Chondroitin Sulphate/Dermatan Sulphate Proteoglycans: Potential Regulators of Corneal Stem/Progenitor Cell Phenotype In Vitro
Abstract
:1. Introduction
2. Results
2.1. 6C3+ CS/DS Epitope in the Adult Avian Cornea
2.2. 6C3+ CS/DS Influences Cell Growth In Vitro
2.3. Phenotypic Status of Cells In Vitro
3. Discussion
3.1. Immunolocalisation in the Cornea of Epitope-Specific CS/DS Antibody 6C3
3.2. The Effect of 6C3+ CS/DS on Keratocyte Growth In Vitro
3.3. The Effect of 6C3+ CS/DS on the Phenotypic Expression Profile of Keratocytes In Vitro
3.4. Serial Passaging and Expression of Indicative Stem Cell Markers
3.5. Summary
4. Materials and Methods
4.1. Tissue Acquisition
4.2. Immunohistochemistry
4.3. Isolation and Culture of Chicken Keratocytes
4.4. GAG-Coating of Plates
4.5. Flow Cytometry
4.6. Data Acquisition
4.7. Gating Strategy
4.8. Statistics
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Method Used to Extract and Purify 6C3+ CS/DS
Appendix A.1. Proteoglycan Extraction
Appendix A.2. Density Gradient Centrifugation
Appendix A.3. Alkaline β-Elimination
Appendix A.4. CPC Precipitation
Appendix A.5. Anion Exchange Chromatography
Appendix A.6. Direct ELISA
References
- Lewis, P.N.; Pinali, C.; Young, R.D.; Meek, K.M.; Quantock, A.J.; Knupp, C. Structural interactions between collagen and proteoglycans are elucidated by three-dimensional electron tomography of bovine cornea. Structure 2010, 18, 239–245. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Birk, D.E. Focus on molecules: Decorin. Exp. Eye Res. 2011, 92, 444–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parfitt, G.J.; Pinali, C.; Akama, T.O.; Young, R.D.; Nishida, K.; Quantock, A.J.; Knupp, C. Electron tomography reveals multiple self-association of chondroitin sulphate/dermatan sulphate proteoglycans in Chst5-null mouse corneas. J. Struct. Biol. 2011, 174, 536–541. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Mienaltowski, M.J.; Birk, D.E. Regulation of corneal stroma extracellular matrix assembly. Exp. Eye Res. 2015, 133, 69–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashworth, S.; Harrington, J.; Hammond, G.M.; Bains, K.K.; Koudouna, E.; Hayes, A.J.; Ralphs, J.R.; Regini, J.W.; Young, R.D.; Hayashi, R.; et al. Chondroitin sulfate as a potential modulator of the stem cell niche in cornea. Front. Cell Dev. Biol. 2021, 8, e567358. [Google Scholar] [CrossRef] [PubMed]
- Hayes, A.; Sugahara, K.; Farrugia, B.; Whitelock, J.M.; Caterson, B.; Melrose, J. Biodiversity of CS–proteoglycan sulphation motifs: Chemical messenger recognition modules with roles in information transfer, control of cellular behaviour and tissue morphogenesis. Biochem. J. 2018, 475, 587–620. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Shi, L.; Qin, Y.; Li, F. Research and application of chondroitin sulfate/dermatan sulphate-degrading enzymes. Front. Cell Dev. Biol. 2020, 8, e560442. [Google Scholar] [CrossRef]
- Caterson, B.; Griffin, J.; Mahmoodian, F.; Sorrell, J.M. Monoclonal antibodies against chondroitin sulfate isomers: Their use as probes for investigating proteoglycan metabolism. Biochem. Soc. Trans. 1990, 18, 820–823. [Google Scholar] [CrossRef]
