Genetic Variation, DIMBOA Accumulation, and Candidate Gene Identification in Maize Multiple Insect-Resistance
Abstract
:1. Introduction
2. Results
2.1. DIMBOA Content Variation
2.2. Genetic Diversity and Population Structure Analysis
2.3. Evaluation of Multiple Insect-Resistance of Inbred Lines and Dissection of Their Attributive Groups
2.4. Association Analysis of DIMBOA Content and BLUP Values
2.5. Identification of Hot Genetic Loci and Candidate Genes Associated with Multiple Insect-Resistant Traits
2.6. Expression Levels of Five Candidate Genes Responsible for DIMBOA Biosynthesis
3. Discussion
3.1. Defense Strategies of Maize against ACB-/CLA-Feeding
3.2. Genetic Loci Comparison between DIMBOA Content and Multiple Insect-Resistant Traits, and Their Hot Loci Identification
3.3. Validation of Candidate Genes in Hot Loci
3.4. Germplasms Diversity and Multiple Insect-Resistance Evaluation
4. Materials and Methods
4.1. Plant Materials
4.2. DIMBOA Content Assay
4.3. Genetic Diversity Analysis and Marker-DIMBOA Content Association Mapping
4.4. Hot Genetic Loci and Candidate Genes Detection
4.5. RT-qPCR Analysis
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ACB | Asian corn borer |
AIG | Average aphid incidence grade |
AIR | Aphid incidence rate |
AG | Aphid resistance |
BLUP | The best linear unbiased prediction |
bxs | Benzoxazinoids |
CLA | Corn leaf aphid |
DIMBOA | 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one |
GLM | General linear model |
GWAS | Genome-wide association studies |
HO | Number of holes of corn borer |
I | Shannon-Wiener’s index |
LD | Linkage disequilibrium |
LFR | Leaf feeding rating of corn borer |
MLM | Mixed linear model |
MAS | Marker-assisted selection |
PIC | Polymorphism information content |
QTL | Quantitative trait locus |
TL | Tunnel length of corn borer |
TL/HO | Tunnel length/number of holes of corn borer |
SNP | Single-nucleotide polymorphism |
SSRs | Simple sequence repeats |
References
- Wang, W.X.; Wang, X.Y.; Liao, H.M.; Feng, Y.J.; Guo, Y.S.; Shu, Y.H.; Wang, J.W. Effects of nitrogen supply on induced defense in maize (Zea mays) against fall armyworm (Spodoptera frugiperda). Int. J. Mol. Sci. 2022, 23, 10457. [Google Scholar] [CrossRef]
- Li, X.; He, K.L.; Wang, Z.Y.; Bai, S.X. Quantitative trait loci for Asian corn borer resistance in maize population. Agric. Sci. China 2010, 9, 77–84. [Google Scholar] [CrossRef]
- Chen, W.B.; Shakir, S.; Bigham, M.; Richter, A.; Fei, Z.J.; Jander, G. Genome sequence of the corn leaf aphid (Rhopalosiphum maidis Fitch). Gigascience 2019, 8, giz003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Betsiashvili, M.; Ahern, K.R.; Jander, G. Additive effects of two quantitative trait loci that confer Rhopalosiphum maidis (corn leaf aphid) resistance in maize inbred line Mo17. J. Exp. Bot. 2015, 66, 571–578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bing, J.W.; Guthrie, W.D. Generation mean analysis for resistance in maize to the corn leaf aphid (Homoptera, Aphididae). J. Econ. Entomol. 1991, 84, 1080–1082. [Google Scholar] [CrossRef]
