RNA Extraction from Cartilage: Issues, Methods, Tips
Abstract
:1. Introduction
2. Literature Data Searching
3. Tissue Collection and Storage Condition
3.1. Homogenization
3.1.1. Mechanical Homogenization
3.1.2. Cryopulverization
4. Extraction
A | |||||
---|---|---|---|---|---|
Extraction Steps (Temp/Time) | Precipitation Solution (Temp/Time) | Pellet Digestion (Temp/Time) | Pellet Wash (Time and/or Temp) | Resuspension Solution | Ref. |
TRIzol® (liquid nitrogen/n.r) Chloroform (RT/3 min) | Isopropanol (−20 °C/ON) | / | 70% ethanol (5 min/4 °C) | Rnase-free water | [51] |
2M NaOAc/phenol/Chloroform containing isoamylalcohol (ice/15 min) | Isopropanol (−20 °C/2 hs) twice | / | 96% ethanol (ON/−70 °C) 80% ethanol (20 min/4 °C) 100% ethanol | Water | [22] |
AGP Acid-phenol/chloroform (four times) | Isopropanol (−20 °C/ON) | Proteinase K (55 °C/3 hs) | 80% ethanol | 0.1 mM EDTA | [73] |
Undefined extraction solution (20 min) (twice) Fractionation after the addition of phenol/chloroform reagents | Isopropanol (Twice) | / | Ethanol | DEPC-treated Rnase-free water | [28] |
| Isopropanol (RT/10 min) | / | 75% Ethanol (5 min/4 °C) | Rnase-free water | [74] |
TRIzol® (RT/15 min) Chloroform (RT/3 min) | Isopropanol (RT/10 min) | / | 75% Ethanol (twice) | Rnase-free water | [37] |
Phenol and guanidine isothiocyanate (RT/30 min) Chloroform (RT/10 min) |
| / |
| (a), (b) Rnase-free water | [32] |
TRIzol® (−70 °C) Chloroform (RT/2–3 min) (twice) | Isopropanol (RT/10 min) | / | Ethanol | Rnase-free deuterium oxide | [34] |
Solution D (4 °C/5–7 min) Phenol/2M NaAc/Chloroform-isoamylalcohol (49:1) (4 °C/20 min) (twice) | 100% Ethanol (-20 °C/ON) (twice) | 0.01% ribonuclease-free proteinase K (37 °C/15 min) | 75% Ethanol (twice) | Ribonuclease-free water | [49] |
Solution D Phenol/chloroform (48:1) (two times) | Isopropanol (20 °C/ON) | Proteinase K (65 °C/2 hs) | 4M LiCl 70% Ethanol | DEPC-treated water | [23] |
TRIzol® + Chloroform (4 °C/15 min) Phenol/Chloroform/Isoamyl Alcohol (25:24:1) | Isopropanol | / | 70% Ethanol 7.5 M LiCl (−20 °C/30 min) | RNase-free water | [31] |
B | |||||
Extraction Steps (Temp/Time) | Precipitation Solution (Temp/Time) | Pellet Digestion (Temp/Time) | Pellet Wash (Time and/or Temp) | Resuspension Solution | Ref. |
CsCl gradient centrifugation GTC Phenol/chloroform/isoamyl alcohol (25:24:1) (once) Chloroform/isoamyl alcohol (24:1) | 3 M NaOAc/100% Ethanol (−20 °C/ON) | / | / | TE | [60] |
Solution D CsCl gradient centrifugation 1:1 phenol/chloroform (after digestion) | 3 M NaOAc/Ethanol (−20 °C/16 hs) | Proteinase K (64 °C/1 h) | 70% Ethanol | DEPC-treated water | [21] |
Solution D (4 °C/ON) CsCl gradient centrifugation Solution D Phenol/chloroform/isoamyl alcohol (50:48:2) + chloroform/isoamyl alcohol (24:1) | 1M AcAc/100% Ethanol (−20 °C) 2M LiCl/100% Ethanol (−20 °C) | / | n.r | n.r | [20] |
Solution D CsCl gradient centrifugation Chloroform/isobutanol (4:1) | 4M NaOAc (-20 °C/ON) | / | DEPC-treated water | DEPC-treated water | [52] |
Solution D CsTFA gradient | Ethanol | / | DEPC-treated water | DEPC-treated water | [41] |
Solution D (4 h) NaOAc Phenol Chloroform/isoamyl alcohol (24:1) (ice/15 min) Phenol/chloroform/isoamyl alcohol (25:24:1) (4 °C/20 min) Chloroform/isoamyl alcohol (24:1) CsTFA gradient | AcAc/100% Ethanol (−70 °C/30 min) | / | 2M NaCl/Ethanol (−70 °C/30 min) | DEPC-treated water | [43] |
Solution D CsTFA gradient 4M GTC | AcAc/Ethanol | / | n.r | TE | [75] |
GIT Phenol/chloroform/isoamyl alcohol (4 °C/1 h) CsTFA gradient | 3 M NaOAc/100% Ethanol (−20 °C/ON) | Proteinase K (40 °C/1 h) | RNase-free DNase + 80 U of RNasin (37 °C/30 min) | DEPC-treated water | [39] |
Purification Kits
5. Quality and Integrity Assessment
5.1. OD Measurement
5.2. Gel Electrophoresis
5.3. Microfluidics
Species | Sample Details (Species; Quantity; site; Pathology) | OD Measurement | Gel Electrophoresis | Microfluidics | Results | Ref. |
---|---|---|---|---|---|---|
Human | 1 gr; AC; healthy and OA | A260:A280 A230–A400 | 28S:18S | - | 2–10 μg RNA/g | [9] |
AC; 0.25–0.3 gr; OA, RA and healthy | A260:A280 | - | - | 1.6 < A260:A280 < 1.8 | [22] | |