- Lauder, R.M.; Huckerby, T.N.; Nieduszynski, I.A. A fingerprinting method for chondroitin/dermatan sulfate and hyaluronan oligosaccharides. Glycobiology 2000, 10, 393–401. [Google Scholar] [CrossRef] [Green Version]
- Lamari, F.N.; Karamanos, N.K. Structure of chondroitin sulfate. Adv. Pharmacol. 2006, 53, 33–48. [Google Scholar] [CrossRef]
- Sugahara, K.; Mikami, T. Chondroitin/dermatan sulfate in the central nervous system. Curr. Opin. Struct. Biol. 2007, 17, 536–545. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, V.; Maccari, F.; Volpi, N. Chondroitin sulfate and glucosamine as disease modifying anti- osteoarthritis drugs (DMOADs). Curr. Med. Chem. 2016, 23, 1139–1151. [Google Scholar] [CrossRef] [PubMed]
- Caterson, B. Fell-Muir Lecture: Chondroitin sulphate glycosaminoglycans: Fun for some and confusion for others. Int. J. Exp. Pathol. 2012, 93, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mikami, T.; Kitagawa, H. Biosynthesis and function of chondroitin sulfate. Biochem. Biophys. Acta 2013, 1830, 4719–4733. [Google Scholar] [CrossRef] [PubMed]
- Izumikawa, T.; Kanagawa, N.; Watamoto, Y.; Okada, M.; Saeki, M.; Sakano, M.; Sugahara, K.; Sugihara, K.; Asano, M.; Kitagawa, H. Impairment of embryonic cell division and glycosaminoglycan biosynthesis in glucuronyltransferase-i-deficient mice. J. Biol. Chem. 2010, 285, 12190–12196. [Google Scholar] [CrossRef] [Green Version]
- Izumikawa, T.; Sato, B.; Kitagawa, H. Chondroitin sulfate is indispensable for pluripotency and differentiation of mouse embryonic stem cells. Sci. Rep. 2014, 4, e3701. [Google Scholar] [CrossRef] [Green Version]
- Prinz, D.C.; Willis, C.M.; van Kuppevelt, T.H.; Kluppel, M. Biphasic role of chondroitin sulfate in cardiac differentiation of embryonic stem cells through inhibition of Wnt/β-catenin signaling. PLoS ONE 2014, 9, e92381. [Google Scholar] [CrossRef] [Green Version]
- Sirko, S.; Von Hoist, A.; Wizenmann, A.; Gotx, M.; Faissner, A. Chondroitin sulfate glycosaminoglycans control proliferation, radial glia cell differentiation and neurogenesis in neural stem/progenitor cells. Development 2007, 134, 2727–2738. [Google Scholar] [CrossRef] [Green Version]
- Ford-Perriss, M.; Turner, K.; Guimond, S.; Apedaile, A.; Haubeck, H.-D.; Turnbull, J.; Murphy, M. Localisation of specific heparan sulfate proteoglycans during the proliferative phase of brain development. Dev. Dyn. 2003, 227, 170–184. [Google Scholar] [CrossRef]
- Manton, K.J.; Leong, D.F.M.; Cool, S.M.; Nurcombe, V. Disruption of heparan and chondroitin sulfate signaling enhances mesenchymal stem cell-derived osteogenic differentiation via bone morphogenetic protein signaling pathways. Stem Cells 2007, 25, 2845–2855. [Google Scholar] [CrossRef]
- Melrose, J.; Isaacs, M.D.; Smith, S.M.; Hughes, C.E.; Little, C.B.; Caterson, B.; Hayes, A.J. Chondroitin sulphate and heparan sulphate sulphation motifs and their proteoglycans are involved in articular cartilage formation during human foetal knee joint development. Histochem. Cell Bio. 2012, 138, 461–475. [Google Scholar] [CrossRef] [PubMed]