- Carena, M.J.; Glogoza, P. Resistance of maize to the corn leaf aphid: A review. Maydica 2004, 49, 241–254. [Google Scholar]
- Kannan, M.; Ismail, I.; Bunawan, H. Maize dwarf mosaic virus: From genome to disease management. Viruses 2018, 10, 492. [Google Scholar] [CrossRef] [Green Version]
- Mikel, M.A.; D’Arcy, C.J.; Rhodes, A.M.; Ford, R.E. Yield loss in sweet corn correlated with time of inoculation with maize dwarf mosaic virus. Plant Dis. 1981, 65, 902–904. [Google Scholar] [CrossRef]
- Badji, A.; Kwemoi, D.B.; Machida, L.; Okii, D.; Mwila, N.; Agbahoungba, S.; Kumi, F.; Ibanda, A.; Bararyenya, A.; Solemanegy, M.; et al. Genetic basis of maize resistance to multiple insect pests: Integrated genome-wide comparative mapping and candidate gene prioritization. Genes 2020, 11, 689. [Google Scholar] [CrossRef] [PubMed]
- Kebede, M.; Shimalis, T. Out-break, distribution and management of fall armyworm, spodoptera frugiperda J.E. Smith in African: The status and prospects. Acad. Agric. J. 2018, 3, 551–568. [Google Scholar]
- Devi, S. Fall armyworm threatens food security in southern Africa. Lancet 2018, 391, 727. [Google Scholar] [CrossRef] [PubMed]
- Tzin, V.; Lindsay, P.L.; Christensen, S.A.; Meihls, L.N.; Blue, L.B.; Jander, G. Genetic mapping shows intraspecific variation and transgressive segregation for caterpillar-induced aphid resistance in maize. Mol. Ecol. 2015, 24, 5739–5750. [Google Scholar] [CrossRef] [PubMed]
- Meihls, L.N.; Kaur, H.; Jander, G. Natural variation in maize defence against insect herbivores. Cold Spring Harb. Sym. Quant. Biol. 2012, 77, 269–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murenga, M.; Derera, J.; Mugo, S.; Tongoona, P. A review of genetic analysis and response to selection for resistance to Busseola fusca and Chilo partellus, stem borers in tropical maize germplasm: A Kenyan perspective. Maydica 2016, 61, M4. [Google Scholar]
- Butrón, A.; Chen, Y.C.; Rottinghaus, G.E.; McMullen, M.D. Genetic variation at bx1 controls DIMBOA content in maize. Theor. Appl. Genet. 2010, 120, 721–734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meihls, L.N.; Handrick, V.; Glauser, G.; Barbier, H.; Kaur, H.; Haribal, M.M.; Lipka, A.E.; Gershenzon, J.; Buckler, E.S.; Erb, M.; et al. Natural variation in maize aphid resistance is associated with 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one glucoside methyltransferase activity. Plant Cell 2013, 25, 2341–2355. [Google Scholar] [CrossRef] [Green Version]
- Cambier, V.; Hance, T.; de Hoffmann, E. Variation of DIMBOA and related compounds content in relation to the age and plant organ in maize. Phytochemistry 2000, 53, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Huffaker, A.; Pearce, G.; Veyrat, N.; Erb, M.; Turlings, T.C.J.; Sartor, R.; Shen, Z.X.; Briggs, S.P.; Vaughan, M.M.; Alborn, H.T.; et al. Plant elicitor peptides are conserved signals regulating direct and indirect antiherbivore defense. Proc. Natl. Acad. Sci. USA 2012, 11, 5707–5712. [Google Scholar] [CrossRef] [Green Version]
