---|---|---|
E. coli | Taniguchi et al., 2010 | TA10 | Fluorescence | Single-molecule fluorescence calibration | 1018 | 94,571 | [8] |
Valgepea et al., 2013 | VA13 | Shotgun MS | iBAQ, calibration with standards (UPS2) * and total protein per cell | 1179 | 4,293,284 | [14] | |
Li et al., 2014 | LI14 | Ribosomal profiling | Relative protein synthesis rates multiplied by total protein per cell | 3883 | 5,627,623 | [10] | |
Wisniewski et al., 2014 | WI14 | Shotgun MS | TPA and total protein per cell | 2261 | 1,321,542 | [15] | |
Soufi et al., 2015 | SO15 | Shotgun MS | iBAQ, calibration with standards (UPS2) and cell count | 1913 | 11,214,979 | [16] | |
Schmidt et al., 2016 | SC16 | Shotgun MS | LFQ, calibration with standards and cell count | 2355 | 5,070,410 | [6] | |
Radzikowski et al., 2016 | RA16 | Shotgun MS | LFQ and total protein per cell | 1959 | 2,220,410 | [17] | |
S. cerevisiae | Ghaemmaghami et al., 2003 | GH03 | Western blotting | Calibration with standards and cell count | 3868 | 46,664,471 | [9] |
Kulak et al., 2014 | KU14 | Shotgun MS | TPA and total protein per cell | 4570 | 48,114,163 | [18] | |
Lawless et al., 2016 | LA16 | SRM | Standards (QconCAT) and cell count | 1167 | 56,322,039 | [13] | |
Lahtvee et al., 2017 | LT17 | Shotgun MS | iBAQ, calibration with standards (UPS2) and cell count | 1788 | 96,407,334 | [19] | |
Martin-Perez et al., 2017 | MP17 | Shotgun MS | “Proteomic ruler” | 3318 | 250,751,159 | [20] | |
Wang et al., 2019 | WA19 | Shotgun MS | “Proteomic ruler” | 2582 | 71,802,810 | [21] | |
Xia et al., 2022 | XI22 | Shotgun MS | iBAQ, calibration with standards (UPS2) and total protein per cell | 2526 | 73,823,343 | [22] | |
HeLa | Nagaraj et al., 2011 | NA11 | Shotgun MS | iBAQ and total protein per cell | 8078 | 2,007,666,667 | [23] |
Wisniewski et al., 2012 | WI12 | Shotgun MS | TPA and total protein per cell (estimate) | 8094 | 8,236,921,797 | [24] | |
Kulak et al., 2014 | KU14 | Shotgun MS | TPA and total protein per cell (estimate) | 9677 | 2,982,812,197 | [18] | |
Hein et al., 2015 | HE15 | Shotgun MS | LFQ and total protein per cell | 8804 | 2,916,903,614 | [25] | |
Itzhak et al., 2016 | IT16 | Shotgun MS | “Proteomic ruler” | 8710 | 7,837,554,944 | [26] | |
Bekker-Jensen et al., 2017 | BJ17 | Shotgun MS | iBAQ and calibration with standards | 14178 | 4,077,816,932 | [5] | |
Morgenstern et al., 2021 | MO21 | Shotgun MS | TPA and total protein per cell | 8436 | 4,883,462,397 | [27] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dolgalev, G.V.; Safonov, T.A.; Arzumanian, V.A.; Kiseleva, O.I.; Poverennaya, E.V. Estimating Total Quantitative Protein Content in Escherichia coli, Saccharomyces cerevisiae, and HeLa Cells. Int. J. Mol. Sci. 2023, 24, 2081. https://doi.org/10.3390/ijms24032081
Dolgalev GV, Safonov TA, Arzumanian VA, Kiseleva OI, Poverennaya EV. Estimating Total Quantitative Protein Content in Escherichia coli, Saccharomyces cerevisiae, and HeLa Cells. International Journal of Molecular Sciences. 2023; 24(3):2081. https://doi.org/10.3390/ijms24032081
Chicago/Turabian StyleDolgalev, Georgii V., Taras A. Safonov, Viktoriia A. Arzumanian, Olga I. Kiseleva, and Ekaterina V. Poverennaya. 2023. "Estimating Total Quantitative Protein Content in Escherichia coli, Saccharomyces cerevisiae, and HeLa Cells" International Journal of Molecular Sciences 24, no. 3: 2081. https://doi.org/10.3390/ijms24032081
APA StyleDolgalev, G. V., Safonov, T. A., Arzumanian, V. A., Kiseleva, O. I., & Poverennaya, E. V. (2023). Estimating Total Quantitative Protein Content in Escherichia coli, Saccharomyces cerevisiae, and HeLa Cells. International Journal of Molecular Sciences, 24(3), 2081. https://doi.org/10.3390/ijms24032081