- Coulson-Thomas, V.J. The role of heparan sulphate in development: The ectodermal story. Int. J. Exp. Pathol. 2016, 97, 213–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kraushaar, D.C.; Yamaguchi, Y.; Wang, L. Heparan sulfate is required for embryonic stem cells to exit from self-renewal. J. Biol. Chem. 2010, 285, 5907–5916. [Google Scholar] [CrossRef] [Green Version]
- Maltseva, I.; Chan, M.; Kalus, I.; Dierks, T.; Rosen, S.D. The SULFs, extracellular sulfatases for heparan sulfate, promote the migration of corneal epithelial cells during wound repair. PLoS ONE 2013, 8, e69642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coulson-Thomas, V.J.; Chang, S.-H.; Yeh, L.-K.; Coulson-Thomas, Y.M.; Yamaguchi, Y.; Esko, J.; Liu, C.-Y.; Kao, W. Loss of corneal epithelial heparan sulfate leads to corneal degeneration and impaired wound healing. Investig. Ophthalmol. Vis. Sci. 2015, 56, 3004–3014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gesteira, T.F.; Sun, M.; Coulson-Thomas, Y.M.; Yamaguchi, Y.; Yeh, L.K.; Hascall, V.; Coulson-Thomas, V.J. Hyaluronan Rich Microenvironment in the Limbal Stem Cell Niche Regulates Limbal Stem Cell Differentiation. Investig. Ophthalmol. Vis. Sci. 2017, 58, 4407–4421. [Google Scholar] [CrossRef] [Green Version]
- Puri, S.; Moreno, I.Y.; Sun, M.; Verma, S.; Lin, X.; Gesteira, T.F.; Coulson-Thomas, V.J. Hyaluronan supports the limbal stem cell phenotype during ex vivo culture. Stem Cell Res. Ther. 2022, 13, e384. [Google Scholar] [CrossRef]
- López-Ruiz, E.; Jiménez, G.; Álvarez de Cienfuegos, L.; Antic, C.; Sabata, R.; Marchal, J.A.; Gálvez-Martín, P. Advances of hyaluronic acid in stem cell therapy and tissue engineering, including current clinical trials. Eur. Cell Mater. 2019, 37, 186–213. [Google Scholar] [CrossRef] [PubMed]
- Hayes, A.J.; Tudor, D.; Nowell, M.A.; Caterson, B.; Hughes, C.E. Chondroitin sulfate sulfation motifs as putative biomarkers for isolation of articular cartilage progenitor cells. J. Histochem. Cytochem. 2008, 56, 125–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caterson, B.; Christner, J.E.; Baker, J.R.; Couchman, J.R. Production and characterization of monoclonal antibodies directed against connective tissue proteoglycans. FASEB J. 1985, 44, 386–393. [Google Scholar]
- Hayes, A.J.; Hughes, C.E.; Ralphs, J.; Caterson, B. Chondroitin sulphate sulphation motif expression in the ontogeny of the intervertebral disc. Eur. Cells Mater. 2011, 21, 1–14. [Google Scholar] [CrossRef]
- Hayes, A.; Hughes, C.E.; Smith, S.M.; Caterson, B.; Little, C.B.; Melrose, J. The CS sulfation motifs 4C3, 7D4, 3B3[−]; and perlecan identify stem cell populations and their niches, activated progenitor cells and transitional areas of tissue development in the fetal human elbow. Stem Cells Dev. 2016, 25, 836–847. [Google Scholar] [CrossRef] [PubMed]
- Ward, A.C.; Dowthwaite, G.P.; Pitsillides, A.A. Hyaluronan in joint cavitation. Biochem. Soc. Trans. 1999, 27, 128–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Archer, C.W.; McDowell, J.; Bayliss, M.T.; Stephens, M.D.; Bentley, G. Phenotypic modulation in sub-populations of human articular chondrocytes in vitro. J. Cell Biol. 1990, 97, 361–371. [Google Scholar] [CrossRef]