- Gao, H.J. Genome-Wide Association Study with Resistance to the Asian Corn Borer in Maize; Shenyang Agricultural University: Shenyang, China, 2018. [Google Scholar]
- Yu, Y.T. QTL Analysis of Resistance to Asian Corn Borer in Maize; Agricultural University of Hebei: Baoding, China, 2003. [Google Scholar]
- Flint-Garcia, S.A.; Thuillet, A.C.; Yu, J.M.; Pressoir, G.; Romero, S.M.; Mitchell, S.E.; Doebley, J.; Kresovich, S.; Goodman, M.M.; Buckler, E.S. Maize association population: A high-resolution platform for quantitative trait locus dissection. Plant J. 2005, 44, 1054–1064. [Google Scholar] [CrossRef]
- Liu, Z.Z.; Wu, X.; Liu, H.L.; Li, Y.X.; Li, Q.C.; Wang, F.G.; Shi, Y.S.; Song, Y.C.; Song, W.B.; Zhao, J.R.; et al. Genetic diversity and population structure of important Chinese maize inbred lines revealed by 40 core simple sequence repeats (SSRs). Sci. Agric. Sin. 2012, 45, 2107–2138. [Google Scholar]
- Kumar, B.; Choudhary, M.; Kumar, P.; Kumar, K.; Kumar, S.; Singh, B.K.; Lahkar, C.; Meenakshi; Kumar, P.; Dar, Z.A.; et al. Population structure analysis and association mapping for turcicum leaf blight resistance in tropical maize using SSR markers. Genes 2022, 13, 618. [Google Scholar] [CrossRef] [PubMed]
- Li, X.P. Inheritance of Resistance to Rhopalosiphum maidis in Maize; Henan Agricultural University: Zhengzhou, China, 2016. [Google Scholar]
- Guo, J.F.; He, K.L.; Meng, Y.J.; Hellmich, R.L.; Chen, S.J.; Lopez, M.D.; Lauter, N.; Wang, Z.Y. Asian corn borer damage is affected by rind penetration strength of corn stalks in a spatiotemporally dependent manner. Plant Direct 2022, 6, e381. [Google Scholar] [CrossRef]
- Martin, S.A.; Darrah, L.L.; Hibbard, B.E. Divergent selection for rind penetrometer resistance and its effects on European corn borer damage and stalk traits in corn. Crop Sci. 2004, 44, 711–717. [Google Scholar] [CrossRef] [Green Version]
- Ma, D.; Xie, R.; Liu, X.; Niu, X.; Hou, P.; Wang, K.; Lu, Y.; Li, S. Lodging-related stalk characteristics of maize varieties in China since the 1950s. Crop Sci. 2014, 54, 2805–2814. [Google Scholar] [CrossRef]
- Gatch, E.W.; Munkvold, G.P. Fungal species composition in maize stalk in relation to European corn borer injury and transgenic insect protection. Plant Dis. 2002, 86, 1156–1162. [Google Scholar] [CrossRef] [Green Version]
- Varsani, S.; Grover, S.; Zhou, S.; Koch, K.G.; Huang, P.C.; Kolomiets, M.V.; Williams, W.P.; Heng-Moss, T.; Sarath, G.; Luthe, D.S.; et al. 12-Oxo-phytodienoic acid acts as a regulator of maize defense against corn leaf aphid. Plant Physiol. 2019, 179, 1402–1415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- So, Y.S.; Ji, H.C.; Brewbaker, J.L. Resistance to corn leaf aphid (Rhopalosiphum maidis Fitch) in tropical corn (Zea mays L.). Euphytica 2010, 172, 373–381. [Google Scholar] [CrossRef]