AC; OA | A260:A280 | 28S:18S | RIN | RNA yield = 0.62 μg/100 mg tissue (TRIzol®) RNA yield = 0.65 μg/100 mg tissue (modified protocol) ↑ RIN (5.5) of modified extraction method (6.5–8.5) with respect to traditional TRIzol® (0–4.5) ↓ A260:A280 (−0.16) of modified extraction method (1.64–1.90) with respect to traditional TRIzol® (1.87–2.07) ↑ A260:A230 (0.91) of modified extraction method (0.18–1.91) with respect to traditional TRIzol® (0.09–0.99) | [30] | |
AC; 25 mm discs 0.1 mm thickness; OA | A260:A280 A260:A230 | 28S:18S | RIN | RNA yield = 2.26 μg/100 mg tissue 1.92 < A260:A280 < 2.12 1.27 <A260:A230 < 2.24 1.1 < 28S:18S < 2 6 < RIN < 8.6 | [31] | |
AC; 3–5 mm thick | A260:A280 A260:A230 | - | RIN | RNA yield = 2.33 μg/100 mg tissue RIN: 7.9 ± 0.3 A260:A280: 1.8 ± 0.11 A260:A230: 1.9 ± 0.23 | [37] | |
1gr; AC; healthy and OA | A260:A280 A230–A400 | 28S:18S | - | 1.8 < A260:A280 < 1.9 No RNA degradation | [45] | |
AC; | A260:A280 A260:A230 | 28S:18S | RIN | 60 < RNA yield < 124 (μg/μL) (depending on extraction method) 1.8 < RIN < 6.2 for humans (depending on extraction method) | [55] | |
CC; 250 mg | A260:A280 | 28S:18S | - | 0.1 < RNA yield < 0.5 (μg/mg) 1.9 < A260:A280 < 2.1 | [56] | |
AC; 500 mg; OA | A260:A280 | 28S:18S | - | RNA yield = 1 μg/500 mg tissue 1.6 < A260:A280 < 2.0 Minimal RNA degradation | [67] | |
AC; healthy and OA | A260:A280 A260:A230 | 28S:18S 5S | - | n.r | [73] | |
NP; 100 mg; degeneration | A260:A280 | 28S:18S 5S | - | n.r | [74] | |
AC; healthy and OA | A260:A280 | 28S:18S | - | A260:A280 = 1.8:2.0 | [86] | |
Bovine/Calf | 25 mm2; GP | A260:A280 | - | - | n.r | [23] |
Bovine; AC; 50 mg Calf; AC; 50 mg | A260:A280 A260:A230 | 28S:18S | RIN | 60 < RNA yield < 124 (μg/μL) (depending on extraction method) 5.4 < RIN < 6.4 for bovine (depending on extraction method); RIN = 6.1 for calf | [55] | |
AC; 50 mg | A260:A280 | - | - | n.r | [59] | |
AC; healthy and OA | A260:A280 A260:A230 | 28S:18S 5S | - | n.r | [73] | |
Dog | 1 mm fragments; AC; healthy and OA | A260:A280 A260:A230 | 28S:18S RR | DF RIN | ↑ quality for healthy samples; RIN and RR most sensitive metrics; DF most specific metric | [32] |
AC; 1–2 gr | A260:A280 | 28S:18S | - | A260:A280 > 1.8 | [87] | |
Rat | AC | A260:A280 | 28S:18S | RIN | 1.9 < A260:A280 < 2.1 7.8 < RIN < 9 | [51] |
XC; 200–800 mg | - | 28S:18S | - | 0.2 < RNA yield < 0.6 (μg/mg) | [52] | |
Mice | AC | A260:A280 | 28S | - | n.r | [88] |
Rabbits | AC; 50 mg | A260:A280 | - | - | 1.7 < A260:A280 < 2.2 | [1] |
AC | A260:A280 | 28S:18S | - | 0.114 < RNA yield < 0.260 (μg/mg) 1.4 < A260:A280 < 2.0 No RNA degradation | [46] | |
Goat | NP, AF, AC, M | A260:A280 A260:A230 | 28S:18S | RIN | AC: 1.28 < A260:A280 < 1.94 (depending on isolation kit) 0.22 < A260:A230 < 0.67 (depending on isolation kit) 3.33 < RNA yield < 153.6 (μg/mg) (depending on isolation kit) M: 1.38 < A260:A280 < 1.95 (depending on isolation kit) 0.19 < A260:A230 < 0.69 (depending on isolation kit) 3.66 < RNA yield < 114.9 (μg/mg) (depending on isolation kit) AF: 1.24 < A260:A280 < 1.94 (depending on isolation kit) 0.12 < A260:A230 < 0.47 (depending on isolation kit) 2.16 < RNA yield < 113.2 (μg/mg) (depending on isolation kit) NP: 0.98 < A260:A280 < 1.67 (depending on isolation kit) 0.13 < A260:A230 < 0.8 (depending on isolation kit) 2.46 < RNA yield < 102.8 (μg/mg) (depending on isolation kit) RIN: 4.45 ± 0.57 for MagNA Lyser with respect to freezer mill | [11] |
Chicken | 1 gr; GP | A260:A280 | 28S:18S | - | Frozen GP: A260:A280 = 1.79; RNA yield = 110 μg; denaturated Fresh GP: A260:A280 = 2.04; RNA yield = 98 μg; partially denaturated | [43] |
Porcine | ID; healthy and injured ID | A260:A280 | 28S:18S | - | ↑ Rna yield in the outer annulus: 8 < RNA yield < 15 (μg/100 mg) in the control discs 22 < RNA yield < 59 (μg/100 mg) in the injured discs | [49] |
6. Case Study
- Method N.1: The aqueous phase harvested after centrifugation at 12,000 rpm (at 4 °C for 15′) was then added to 20 μg/μL glycogen, 1.2 M sodium chloride (NaCl), and 0.8 M sodium acetate (NaOAc). RNA precipitation was performed by the addition of isopropanol, 10′ of incubation at RT, and 30′ of centrifugation at 12,000 rpm at 4 °C. Finally, the obtained RNA was twice washed with 75% cold ethanol and dried under the hood.