- Hayes, A.J.; MacPherson, S.; Morrison, H.; Dowthwaite, G.; Archer, C.W. The development of articular cartilage: Evidence for an appositional growth mechanism. Anat. Embryol. 2001, 203, 469–479. [Google Scholar] [CrossRef]
- Dowthwaite, G.P.; Bishop, J.C.; Redman, S.N.; Khan, I.M.; Rooney, P.; Evans, D.J.R.; Haughton, L.; Bayram, Z.; Boyer, S.; Thomson, B.; et al. The surface of articular cartilage contains a pro-genitor cell population. J. Cell Sci. 2004, 117, 889–897. [Google Scholar] [CrossRef] [Green Version]
- Yamada, K.; Young, R.D.; Lewis, P.N.; Shinomiya, K.; Meek, K.M.; Kinoshita, S.; Caterson, B.; Quantock, A.J. Mesenchymal-epithelial cell interactions and proteoglycan matrix composition in the presumptive stem cell niche of the rabbit corneal limbus. Mol. Vis. 2015, 21, 1328–1339. [Google Scholar]
- Funderburgh, J.L.; Funderburgh, M.L.; Du, Y. Stem cells in the limbal stroma. Ocul. Surf. 2016, 14, 113–120. [Google Scholar] [CrossRef] [Green Version]
- Lwigale, P.; Cressy, P.A.; Bronner-Fraser, M. Corneal keratocytes retain neural crest progenitor cell properties. Dev. Biol. 2005, 288, 284–293. [Google Scholar] [CrossRef] [Green Version]
- West-Mays, J.A.; Dwivedi, D. The keratocyte: Corneal stromal cell with variable repair phenotypes. Int. J. Biochem. Cell Biol. 2006, 38, 1625–1631. [Google Scholar] [CrossRef] [Green Version]
- Etheredge, L.T.; Kane, B.P.; Hassell, J.R. The effect of growth factor signalling of keratocytes in vitro and its relationship to the phases of stromal wound repair. Investig. Ophthalmol. Vis. Sci. 2009, 50, 3128–3136. [Google Scholar] [CrossRef] [PubMed]
- Chao, J.R.; Bronner, M.E.; Lwigale, P.Y. Human fetal keratocytes have multipotent characteristics in the developing avian embryo. Stem Cells Dev. 2013, 22, 2186–2195. [Google Scholar] [CrossRef] [PubMed]
- Espana, E.M.; Kawakita, T.; Romano, A.; Di Pascuale, M.; Smiddy, R.; Liu, C.-Y.; Tseng, S.C.G. Stromal niche controls the plasticity of limbal and corneal epithelial differentiation in a rabbit model of recombined tissue. Investig. Ophthalmol. Vis. Sci. 2003, 44, 5130–5135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sorrell, J.M.; Mahmoodian, F.; Schafer, I.A.; Davis, B.; Caterson, B. Identification of monoclonal antibodies that recognize novel epitopes in native chondroitin/dermatan sulphate glycosaminoglycan chains: Their use in mapping functionally distinct domains of human skin. J. Histochem. Cytochem. 1990, 38, 393–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Funderburgh, M.L.; Du, Y.; Mann, M.M.; SundarRaj, N.; Funderburgh, J.L. PAX6 expression identifies progenitor cells for corneal keratocytes. FASEB J 2005, 19, 1371–1373. [Google Scholar] [CrossRef] [Green Version]
- Grueterich, M.; Tseng, S.C.G. Human limbal progenitor cells expanded on intact amniotic membrane ex vivo. Arch. Ophthalmol. 2002, 120, 783–790. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Evans, H.; Pflugfelder, S.C.; Li, D.-Q. Gap junction protein connexin 43 serves as a negative marker for stem cell-containing population of human limbal epithelial cells. Stem Cells 2006, 24, 1265–1273. [Google Scholar] [CrossRef] [Green Version]