- Zhang, X.; van Doan, C.; Arce, C.C.M.; Hu, L.F.; Gruenig, S.; Parisod, C.; Hibbard, B.E.; Hervé, M.R.; Nielson, C.; Robert, C.A.M.; et al. Plant defense resistance in natural enemies of a specialist insect herbivore. Proc. Natl. Acad. Sci. USA 2019, 116, 23174–23181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, L.F.; Robert, C.A.M.; Cadot, S.; Zhang, X.; Ye, M.; Li, B.B.; Manzo, D.; Chervet, N.; Steinger, T.; van der Heijden, M.G.A. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat. Commun. 2018, 9, 2738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kudjordjie, E.N.; Sapkota, R.; Steffensen, S.K.; Fomsgaard, I.S.; Nicolaisen, M. Maize synthesized benzoxazinoids affect the host associated microbiome. Microbiome 2019, 7, 59. [Google Scholar] [CrossRef] [Green Version]
- Houseman, J.G.; Campos, F.; Thie, N.M.R.; Philogene, B.J.R.; Atkinson, J.; Morand, P.; Arnason, J.T. Effect of the maize-derived compounds DIMBOA and MBOA on growth and digestive processes of European corn borer (Lepidoptera: Pyralidae). J. Econ. Entomol. 1992, 85, 669–674. [Google Scholar] [CrossRef]
- Yan, F.; Xu, C.; Li, S.; Lin, C.; Li, J. Effects of DIMBOA on several enzymatic systems in Asian corn borer, Ostrinia furnacalis (Guenee). J. Chem. Ecol. 1995, 21, 2047–2056. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, C.; Castanera, P.; Torres, V. Wound-induced changes in DIMBOA (2,4-dihydroxy-7-methoxy-2H-1,4 benzoxazin-3 94H)-one concentration in maize plants caused by Sesamia nonagrioides (Lepidoptera: Noctuidae). Ann. Appl. Biol. 1988, 113, 447–454. [Google Scholar] [CrossRef]
- Dafoe, N.J.; Huffaker, A.; Vaughan, M.M.; Duehl, A.J.; Teal, P.E.; Schmelz, E.A. Rapidly induced chemical defenses in maize stems and their effects on short-term growth of Ostrinia nubilalis. J. Chem. Ecol. 2011, 37, 984–991. [Google Scholar] [CrossRef] [PubMed]
- Dafoe, N.J.; Thomas, J.D.; Shirk, P.D.; Legaspi, M.E.L.; Vaughan, M.M.; Huffaker, A.; Teal, P.E.; Schelz, E.A. European corn borer (Ostrinia nubilalis) induced responses enhance susceptibility in maize. PLoS ONE 2013, 8, e73394. [Google Scholar] [CrossRef] [Green Version]
- Frey, M.; Stettner, C.; Paré, P.; Schmelz, E.A.; Tumlinson, J.H.; Gierl, A. An herbivore elicitor activates the gene for indole emission in maize. Proc. Natl. Acad. Sci. USA 2000, 97, 14801–14806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gierl, A.; Frey, M. Evolution of benzoxazinone biosynthesis and indole production in maize. Planta 2001, 213, 493–498. [Google Scholar] [CrossRef] [PubMed]
- Von Rad, U.; Huttl, R.; Lottspeich, F.; Gierl, A.; Frey, M. Two glucosyltransferases are involved in detoxification of benzoxazinoids in mazie. Plant J. 2001, 28, 633–642. [Google Scholar] [CrossRef] [Green Version]
- Frey, M.; Huber, K.; June Park, W.; Sicker, D.; Lindberg, P.; Meely, R.B.; Simmons, C.R.; Yalpani, N.; Gierl, A. A 2-oxoglutarate-dependent dioxygenase is integrated in DIMBOA-biosynthesis. Phytochemistry 2003, 62, 371–376. [Google Scholar] [CrossRef]