- Method N.2: Method 2 is identical to 1, apart from the addition of a second TRIzol®/chloroform extraction step immediately after the collection of the aqueous phase. More in detail, a volume of TRIzol® equal to twice the harvested aqueous phase was added. After 15′ of incubation at RT, the procedure continued with the addition of chloroform as in Method 1;
- Method N.3: Similar to Method 2, it included twice the passage of extraction by TRIzol®, but the second aqueous phase harvested was added to glycogen and a double volume of isopropanol. Different from other methods, it followed an incubation at −20 °C overnight followed by RNA extraction similar to what was described in Method N.1 but with only one wash in 75% Ethanol;
- Method N.4: This method, also known as “clean up”, is characterized by further steps at the end of Method 3, aimed at a better purification of the extract. The RNA obtained by Method 3 was added to a mixture consisting of glycogen, NaOAc, and isopropanol in deionized H2O (RNasi, DNasi free), then incubated 60′ at −80 °C and centrifuged. After washing with 75% ethanol, the sample was dried and resuspended in H2O. Finally, 10′ at 60 °C should increase the RNA resuspension;
- Method N.5: It represents the combination between the TRIzol® method and the one based on the use of columns. More precisely, the aqueous phase obtained by TRIzol®/chloroform was added with glycogen and 75% ethanol in equal volume, then loaded on a commercial mini spin column (Qiagen RNeasy Mini Kit).
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Acronyms and Abbreviations
DNA | deoxyribonucleic acid |
RNA | ribonucleic acid |
PCR | polymerase chain reaction |
mRNAs | messenger-RNAs |
RNases | ribonucleases |
OA | osteoarthritis |
GAGs | glycosaminoglycans |
GITC | guanidinium thiocyanate |
CsCl | cesium chloride |
AGCP | acid guanidium-phenol-chloroform |
RT | room temperature |
NaOAc | sodium acetate |
SDS | sodium dodecyl sulfate |
CsTFA | cesium trifluoroacetate |
LiCl | lithium chloride |
dsDNA | double-strand DNA |
ssDNA | single-strand DNA |
rRNA | ribosomal RNA |
RT-PCR | real-time PCR |
ON | overnight |
PG | proteoglycan |
ECM | extracellular matrix |
References
- Reno, C.; Marchuk, L.; Sciore, P.; Frank, C.B.; Hart, D.A. Rapid Isolation of Total RNA from Small Samples of Hypocellular, Dense Connective Tissues. BioTechniques 1997, 22, 1082–1086. [Google Scholar] [CrossRef]
- Sartori, M.; Pagani, S.; Ferrari, A.; Costa, V.; Carina, V.; Figallo, E.; Maltarello, M.C.; Martini, L.; Fini, M.; Giavaresi, G. A New Bi-Layered Scaffold for Osteochondral Tissue Regeneration: In Vitro and in Vivo Preclinical Investigations. Mater. Sci. Eng. C-Mater. Biol. Appl. 2017, 70, 101–111. [Google Scholar] [CrossRef]
- Bartolotti, I.; Roseti, L.; Petretta, M.; Grigolo, B.; Desando, G. A Roadmap of In Vitro Models in Osteoarthritis: A Focus on Their Biological Relevance in Regenerative Medicine. J. Clin. Med. 2021, 10, 1920. [Google Scholar] [CrossRef]
- Pirosa, A.; Gottardi, R.; Alexander, P.G.; Puppi, D.; Chiellini, F.; Tuan, R.S. An in Vitro Chondro-Osteo-Vascular Triphasic Model of the Osteochondral Complex. Biomaterials 2021, 272, 120773. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; McAlinden, A. RNA Isolation from Articular CartilageArticular Cartilages Tissue. In Chondrocytes: Methods and Protocols; Haqqi, T.M., Lefebvre, V., Eds.; Methods in Molecular Biology; Springer: New York, NY, USA, 2021; pp. 121–133. ISBN 978-1-07-161119-7. [Google Scholar]
- Cepollaro, S.; Della Bella, E.; de Biase, D.; Visani, M.; Fini, M. Evaluation of RNA from Human Trabecular Bone and Identification of Stable Reference Genes. J. Cell. Physiol. 2018, 233, 4401–4407. [Google Scholar] [CrossRef]
- Hoemann, C.D.; Sun, J.; Chrzanowski, V.; Buschmann, M.D. A Multivalent Assay to Detect Glycosaminoglycan, Protein, Collagen, RNA, and DNA Content in Milligram Samples of Cartilage or Hydrogel-Based Repair Cartilage. Anal. Biochem. 2002, 300, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Adams, M.E.; Huang, D.Q.; Yao, L.Y.; Sandell, L.J. Extraction and Isolation of MRNA from Adult Articular Cartilage. Anal. Biochem. 1992, 202, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Aigner, T.; Saas, J.; Zien, A.; Zimmer, R.; Gebhard, P.M.; Knorr, T. Analysis of Differential Gene Expression in Healthy and Osteoarthritic Cartilage and Isolated Chondrocytes by Microarray Analysis. Methods Mol. Med. 2004, 100, 109–128. [Google Scholar] [CrossRef]
- Gehrsitz, A.; McKenna, L.A.; Söder, S.; Kirchner, T.; Aigner, T. Isolation of RNA from Small Human Articular Cartilage Specimens Allows Quantification of MRNA Expression Levels in Local Articular Cartilage Defects. J. Orthop. Res. 2001, 19, 478–481. [Google Scholar] [CrossRef] [PubMed]
- Peeters, M.; Huang, C.L.; Vonk, L.A.; Lu, Z.F.; Bank, R.A.; Helder, M.N.; Doulabi, B.Z. Optimisation of High-Quality Total Ribonucleic Acid Isolation from Cartilaginous Tissues for Real-Time Polymerase Chain Reaction Analysis. Bone Joint Res. 2016, 5, 560–568. [Google Scholar] [CrossRef] [PubMed]