- Sikora, B.; Skubis-Sikora, A.; Kimsa-Furdzik, M.; Ciszek, W.; Kostrzewski, M.; Stojko, J.; Mazurek, U.; Gola, J. Adipose-derived stem cells undergo differentiation after co-culture with porcine limbal epithelial stem cells. Stem Cell Res. 2019, 41, e101609. [Google Scholar] [CrossRef]
- Wolosin, J.M.; Schutte, M.; Zieske, J.D.; Badak, M.T. Changes in connexin 43 in early ocular surface development. Curr. Eye Res. 2002, 24, 430–438. [Google Scholar] [CrossRef]
- Matic, M.; Petrov, I.N.; Chen, S.; Wang, C.; Dimitrijevich, S.D.; Wolosin, J.M. Stem cells of the corneal epithelium lack connexins and metabolite transfer capacity. Differentiation 1997, 61, 251–260. [Google Scholar] [CrossRef]
- Matic, M.; Evans, W.H.; Brink, P.R.; Simon, M. Epidermal stem cells do not communicate through gap junctions. J. Investig. Dermatol. 2002, 118, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Collinson, J.M.; Quinn, J.C.; Hill, R.E.; West, J.D. The roles of Pax6 in the cornea, retina, and olfactory epithelium of the developing mouse embryo. Dev. Biol. 2003, 255, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Funderburgh, M.L.; Mann, M.M.; SundarRaj, N.; Funderburgh, J.L. Multipotent stem cells in human corneal stroma. Stem Cells 2005, 23, 1266–1275. [Google Scholar] [CrossRef] [Green Version]
- Ainscough, S.L.; Linn, M.L.; Barnard, Z.; Schwab, I.R.; Harkin, D.G. Effects of fibroblast origin and phenotype on the proliferative potential of limbal epithelial progenitor cells. Exp. Eye Res. 2011, 92, 10–19. [Google Scholar] [CrossRef]
- Li, G.G.; Zhu, Y.T.; Xie, H.T.; Chen, S.Y.; Tseng, S.C.G. Mesenchymal stem cells derived from human limbal niche cells. Investig. Ophthalmol. Vis. Sci. 2012, 53, 5686–5697. [Google Scholar] [CrossRef] [Green Version]
- Xie, H.; Chen, S.; Li, G.; Tseng, S.C.G. Isolation and expansion of human limbal stromal niche cells. Investig. Ophthalmol. Vis. Sci. 2012, 53, 279–286. [Google Scholar] [CrossRef]
- Hashmani, K.; Branch, M.J.; Sidney, L.E.; Dhillon, P.S.; Verma, M.; McIntosh, O.D.; Hopkinson, A.; Dua, H.S. Characterization of corneal stromal stem cells with the potential for epithelial transdifferentiation. Stem Cell Res. Ther. 2013, 4, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, H.; Chen, S.Y.; Li, G.G.; Tseng, S.C.G. Limbal epithelial stem/progenitor cells attract stromal niche cells by SDF-1/CXCR4 signalling to prevent differentiation. Stem Cells 2011, 29, 1874–1885. [Google Scholar] [CrossRef]
- Li, Y.; Inoue, T.; Takamatsu, F.; Kobayashi, T.; Shiraishi, A.; Maeda, N.; Ohashi, Y.; Nishida, K. Difference between niche cells and limbal stromal cells in maintenance of corneal limbal stem cells. Investig. Ophthalmol. Vis. Sci. 2014, 55, 1453–1462. [Google Scholar] [CrossRef]
- Joddar, B.; Hoshiba, T.; Chen, G.; Ito, Y. Stem cell culture using cell-derived substrates. Biomater. Sci. 2014, 11, 1595–1603. [Google Scholar] [CrossRef]