- JonczyK, R.; Schmidt, H.; Osterrieder, A.; Fiesselmann, A.; Schullehner, K.; Haslbeck, M.; Sicker, D.; Hofmann, D.; Yalpani, N.; Simmons, C.; et al. Elucidation of the final reactions of DIMBOA-glucoside biosynthesis in maize: Characterization of Bx6 and Bx7. Plant Physiol. 2008, 146, 1053–1063. [Google Scholar] [CrossRef] [Green Version]
- Louis, J.; Basu, S.; Varsani, S.; Castano-Duque, L.; Jiang, V.; Williams, W.P.; Felton, G.W.; Luthe, D.S. Ethylene contributes to maize insect resistance1-mediated maize defense against the phloem sap-sucking corn leaf aphid. Plant Physiol. 2015, 169, 313–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christensen, S.A.; Huffaker, A.; Kaplan, F.; Sims, J.; Zieman, S.; Doehlemann, G.; Ji, L.X.; Schmitz, R.J.; Kolomiets, M.V.; Alborn, H.T.; et al. Maize death acids, 9-lipoxygenase-derived cyclopente(a)nones, display activity as cytotoxic phytoalexins and transcriptional mediators. Proc. Natl. Acad. Sci. USA 2015, 112, 11407–11412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danisman, S.; Immink, R.G.H. Arabidopsis class i and class ii tcp transcription factors regulate jasmonic acid metabolism and leaf development antagonistically. Plant Physiol. 2012, 159, 1511–1523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, X.Q.; Stumpe, M.; Feussner, I.; Kolomiets, M. A novel plastidial lipoxygenase of maize (Zea mays) ZmLOX6 encodes for a fatty acid hydroperoxide lyase and is uniquely regulated by phytohormones and pathogen infection. Planta 2008, 227, 491–503. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Yang, D.L.; Kong, Y.; Chen, Y.; Li, X.Z.; Zeng, L.J.; Li, Q.; Wang, E.T.; He, Z.H. Sugar homeostasis mediated by cell wall invertase GRAIN INCOMPLETE FILLING 1 (GIF1) plays a role in pre-existing and induced defence in rice. Mol. Plant Pathol. 2014, 15, 161–173. [Google Scholar] [CrossRef] [PubMed]
- Bolouri-Moghaddam, M.R.; Le Roy, K.; Xiang, L.; Rolland, F.; van den Ende, W. Sugar signalling and antioxidant network connections in plant cells. FEBS J. 2010, 277, 2022–2037. [Google Scholar] [CrossRef]
- Essmann, J.; Schmitz-Thom, I.; Schön, H.; Sonnewald, S.; Weis, E.; Scharte, J. RNA interference-mediated repression of cell wall invertase impairs defense in source leaves of tobacco. Plant Physiol. 2008, 147, 1288–1299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.Q.; Zhang, M.N.; Du, P.; Liu, H.; Zhang, Z.X.; Xu, J.; Qin, L.; Huang, B.Y.; Zheng, Z.; Dong, W.Z.; et al. Transcriptome analysis of pod mutant reveals plant hormones are important regulators in controlling pod size in peanut (Arachis hypogaea L.). Peer J. 2022, 10, e12965. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.Q.; Niu, Y.N.; Bai, X.D.; Mao, T.T. Transcriptomic and metabolic profiling reveals a lignin metabolism network involved in mesocotyl elongation during maize seed germination. Plants 2022, 11, 1034. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.Q.; Niu, Y.N. The combination of conventional QTL analysis, bulked-segregant analysis, and RNA-sequencing provide new genetic insights into maize mesocotyl elongation under multiple deep-seeding environments. Int. J. Mol. Sci. 2022, 23, 4223. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.Q.; Shi, J.; Niu, Y.N.; Lu, P.N.; Chen, X.J.; Mao, T.T. 24-epibrassinolide alleviates aluminum toxicity by improving leaf chlorophyll fluorescence and photosynthetic performance and root antioxidant-oxidant balance and ascorbate-glutathione cycle in maize. Russ. J. Plant Physiol. 2022, 69, 99–108. [Google Scholar] [CrossRef]
- López-Castillo, L.M.; López-Arciniega, J.A.I.; Guerrero-Rangel, A.; Valdés-Rodríguez, A.; Brieba, L.G.; García-Lara, S.; Winkler, R. Identification of B6T173 (ZmPrx35) as the prevailing peroxidase in highly insect resistance maize (Zea mays, p84C3) kernels by activity-directed purification. Front. Plant Sci. 2015, 6, 670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, H.J.; Wang, H.; Yang, H.; Wu, J.H.; Shi, B.; Cai, R.; Xu, Y.B.; Wu, A.Z.; Luo, L.J. Genetic diversity and molecular evolution of Chinese Waxy maize germplasm. PLoS ONE 2013, 8, e66606. [Google Scholar] [CrossRef] [Green Version]
- Farnir, F.; Coppieters, W.; Arranz, J.J.; Berzi, P.; Cambisano, N.; Grisart, B.; Karim, L.; Marcq, F.; Moreau, L.; Mni, M.; et al. Extensive genome-wide linkage disequilibrium in cattle. Genome Res. 2000, 10, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of cluster of individuals using the software structure: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, W.G.; Robertson, A. Linkage disequilibrium in finite populations. Theor. Appl. Genet. 1968, 38, 226–231. [Google Scholar] [CrossRef]
- Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y.; Buckler, E.S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 2007, 23, 2633–2635. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Pressoir, G.; Briggs, W.H.; Bi, I.V.; Yamasaki, M.; Doebley, J.; McMullen, F.; Gaut, M.D.; Nielsen, B.S.; Holland, D.M.; et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat. Genet. 2006, 38, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.Q.; Fang, P.; Zhang, J.W.; Peng, Y.L. QTL mapping for six ear leaf architecture traits under water-stressed an well-watered conditions in maize (Zea mays L.). Plant Breed. 2018, 137, 60–72. [Google Scholar] [CrossRef]
- Zhao, X.Q.; Zhao, C.; Niu, Y.N.; Chao, W.; He, W.; Wang, Y.F.; Mao, T.T.; Bai, X.D. Understanding and comprehensive evaluation of cold resistance in the seedlings of multiple maize genotypes. Plants 2022, 11, 1881. [Google Scholar] [CrossRef]
- Handrick, V.; Robert, C.A.M.; Ahern, K.R.; Zhou, S.Q.; Machado, R.A.R.; Maag, D.; Glauser, G.; Fernandez-Penny, F.E.; Chandran, J.N.; Rodgers-Melnik, E.; et al. Biosynthesis of 8-O-methylated benzoxazinoid defense compounds in maize. Plant Cell 2016, 28, 1682–1700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, M.Z.; Ma, Z.B.; Wang, L.L.; Tang, Z.Q.; Mao, T.; Liang, C.B.; Gao, H.; Zhang, L.Y.; He, N.; Fu, L.; et al. SNP-based QTL mapping for panicle traits in the japonica super rice cultivar Liaoxing 1. Crop J. 2020, 8, 769–780. [Google Scholar] [CrossRef]