- Pagani, S.; Minguzzi, M.; Sicuro, L.; Veronesi, F.; Santi, S.; Scotto D’Abusco, A.; Fini, M.; Borzì, R.M. The N-Acetyl Phenylalanine Glucosamine Derivative Attenuates the Inflammatory/Catabolic Environment in a Chondrocyte-Synoviocyte Co-Culture System. Sci. Rep. 2019, 9, 13603. [Google Scholar] [CrossRef] [Green Version]
- Peirson, S.N.; Butler, J.N. RNA Extraction From Mammalian Tissues. In Circadian Rhythms: Methods and Protocols; Rosato, E., Ed.; Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2007; pp. 315–327. ISBN 978-1-59745-257-1. [Google Scholar]
- Goldring, S.R.; Goldring, M.B. Changes in the Osteochondral Unit during Osteoarthritis: Structure, Function and Cartilage–Bone Crosstalk. Nat. Rev. Rheumatol. 2016, 12, 632–644. [Google Scholar] [CrossRef]
- Fini, M.; Pagani, S.; Giavaresi, G.; De Mattei, M.; Ongaro, A.; Varani, K.; Vincenzi, F.; Massari, L.; Cadossi, M. Functional Tissue Engineering in Articular Cartilage Repair: Is There a Role for Electromagnetic Biophysical Stimulation? Tissue Eng. Part B Rev. 2013, 19, 353–367. [Google Scholar] [CrossRef] [PubMed]
- Varani, K.; Vincenzi, F.; Pasquini, S.; Blo, I.; Salati, S.; Cadossi, M.; De Mattei, M. Pulsed Electromagnetic Field Stimulation in Osteogenesis and Chondrogenesis: Signaling Pathways and Therapeutic Implications. Int. J. Mol. Sci. 2021, 22, 809. [Google Scholar] [CrossRef] [PubMed]
- Scotto d’Abusco, A.; Corsi, A.; Grillo, M.G.; Cicione, C.; Calamia, V.; Panzini, G.; Sansone, A.; Giordano, C.; Politi, L.; Scandurra, R. Effects of Intra-Articular Administration of Glucosamine and a Peptidyl-Glucosamine Derivative in a Rabbit Model of Experimental Osteoarthritis: A Pilot Study. Rheumatol. Int. 2008, 28, 437–443. [Google Scholar] [CrossRef]
- Ghassemi-Nejad, S.; Kobezda, T.; Rauch, T.A.; Matesz, C.; Glant, T.T.; Mikecz, K. Osteoarthritis-like Damage of Cartilage in the Temporomandibular Joints in Mice with Autoimmune Inflammatory Arthritis. Osteoarthr. Cartil. 2011, 19, 458–465. [Google Scholar] [CrossRef] [Green Version]
- Holderbaum, D.; Malemud, C.J.; Moskowitz, R.W.; Haqqi, T.M. Human Cartilage from Late Stage Familial Osteoarthritis Transcribes Type II Collagen MRNA Encoding a Cysteine in Position 519. Biochem. Biophys. Res. Commun. 1993, 192, 1169–1174. [Google Scholar] [CrossRef] [PubMed]
- Hutchinson, N.I.; Lark, M.W.; MacNaul, K.L.; Harper, C.; Hoerrner, L.A.; McDonnell, J.; Donatelli, S.; Moore, V.; Bayne, E.K. In Vivo Expression of Stromelysin in Synovium and Cartilage of Rabbits Injected Intraarticularly with Interleukin-1 Beta. Arthritis Rheum. 1992, 35, 1227–1233. [Google Scholar] [CrossRef]
- Kwan, A.P.; Dickson, I.R.; Freemont, A.J.; Grant, M.E. Comparative Studies of Type X Collagen Expression in Normal and Rachitic Chicken Epiphyseal Cartilage. J. Cell. Biol. 1989, 109, 1849–1856. [Google Scholar] [CrossRef]
- Leistad, L.; Ostensen, M.; Faxvaag, A. Detection of Cytokine MRNA in Human, Articular Cartilage from Patients with Rheumatoid Arthritis and Osteoarthritis by Reverse Transcriptase-Polymerase Chain Reaction. Scand. J. Rheumatol. 1998, 27, 61–67. [Google Scholar] [CrossRef]
- Mwale, F.; Tchetina, E.; Wu, C.W.; Poole, A.R. The Assembly and Remodeling of the Extracellular Matrix in the Growth Plate in Relationship to Mineral Deposition and Cellular Hypertrophy: An in Situ Study of Collagens II and IX and Proteoglycan. J. Bone Miner. Res. 2002, 17, 275–283. [Google Scholar] [CrossRef]
- Salisbury Palomares, K.T.; Gerstenfeld, L.C.; Wigner, N.A.; Lenburg, M.E.; Einhorn, T.A.; Morgan, E.F. Transcriptional Profiling and Biochemical Analysis of Mechanically Induced Cartilaginous Tissues in a Rat Model. Arthritis Rheum. 2010, 62, 1108–1118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takagi, M.; Kamiya, N.; Urushizaki, T.; Tada, Y.; Tanaka, H. Gene Expression and Immunohistochemical Localization of Biglycan in Association with Mineralization in the Matrix of Epiphyseal Cartilage. Histochem. J. 2000, 32, 175–186. [Google Scholar] [CrossRef]
- Fortier, L.A.; Miller, B.J. Signaling through the Small G-Protein Cdc42 Is Involved in Insulin-like Growth Factor-I Resistance in Aging Articular Chondrocytes. J. Orthop. Res. 2006, 24, 1765–1772. [Google Scholar] [CrossRef] [Green Version]
- Kopańska, M.; Szala, D.; Czech, J.; Gabło, N.; Gargasz, K.; Trzeciak, M.; Zawlik, I.; Snela, S. MiRNA Expression in the Cartilage of Patients with Osteoarthritis. J Orthop. Surg. Res. 2017, 12, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melching, L.I.; Cs-Szabo, G.; Roughley, P.J. Analysis of Proteoglycan Messages in Human Articular Cartilage by a Competitive PCR Technique. Matrix Biol. 1997, 16, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Botling, J.; Micke, P. Fresh Frozen Tissue: RNA Extraction and Quality Control. In Methods in Biobanking; Dillner, J., Ed.; Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2011; pp. 405–413. ISBN 978-1-59745-423-0. [Google Scholar]