- Szabó, D.J.; Noer, A.; Nagymihály, R.; Josifovska, N.; Andjelic, S.; Veréb, Z.; Facskó, A.; Moe, M.C.; Petrovski, G. Long-term cultures of human cornea limbal explants form 3D structures ex vivo–Implications for tissue engineering and clinical applications. PLoS ONE 2015, 10, e0143053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hay, E.D.; Revel, J.-P. Fine structure of the developing avian cornea. In Monographs in Developmental Biology; Wolsky, A., Chen, P.S., Eds.; Karger: Basel, Switzerland, 1969; Volume 1, pp. 1–144. [Google Scholar]
- Quantock, A.J.; Young, R.D. Development of the corneal stroma, and the collagen-proteoglycan associations that help define its structure and function. Dev. Dyn. 2008, 237, 2607–2621. [Google Scholar] [CrossRef] [PubMed]
- Young, R.D.; Knupp, C.; Pinali, C.; Png, K.M.Y.; Ralphs, J.R.; Bushby, A.J.; Starborg, T.; Kadler, K.E.; Quantock, A.J. Three-dimensional aspects of matrix assembly by cells in the developing cornea. Proc. Natl. Acad. Sci. USA 2014, 111, 687–692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koudouna, E.; Mikula, E.; Brown, D.J.; Young, R.D.; Quantock, A.J.; Jester, J.V. Cell regulation of collagen fibril macrostructure during corneal morphogenesis. Acta Biomater. 2018, 79, 96–112. [Google Scholar] [CrossRef]
- Young, R.D.; Knupp, C.; Koudouna, E.; Ralphs, J.R.; Ma, Y.; Lwigale, P.Y.; Jester, J.V.; Quantock, A.J. Cell-independent matrix configuration in early corneal development. Exp. Eye Res. 2019, 187, 107772. [Google Scholar] [CrossRef]
- Koudouna, E.; Spurlin, J.; Babushkina, A.; Quantock, A.J.; Jester, J.V.; Lwigale, P. Recapitulation of normal collagen architecture in embryonic wounded corneas. Sci. Rep. 2020, 10, e13815. [Google Scholar] [CrossRef]
- Li, S.; Hayes, A.J.; Caterson, B.; Hughes, C.E. The effect of beta-xylosides on the chondrogenic differentiation of mesenchymal stem cells. Histochem. Cell Biol. 2013, 139, 59–74. [Google Scholar] [CrossRef]
- Santos, G.R.C.; Piquet, A.A.; Glauser, B.F.; Tovar, A.M.F.; Pereira, M.S.; Vilanova, E.; Mourao, P.A.S. Systematic analysis of pharmaceutical preparations of chondroitin sulfate combined with glucosamine. Pharmaceuticals 2017, 10, 38. [Google Scholar] [CrossRef] [Green Version]
- Caterson, B.; Christner, J.E.; Baker, J.R. Identification of a monoclonal antibody that specifically recognizes corneal and skeletal keratan sulfate. J. Biol. Chem. 1983, 258, 8848–8854. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Lee, H.S.; Osuga, D.T.; Nashef, A.S.; Ahmed, A.I.; Whitaker, J.R.; Feeney, R.E. Effects of alkali on glycoproteins. β-elimination and nucleophilic addition reactions of substituted threonyl residues of antifreeze glycoprotein. J. Agric. Food Chem. 1977, 25, 1153–1158. [Google Scholar] [CrossRef]
- Coulson-Thomas, Y.M.; Coulson-Thomas, V.J.; Norton, A.L.; Gesteira, T.F.; Cavalheiro, R.P.; Meneghetti, M.C.Z.; Martins, J.R.; Dixon, R.A.; Nader, H.B. The identification of proteoglycans and glycosaminoglycans in archaeological human bones and teeth. PLoS ONE 2015, 10, e0131105. [Google Scholar] [CrossRef] [PubMed]