- Zhao, X.Q.; Zhang, J.W.; Fang, P.; Peng, Y.L. Comparative QTL analysis for yield components and morphological traits in maize (Zea mays L.) under water-stressed and well-watered conditions. Breed. Sci. 2019, 69, 621–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, X.Q.; Zhong, Y. Genetic dissection of the photosynthetic parameters of maize (Zea mays L.) in drought-stressed and well-watered environments. Russ. J. Plant Physiol. 2021, 68, 1125–1134. [Google Scholar] [CrossRef]
Code | Associated SSR Marker | Bin Location | Contig | Physical Location (bp) | GLM | MLM | ||||
---|---|---|---|---|---|---|---|---|---|---|
R2 in E1 | R2 in E2 | R2 in BLUP | R2 in E1 | R2 in E2 | R2 in BLUP | |||||
1 | umc1917 | 1.04 | ctg14 | 62,677,623 to 62,680,874 | 6.14 | 11.44 | 9.29 | |||
2 | umc1009 | 1.11 | ctg64 | 292,965,682 to 292,971,925 | 13.52 | 10.16 | 10.97 | |||
3 | umc2363 | 2.01 | ctg69 | 4,164,953 to .4,170,212 | 4.30 | |||||
4 | umc1008 | 4.00 | ctg154 | 1,078,106 to 1,080,829 | 15.39 | 20.04 | 12.61 | 9.48 | 13.70 | |
5 | umc1017 | 4.01 | ctg155 | 3,002,162 to 3,006,932 | 19.11 | 10.83 | 19.42 | 10.57 | 9.94 | |
6 | umc1758 | 4.01 | ctg156 | 5,004,917 to 5,009,075 | 10.53 | 16.74 | 9.90 | |||
7 | umc1178 | 6.02 | ctg281 | 89,065,425 to 89,072,192 | 7.97 | 9.19 | ||||
8 | umc1858 | 8.04 | ctg349 | 112,055,118 to ..112,059,831 | 5.07 | 4.92 | 4.74 | |||
9 | umc1054 | 10.04 | ctg412 | 114,307,530 to 114,311,922 | 7.59 | 5.41 |
Trait | Marker Interval | Chr. (Bin Location) | Marker Type | Marker Physical Location (bp) | Contig | R2 (%) | Population (Size) | Method | Reference |
---|---|---|---|---|---|---|---|---|---|
TL | rs747464 | 4 (4.01) | SNP | 4,759,749 | Inbred lines (301) | GWAS | Gao 2018 [19] | ||
rs665864 | 2 (2.04) | SNP | 48,777,177 | ||||||
rs624256 | 2 (2.00) | SNP | 2,806,677 to 2,812,518 | ||||||
rs653464 | 2 (2.04) | SNP | 28,768,661 to 28,772,516 | ||||||
rs650025 | 2 (2.03) | SNP | 23,620,411 to 23,625,163 | ||||||
rs658849 | 2 (2.04) | SNP | 37,078,026 to .37,083,625 | ||||||
AIR | phi072–umc1164 | 4 (4.00–4.01) | SSR | 1,078,106 to 1,080,829 3,264,213 to 3,268,368 | ctg154 ctg155 | 9.26/ 11.55 | BT-1 × N6 RILs (250) | QTL | Li 2016 [24] |
umc1666–bnlg1200 | 7 (7.01–7.02) | SSR | 47,948,200 to 47,950,815 16,678,518 to 16,683,850 | ctg301 ctg297 | 6.54 | ||||
AIG | phi072–umc1164 | 4 (4.00–4.01) | SSR | 1,078,106 to 1,080,829 3,264,213 to 3,268,368 | ctg154 ctg155 | 8.60/ 11.53 | |||
bnlg1700–umc1935 | 5 (5.03–5.03) | SSR | 33,303,797 to 33,305,797 52,145,125 to 52,169,752 | ctg217 ctg219 | 4.73 | ||||
bnlg1792–umc1666 | 7 (7.02–7.02) | SSR | 85,162,973 to 85,165,402 47,948,200 to 47,950,815 | ctg305 ctg301 | 6.59 | ||||
AR | PZA03561.1 | 1 (1.04) | SNP | 60,091,612 to 60,097,741 | B73 × Ky21 RILs (122) | QTL | Tzin et al. 2015 [12] | ||
PZA01426.1 | 7 (7.00) | SNP | 774,537 to 776,537 | ||||||