- Ali, S.A.; Alman, B. RNA Extraction from Human Articular Cartilage by Chondrocyte Isolation. Anal. Biochem. 2012, 429, 39–41. [Google Scholar] [CrossRef]
- Chou, C.-H.; Lee, C.-H.; Lu, L.-S.; Song, I.-W.; Chuang, H.-P.; Kuo, S.-Y.; Wu, J.-Y.; Chen, Y.-T.; Kraus, V.B.; Wu, C.-C.; et al. Direct Assessment of Articular Cartilage and Underlying Subchondral Bone Reveals a Progressive Gene Expression Change in Human Osteoarthritic Knees. Osteoarthr. Cartil. 2013, 21, 450–461. [Google Scholar] [CrossRef] [Green Version]
- Clements, D.N.; Vaughan-Thomas, A.; Peansukmanee, S.; Carter, S.D.; Innes, J.F.; Ollier, W.E.R.; Clegg, P.D. Assessment of the Use of RNA Quality Metrics for the Screening of Articular Cartilage Specimens from Clinically Normal Dogs and Dogs with Osteoarthritis. Am. J. Vet. Res. 2006, 67, 1438–1444. [Google Scholar] [CrossRef] [PubMed]
- Daouti, S.; Latario, B.; Nagulapalli, S.; Buxton, F.; Uziel-Fusi, S.; Chirn, G.-W.; Bodian, D.; Song, C.; Labow, M.; Lotz, M.; et al. Development of Comprehensive Functional Genomic Screens to Identify Novel Mediators of Osteoarthritis. Osteoarthr. Cartil. 2005, 13, 508–518. [Google Scholar] [CrossRef]
- Fehr, J.E.; Trotter, G.W.; Oxford, J.T.; Hart, D.A. Comparison of Northern Blot Hybridization and a Reverse Transcriptase-Polymerase Chain Reaction Technique for Measurement of MRNA Expression of Metalloproteinases and Matrix Components in Articular Cartilage and Synovial Membrane from Horses with Osteoarthritis. Am. J. Vet. Res. 2000, 61, 900–905. [Google Scholar] [CrossRef]
- Flannery, C.R.; Little, C.B.; Hughes, C.E.; Caterson, B. Expression and Activity of Articular Cartilage Hyaluronidases. Biochem. Biophys. Res. Commun. 1998, 251, 824–829. [Google Scholar] [CrossRef] [PubMed]
- Joronen, K.; Kähäri, V.-M.; Vuorio, E. Temporospatial Expression of Matrix Metalloproteinases and Tissue Inhibitors of Matrix Metalloproteinases in Mouse Antigen-Induced Arthritis. Histochem. Cell. Biol. 2005, 124, 535–545. [Google Scholar] [CrossRef]
- Le Bleu, H.K.; Kamal, F.A.; Kelly, M.; Ketz, J.P.; Zuscik, M.J.; Elbarbary, R.A. Extraction of High-Quality RNA from Human Articular Cartilage. Anal. Biochem. 2017, 518, 134–138. [Google Scholar] [CrossRef] [Green Version]
- Lepage, S.I.M.; Sharma, R.; Dukoff, D.; Stalker, L.; LaMarre, J.; Koch, T.G. Gene Expression Profile Is Different between Intact and Enzymatically Digested Equine Articular Cartilage. Cartilage 2019, 12, 222–225. [Google Scholar] [CrossRef]
- Mallein-Gerin, F.; Gouttenoire, J. RNA Extraction from Cartilage. Methods Mol. Med. 2004, 100, 101–104. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Jiang, J.; Peng, J.; Wang, Q.; Shen, Y. Evaluation of MiR-181a as a Potential Therapeutic Target in Osteoarthritis. Trop. J. Pharm. Res. 2017, 16, 1069–1075. [Google Scholar] [CrossRef] [Green Version]
- Smale, G.; Sasse, J. RNA Isolation from Cartilage Using Density Gradient Centrifugation in Cesium Trifluoroacetate: An RNA Preparation Technique Effective in the Presence of High Proteoglycan Content. Anal. Biochem. 1992, 203, 352–356. [Google Scholar] [CrossRef]
- Strauss, P.G.; Closs, E.I.; Schmidt, J.; Erfle, V. Gene Expression during Osteogenic Differentiation in Mandibular Condyles in Vitro. J. Cell. Biol. 1990, 110, 1369–1378. [Google Scholar] [CrossRef] [PubMed]
- Thorp, B.H.; Armstrong, D.G.; Hogg, C.O.; Alexander, I. Type II Collagen Expression in Small, Biopsy-Sized Samples of Cartilage Using a New Method of RNA Extraction. Clin. Exp. Rheumatol. 1994, 12, 169–173. [Google Scholar] [PubMed]
- Jahangiri, L.; Kim, A.; Nishimura, I. Effect of Ovariectomy on the Local Residual Ridge Remodeling. J Prosthet. Dent. 1997, 77, 435–443. [Google Scholar] [CrossRef]
- McKenna, L.A.; Gehrsitz, A.; Söder, S.; Eger, W.; Kirchner, T.; Aigner, T. Effective Isolation of High-Quality Total RNA from Human Adult Articular Cartilage. Anal. Biochem. 2000, 286, 80–85. [Google Scholar] [CrossRef]
- Marchuk, L.; Sciore, P.; Reno, C.; Frank, C.B.; Hart, D.A. Postmortem Stability of Total RNA Isolated from Rabbit Ligament, Tendon and Cartilage. Biochim. Biophys. Acta 1998, 1379, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Vikhe Patil, K.; Canlon, B.; Cederroth, C.R. High Quality RNA Extraction of the Mammalian Cochlea for QRT-PCR and Transcriptome Analyses. Hear. Res. 2015, 325, 42–48. [Google Scholar] [CrossRef] [PubMed]
- MacLeod, J.N.; Burton-Wurster, N.; Gu, D.N.; Lust, G. Fibronectin MRNA Splice Variant in Articular Cartilage Lacks Bases Encoding the V, III-15, and I-10 Protein Segments. J. Biol. Chem. 1996, 271, 18954–18960. [Google Scholar] [CrossRef] [Green Version]
- Kääpä, E.; Zhang, L.Q.; Muona, P.; Holm, S.; Vanharanta, H.; Peltonen, J. Expression of Type I, III, and VI Collagen MRNAs in Experimentally Injured Porcine Intervertebral Disc. Connect. Tissue Res. 1994, 30, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Collins, A.T.; Hu, G.; Newman, H.; Reinsvold, M.H.; Goldsmith, M.R.; Twomey-Kozak, J.N.; Leddy, H.A.; Sharma, D.; Shen, L.; DeFrate, L.E.; et al. Obesity Alters the Collagen Organization and Mechanical Properties of Murine Cartilage. Sci. Rep. 2021, 11, 1626. [Google Scholar] [CrossRef]