- Buzzega, D.; Pederzoli, F.; Maccari, F.; Aslan, D.; Türk, M.; Volpi, N. Comparison of cetylpyridinium chloride and cetyltrimethylammonium bromide extractive procedures for quantification and characterization of human urinary glycosaminoglycans. Clin. Chem. Lab. Med. 2010, 48, 1133–1139. [Google Scholar] [CrossRef] [PubMed]
- Hof, D.J.; Versteeg, E.M.M.; van de Lest, C.H.A.; Daamen, W.F.; van Kuppevelt, T.H. A versatile salt-based method to immobilize glycosaminoglycans and create growth factor gradients. Glycoconj. J. 2019, 36, 227–236. [Google Scholar] [CrossRef] [PubMed]
Marker | P0 | P2 | P3 | P4 | P5 | Average (Mean nMedFI ± SD) |
---|---|---|---|---|---|---|
n | 5 | 5 | 5 | 5 | 5 | |
Uncoated (Mean nMedFI) * | ||||||
Cx43 | 0.77 | 1.46 | 1.35 | 1.49 | 1.67 | 1.35 ± 0.34 |
PAX6 | 0.14 | 0.18 | 0.12 | 0.11 | 0.13 | 0.14 ± 0.03 |
Bmi-1 | 1.31 | 1.79 | 0.97 | 0.79 | 1.75 | 1.32 ± 0.45 |
CXCR4 | 0.29 | 0.38 | 1.67 | 1.62 | 1.55 | 1.10 ± 0.70 |
6C3+ CS/DS Coated (Mean nMedFI) * | ||||||
Cx43 | 0.77 | 0.23 | 0.19 | 0.19 | 0.18 | 0.31 ± 0.26 |
PAX6 | 0.14 | 0.34 | 0.27 | 0.40 | 0.45 | 0.32 ± 0.12 |
Bmi-1 | 1.31 | 1.74 | 2.39 | 1.53 | 2.65 | 1.92 ± 0.57 |
CXCR4 | 0.29 | 3.36 | 3.70 | 2.37 | 3.58 | 2.66 ± 1.42 |
Marker | Paired t-Test |
---|---|
Cx43 | Mean Difference 1.04, 95% CI [0.81, 1.26], p < 0.001 |
PAX6 | Mean Difference −0.18, 95% CI [0.23, 0.14], p < 0.001 |
Bmi-1 | Mean Difference −0.60, 95% CI [0.83, 0.37], p < 0.001 |
CXCR4 | Mean Difference −1.56, 95% CI [2.00, 1.12], p < 0.001 |
Marker | Statistic | Uncoated | 6C3+ CS/DS Coated |
---|---|---|---|
Cx43 | r | 0.18 | −0.12 |
R2 | 0.70 | 0.54 | |
p | <0.001 | <0.001 | |
PAX6 | r | −0.01 | 0.06 |
R2 | 0.30 | 0.78 | |
p | 0.002 | <0.001 | |
Bmi-1 | r | −0.01 | 0.25 |
R2 | 0.04 | 0.45 | |
p | 0.86 | <0.001 | |
CXCR4 | r | 0.38 | 0.56 |
R2 | 0.70 | 0.36 | |
p | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bains, K.K.; Ashworth, S.; Koudouna, E.; Young, R.D.; Hughes, C.E.; Quantock, A.J. Chondroitin Sulphate/Dermatan Sulphate Proteoglycans: Potential Regulators of Corneal Stem/Progenitor Cell Phenotype In Vitro. Int. J. Mol. Sci. 2023, 24, 2095. https://doi.org/10.3390/ijms24032095
Bains KK, Ashworth S, Koudouna E, Young RD, Hughes CE, Quantock AJ. Chondroitin Sulphate/Dermatan Sulphate Proteoglycans: Potential Regulators of Corneal Stem/Progenitor Cell Phenotype In Vitro. International Journal of Molecular Sciences. 2023; 24(3):2095. https://doi.org/10.3390/ijms24032095
Chicago/Turabian StyleBains, Kiranjit K., Sean Ashworth, Elena Koudouna, Robert D. Young, Clare E. Hughes, and Andrew J. Quantock. 2023. "Chondroitin Sulphate/Dermatan Sulphate Proteoglycans: Potential Regulators of Corneal Stem/Progenitor Cell Phenotype In Vitro" International Journal of Molecular Sciences 24, no. 3: 2095. https://doi.org/10.3390/ijms24032095
APA StyleBains, K. K., Ashworth, S., Koudouna, E., Young, R. D., Hughes, C. E., & Quantock, A. J. (2023). Chondroitin Sulphate/Dermatan Sulphate Proteoglycans: Potential Regulators of Corneal Stem/Progenitor Cell Phenotype In Vitro. International Journal of Molecular Sciences, 24(3), 2095. https://doi.org/10.3390/ijms24032095