- Gedrange, T.; Weingärtner, J.; Hoffmann, A.; Homuth, G.; Ernst, F.; Bokan, I.; Mai, R.; Proff, P. Development of an Improved Protocol to Analyse Gene Expression in Temporomandibular Joint Condylar Cartilage of Rats Using DNA Microarrays. Adv. Med. Sci. 2008, 53, 191–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nemeth, G.G.; Heydemann, A.; Bolander, M.E. Isolation and Analysis of Ribonucleic Acids from Skeletal Tissues. Anal. Biochem. 1989, 183, 301–304. [Google Scholar] [CrossRef]
- Bauer, C.; Niculescu-Morzsa, E.; Nehrer, S. A Protocol for Gene Expression Analysis of Chondrocytes from Bovine Osteochondral Plugs Used for Biotribological Applications. MethodsX 2017, 4, 423–428. [Google Scholar] [CrossRef]
- Larson, K.M.; Zhang, L.; Elsaid, K.A.; Schmidt, T.A.; Fleming, B.C.; Badger, G.J.; Jay, G.D. Reduction of Friction by Recombinant Human Proteoglycan 4 in IL-1α Stimulated Bovine Cartilage Explants. J. Orthop. Res. 2017, 35, 580–589. [Google Scholar] [CrossRef] [Green Version]
- Ruettger, A.; Neumann, S.; Wiederanders, B.; Huber, R. Comparison of Different Methods for Preparation and Characterization of Total RNA from Cartilage Samples to Uncover Osteoarthritis in Vivo. BMC Res. Notes 2010, 3, 7. [Google Scholar] [CrossRef] [Green Version]
- Baelde, H.J.; Cleton-Jansen, A.M.; van Beerendonk, H.; Namba, M.; Bovée, J.V.; Hogendoorn, P.C. High Quality RNA Isolation from Tumours with Low Cellularity and High Extracellular Matrix Component for CDNA Microarrays: Application to Chondrosarcoma. J. Clin. Pathol. 2001, 54, 778–782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Micke, P.; Ohshima, M.; Tahmasebpoor, S.; Ren, Z.-P.; Östman, A.; Pontén, F.; Botling, J. Biobanking of Fresh Frozen Tissue: RNA Is Stable in Nonfixed Surgical Specimens. Lab. Invest. 2006, 86, 202–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jewell, S.D.; Srinivasan, M.; McCart, L.M.; Williams, N.; Grizzle, W.H.; LiVolsi, V.; MacLennan, G.; Sedmak, D.D. Analysis of the Molecular Quality of Human Tissues: An Experience From the Cooperative Human Tissue Network. Am. J. Clin. Pathol. 2002, 118, 733–741. [Google Scholar] [CrossRef]
- Re, P.; Valhmu, W.B.; Vostrejs, M.; Howell, D.S.; Fischer, S.G.; Ratcliffe, A. Quantitative Polymerase Chain Reaction Assay for Aggrecan and Link Protein Gene Expression in Cartilage. Anal. Biochem. 1995, 225, 356–360. [Google Scholar] [CrossRef]
- Robson, P.; Wright, G.M.; Sitarz, E.; Maiti, A.; Rawat, M.; Youson, J.H.; Keeley, F.W. Characterization of Lamprin, an Unusual Matrix Protein from Lamprey Cartilage. Implications for Evolution, Structure, and Assembly of Elastin and Other Fibrillar Proteins. J. Biol. Chem. 1993, 268, 1440–1447. [Google Scholar] [CrossRef] [PubMed]
- Grumbles, R.M.; Shao, L.; Jeffrey, J.J.; Howell, D.S. Regulation of Rat Interstitial Collagenase Gene Expression in Growth Cartilage and Chondrocytes by Vitamin D3, Interleukin-1 Beta, and Okadaic Acid. J. Cell. Biochem. 1996, 63, 395–409. [Google Scholar] [CrossRef]
- Matsui, S.; Majima, T.; Mominoki, K.; Hirayama, H.; Oshima, Y.; Takahashi, K.; Takai, S. Effects of Endoprosthesis Head Material on Acetabular Cartilage Metabolism: An Animal Study Using Crossbred Pigs. J. Nippon. Med. Sch. 2018, 85, 309–314. [Google Scholar] [CrossRef] [Green Version]
- Semevolos, S.A.; Nixon, A.J.; Brower-Toland, B.D. Changes in Molecular Expression of Aggrecan and Collagen Types I, II, and X, Insulin-like Growth Factor-I, and Transforming Growth Factor-Beta1 in Articular Cartilage Obtained from Horses with Naturally Acquired Osteochondrosis. Am. J. Vet. Res. 2001, 62, 1088–1094. [Google Scholar] [CrossRef]
- Fischer, L.; Catz, D.; Kelley, D. An Androgen Receptor MRNA Isoform Associated with Hormone-Induced Cell Proliferation. Proc. Natl. Acad. Sci. USA 1993, 90, 8254–8258. [Google Scholar] [CrossRef] [Green Version]
- Chomczynski, P.; Sacchi, N. Single-Step Method of RNA Isolation by Acid Guanidinium Thiocyanate-Phenol-Chloroform Extraction. Anal. Biochem. 1987, 162, 156–159. [Google Scholar] [CrossRef]
- Collins-Racie, L.A.; Flannery, C.R.; Zeng, W.; Corcoran, C.; Annis-Freeman, B.; Agostino, M.J.; Arai, M.; DiBlasio-Smith, E.; Dorner, A.J.; Georgiadis, K.E.; et al. ADAMTS-8 Exhibits Aggrecanase Activity and Is Expressed in Human Articular Cartilage. Matrix Biol. 2004, 23, 219–230. [Google Scholar] [CrossRef]
- Geyer, M.; Grässel, S.; Straub, R.H.; Schett, G.; Dinser, R.; Grifka, J.; Gay, S.; Neumann, E.; Müller-Ladner, U. Differential Transcriptome Analysis of Intraarticular Lesional vs Intact Cartilage Reveals New Candidate Genes in Osteoarthritis Pathophysiology. Osteoarthr. Cartil. 2009, 17, 328–335. [Google Scholar] [CrossRef] [Green Version]
- Blain, E.J.; Mason, D.J.; Duance, V.C. The Effect of Thymosin Beta4 on Articular Cartilage Chondrocyte Matrix Metalloproteinase Expression. Biochem. Soc. Trans. 2002, 30, 879–882. [Google Scholar] [CrossRef]
- Chirgwin, J.M.; Przybyla, A.E.; MacDonald, R.J.; Rutter, W.J. Isolation of Biologically Active Ribonucleic Acid from Sources Enriched in Ribonuclease. Biochemistry 1979, 18, 5294–5299. [Google Scholar] [CrossRef] [PubMed]
- Chomczynski, P. A Reagent for the Single-Step Simultaneous Isolation of RNA, DNA and Proteins from Cell and Tissue Samples. Biotechniques 1993, 15, 532–534, 536–537. [Google Scholar] [PubMed]
- Farrell, R.E. Chapter 2—RNA Isolation Strategies. In RNA Methodologies, 4th ed.; Farrell, R.E., Ed.; Academic Press: San Diego, CA, USA, 2010; pp. 45–80. ISBN 978-0-12-374727-3. [Google Scholar]
- Zhang, H.; Chen, H.-T.; Glisin, V. Isolation of DNA-Free RNA, DNA, and Proteins by Cesium Trifluoroacetate Centrifugation. Biochem. Biophys. Res. Commun. 2003, 312, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Zhang, L.; Gibson, G.J. Chondrocyte MiRNAs 221 and 483-5p Respond to Loss of Matrix Interaction by Modulating Proliferation and Matrix Synthesis. Connect. Tissue Res. 2015, 56, 236–243. [Google Scholar] [CrossRef]
- Gan, M.F.; Yang, H.L.; Qian, J.L.; Wu, C.S.; Yuan, C.X.; Li, X.F.; Zou, J. Comparison of Two Methods for RNA Extraction from the Nucleus Pulposus of Intervertebral Discs. Genet. Mol. Res. 2016, 15, gmr.15027738. [Google Scholar] [CrossRef] [PubMed]
- Okihana, H.; Yamada, K. Preparation of a CDNA Library and Preliminary Assessment of 1400 Genes from Mouse Growth Cartilage. J. Bone Miner. Res. 1999, 14, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Little, C.B.; Flannery, C.R.; Hughes, C.E.; Goodship, A.; Caterson, B. Cytokine Induced Metalloproteinase Expression and Activity Does Not Correlate with Focal Susceptibility of Articular Cartilage to Degeneration. Osteoarthr. Cartil. 2005, 13, 162–170. [Google Scholar] [CrossRef] [Green Version]
- Kalathas, D.; Triantaphyllidou, I.-E.; Mastronikolis, N.S.; Goumas, P.D.; Papadas, T.A.; Tsiropoulos, G.; Vynios, D.H. The Chondroitin/Dermatan Sulfate Synthesizing and Modifying Enzymes in Laryngeal Cancer: Expressional and Epigenetic Studies. Head Neck Oncol. 2010, 2, 27. [Google Scholar] [CrossRef] [Green Version]
- Chan, P.-S.; Caron, J.P.; Orth, M.W. Short-Term Gene Expression Changes in Cartilage Explants Stimulated with Interleukin Beta plus Glucosamine and Chondroitin Sulfate. J. Rheumatol. 2006, 33, 1329–1340. [Google Scholar] [PubMed]
- Copois, V.; Bibeau, F.; Bascoul-Mollevi, C.; Salvetat, N.; Chalbos, P.; Bareil, C.; Candeil, L.; Fraslon, C.; Conseiller, E.; Granci, V.; et al. Impact of RNA Degradation on Gene Expression Profiles: Assessment of Different Methods to Reliably Determine RNA Quality. J. Biotechnol. 2007, 127, 549–559. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, A.; Mueller, O.; Stocker, S.; Salowsky, R.; Leiber, M.; Gassmann, M.; Lightfoot, S.; Menzel, W.; Granzow, M.; Ragg, T. The RIN: An RNA Integrity Number for Assigning Integrity Values to RNA Measurements. BMC Mol. Biol. 2006, 7, 3. [Google Scholar] [CrossRef] [Green Version]
- Imbeaud, S.; Graudens, E.; Boulanger, V.; Barlet, X.; Zaborski, P.; Eveno, E.; Mueller, O.; Schroeder, A.; Auffray, C. Towards Standardization of RNA Quality Assessment Using User-Independent Classifiers of Microcapillary Electrophoresis Traces. Nucleic Acids Res. 2005, 33, e56. [Google Scholar] [CrossRef] [Green Version]
- Manchester, K.L. Use of UV Methods for Measurement of Protein and Nucleic Acid Concentrations. BioTechniques 1996, 20, 968–970. [Google Scholar] [CrossRef]
- Fleige, S.; Pfaffl, M.W. RNA Integrity and the Effect on the Real-Time QRT-PCR Performance. Mol. Asp. Med. 2006, 27, 126–139. [Google Scholar] [CrossRef] [PubMed]
- Sambrook, J.; Russel, D.W. Molecular Cloning: A Laboratory Manual, 3rd ed.; Cold Spring Harbord Laboratory Press: New York, NY, USA, 2001. [Google Scholar]
- Monstein, H.J.; Nylander, A.G.; Chen, D. RNA Extraction from Gastrointestinal Tract and Pancreas by a Modified Chomczynski and Sacchi Method. Biotechniques 1995, 19, 340–344. [Google Scholar] [PubMed]
- Attur, M.G.; Dave, M.N.; Stuchin, S.; Kowalski, A.J.; Steiner, G.; Abramson, S.B.; Denhardt, D.T.; Amin, A.R. Osteopontin: An Intrinsic Inhibitor of Inflammation in Cartilage. Arthritis Rheum. 2001, 44, 578–584. [Google Scholar] [CrossRef]
- Adams, M.E.; Huang, D.Q. Measurement of Proteoglycan MRNA in Articular Cartilage--Preliminary Investigations. J. Rheumatol. Suppl. 1991, 27, 55–57. [Google Scholar] [PubMed]
- Sasaguri, K.; Jiang, H.; Chen, J. The Effect of Altered Functional Forces on the Expression of Bone-Matrix Proteins in Developing Mouse Mandibular Condyle. Arch. Oral Biol. 1998, 43, 83–92. [Google Scholar] [CrossRef]
- Vermeulen, J.; De Preter, K.; Lefever, S.; Nuytens, J.; De Vloed, F.; Derveaux, S.; Hellemans, J.; Speleman, F.; Vandesompele, J. Measurable Impact of RNA Quality on Gene Expression Results from Quantitative PCR. Nucleic. Acids. Res. 2011, 39, e63. [Google Scholar] [CrossRef] [PubMed]
- Santiago, T.C.; Purvis, I.J.; Bettany, A.J.; Brown, A.J. The Relationship between MRNA Stability and Length in Saccharomyces Cerevisiae. Nucleic. Acids. Res. 1986, 14, 8347–8360. [Google Scholar] [CrossRef] [PubMed]
- Miller, C.L.; Diglisic, S.; Leister, F.; Webster, M.; Yolken, R.H. Evaluating RNA Status for RT-PCR in Extracts of Postmortem Human Brain Tissue. Biotechniques 2004, 36, 628–633. [Google Scholar] [CrossRef] [PubMed]
Mechanical | |||||
---|---|---|---|---|---|
MagNA Lyser | |||||
Number of Cycles | Time per Cycle/Time | Frequency | Cooling between Cycles (Time/Temp) | References | |
2 | 20 s | 6500 rpm | 1 step (2 min/4 °C) | [53] | |
n.s | n.s | 5000 rpm | n.s | [47] | |
4 | 40 s | 6500 rpm | 2 min/4 °C | [11] | |
Polytron and similar | |||||
Solutions | Number of Cycles | Time per Cycle/Time | Frequency | Cooling between Cycles (Time/Temp) | References |
TRIzol® | n.s | 1 min | Ultra-turrax (3000–25,000 rpm) | n.s | [56] |
GITC | n.s | 5 min | 1000 g | n.s | [21] |
Solution D | n.s | 5–7 min | n.s | 4°C | [49] |
Solution D | n.s | 5–7 min | n.s | ice-cold | [60] |
Solution D | n.s | 5–7 min | speed setting: 4 | ice-cold | [59] |
Solution D | n.s | 10 min | 25,000 rpm | n.s | [22] |
QIAzol lysis buffer | 10 | 15 s | n.s | 9 steps (2 min/on ice) | [54] |
Solution | Composition | Function | References |
---|---|---|---|
TRIzol® (Thermo Scientific) | Monophasic solution of phenol and GITC. | It maintains the integrity of the RNA due to highly effective inhibition of RNase activity while disrupting cells and dissolving cell components during sample homogenization | [1,33,34,51,56,62,63] |
RNAzol™ (Tel-Test, Friendswood, TX, USA) | Monophasic solution of phenol and GITC. | This product, a mixture of guanidine thiocyanate and phenol in a monophase solution, effectively dissolves DNA, RNA, and protein on homogenization or lysis of tissue sample | [64] |
TRI Reagent® (Sigma-Aldric) | Monophasic solution of phenol and GITC. | Complete and ready-to-use reagent for the isolation of total RNA or the simultaneous isolation of RNA, DNA, and proteins. It combines phenol and guanidine thiocyanate in a monophase solution to facilitate the immediate and most effective inhibition of RNase activity | [18] |
Solution D |
| Denaturant solution | [8,22,23,60,65] |
GITC | Guanidinium isothiocyanate | Chaotropic agent. Strong protein denaturant and suppressor of ribonucleases | [7] |
GuCl | Guanidinium hydrochloride | Chaotropic agent used to solubilize cartilage matrix proteins and proteoglycans while simultaneously inhibiting lytic enzymes | [7,8,48,63,66,67] |
Cryopulverization | |||||||
---|---|---|---|---|---|---|---|
Precooling Time | Number of Cycles | Time | Impact Frequency | Cooling Steps Between Cycles (Time) | Cool Down | References | |
Freezer Mill | n.s | 2 | 1 min | 15 Hz | 1 step (2 min) | n.s | [66] |
2 min | 5 | 2 min | 10 Hz | 4 steps (2 min) | n.s | [9] | |
n.s | 4 | 3 min | 15 cps | 2 min | [37] | ||
2 min | 5 | 2 min | 10 Hz | 1 step (2 min) | n.s | [45] | |
n.s | 10 s–1.5 min | max | n.s | n.s | [8] | ||
Dismembrator | / | 2 | 2 min | 15 Hz | / | / | [51] |
/ | 2 min | 2000 osc/min | / | / | [32] | ||
/ | 2 | 1 min | 2200 rpm | / | / | [10] | |
/ | n.s | 2 min | 2000 rpm | / | / | [68] | |
/ | n.s | 1.5 min | 2000 rpm | / | / | [35] | |
Other | 2 min | n.s | 2–3 min | 30 Hz | n.s | n.s | [38] |
Extraction Method | Sheep Articular Cartilage | Weight (mg) | A260 | A280 | A260:A280 | A260:A230 | Total RNA (ng) | Ratio ng RNA/mg Sample |
---|---|---|---|---|---|---|---|---|
1 | AC 1 | 112 | 9.341 | 5.486 | 1.70 | 0.36 | 10460.8 | 180.13 |
2 | AC 2 | 114 | 7.780 | 3.966 | 1.96 | 0.67 | 8713.6 | 81.89 |
3 | AC 3 | 120 | 13.645 | 7.720 | 1.77 | 0.65 | 15282.4 | 136.45 |
4 | AC 4 | 120 | 19.623 | 10.932 | 1.80 | 0.90 | 21977.2 | 196.23 |
5 | AC 5 | 230 | 0.634 | 0.377 | 1.68 | 0.42 | 711.2 | 3.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pagani, S.; Maglio, M.; Sicuro, L.; Fini, M.; Giavaresi, G.; Brogini, S. RNA Extraction from Cartilage: Issues, Methods, Tips. Int. J. Mol. Sci. 2023, 24, 2120. https://doi.org/10.3390/ijms24032120
Pagani S, Maglio M, Sicuro L, Fini M, Giavaresi G, Brogini S. RNA Extraction from Cartilage: Issues, Methods, Tips. International Journal of Molecular Sciences. 2023; 24(3):2120. https://doi.org/10.3390/ijms24032120
Chicago/Turabian StylePagani, Stefania, Melania Maglio, Laura Sicuro, Milena Fini, Gianluca Giavaresi, and Silvia Brogini. 2023. "RNA Extraction from Cartilage: Issues, Methods, Tips" International Journal of Molecular Sciences 24, no. 3: 2120. https://doi.org/10.3390/ijms24032120
APA StylePagani, S., Maglio, M., Sicuro, L., Fini, M., Giavaresi, G., & Brogini, S. (2023). RNA Extraction from Cartilage: Issues, Methods, Tips. International Journal of Molecular Sciences, 24(3), 2120. https://doi.org/10.3390/ijms24032120