AR | AC213878–AC204415 | 4 (4.01–4.01) | SNP | 3,021,364 to 3,062,132 4,379,100 to 4,395,483 | ctg155 ctg156 | B73 × Mo17 RILs (142) | QTL | Betsiashvili et al. 2015 [4] | |
DIMBOA | PZA03189 | 1 (1.04) | SNP | 64,242,765 to 64,246,594 | ctg14 | 2.80 | Genetically diverse inbred lines (281) | GLM | Butrón et al. 2010 [15] |
PZA00635 | 2 (2.04) | SNP | 60,393,632 to 60,395,632 | ctg80 | 3.41 | ||||
PHM1184 | 4 (4.01) | SNP | 3,050,215 to 3,055,036 | ctg155 | 15.74 | ||||
PZA02002 | 4 (4.04) | SNP | 29,007,117 to 29,016,300 | ctg163 | 2.44 | ||||
PZA00980 | 5 (5.06) | SNP | 204,965,179 to 204,967,179 | 3.34 | |||||
PZA01527 | 6 (6.01) | SNP | 58,422,170 to 58,431,307 | 2.40 | |||||
PZA00473 | 6 (6.05) | SNP | 124,327,526 to 124,335,707 | 1.61 | |||||
PZA02746 | 8 (8.06) | SNP | 163,286,695 to 163,294,127 | ctg362 | 2.26 | ||||
LFR | umc1991 | 1 (1.08) | SSR | 245,317,331 to 245,319,777 | ctg50 | 7.24 | Mc37 × Zi330 F2:3 (162) | QTL | Li et al. 2010 [2] |
umc2079 | 2 (2.04) | SSR | 57,593,899 to 57,596,593 | ctg79 | 7.01 | ||||
mmc0401 | 2 (2.05) | SSR | 145,615,676 to 145,621,417 | ctg90 | 19.28 | ||||
umc1759 | 4 (4.01) | SSR | 5,004,917 to 5,009,075 | ctg156 | 12.18 | ||||
phi084 | 10 (10.04) | SSR | 87,282,919 to 87,285,844 | ctg406 | 15.27 | ||||
HO | umc1635 | 2 (2.05) | SSR | 84,120,011 to 84,124,101 | ctg85 | 12.63 | |||
phi033 | 9 (9.01) | SSR | 11,499,426 to 11,509,187 | ctg371 | 6.03 | ||||
TL/HO | phi427913 | 1 (1.01) | SSR | 8,441,182 to 8,447,730 | ctg4 | 13.01 | |||
umc1958 | 9 (9.01) | SSR | 11,778,648 to 11,782,406 | ctg371 | 6.54 | ||||
LFR | bnlg1429–bnlg1016 | 1 (1.02–1.04) | SSR | 16,117,043 to 16,123,450 56,158,913 to 56,164,047 | ctg7 ctg14 | 12.80 | H21 × Mo17 F2:3 (120) | QTL | Yu 2003 [20] |
phi008–phi085 | 5 (5.03–5.06) | SSR | 14,083,193 to 14,086,595 205,292,914 to 205,298,428 | ctg209 ctg251 | 12.80 | ||||
umc1858–bnlg1176 | 8 (8.04–8.05) | SSR | 112,055,118 to 112,059,831 121,984,323 to 121,999,950 | ctg349 ctg4 | 35.10 | ||||
HO | umc1466 | 4 (4.08) | SSR | 182,908,212 to 182,910,212 | ctg184 | 50.80 | |||
umc1336 | 10 (10.04) | SSR | 86,430,405 to 86,433,004 | ctg406 | 51.80 | ||||
TL | bnlg1434–bnlg1126 | 4 (4.01–4.03) | SSR | 1,093,958 to 1,099,174 11,086,040 to 11,089,955 | ctg154 ctg184 | 7.70 | |||
bnlg1352–bnlg1031 | 8 (8.02–8.06) | SSR | 11,570,168 to 11,575,230 164,821,348 to 164,827,624 | ctg326 ctg363 | 11.00 | ||||
TL/HO | umc1022–nc004 | 4 (4.01–4.03) | SSR | 3,259,762 to 3,264,006 13,408,584 to 13,413,986 | ctg155 ctg158 | 12.70 | |||
LFR | umc1509–phi079 | 4 (4.02–4.05) | SSR | 5,459,368 to 5,463,263 36,911,994 to 36,918,779 | ctg156 ctg164 | 15.80 | Zi330 × K36 F2:3 (114) | QTL | Yu 2003 [20] |
HO | bnlg147–umc2236 | 1 (1.02–1.06) | SSR | 39,062,881 to 39,072,502 198,164,070 to 198,166,779 | ctg11 ctg41 | 9.60 | |||
mmc0081–phi128 | 5 (5.05–5.07) | SSR | 172,138,316 to 172,143,312 210,153,373 to 210,156,706 | ctg238 ctg253 | 12.10 | ||||
umc1139–umc1627 | 8 (8.01–8.03) | SSR | 2,989,632 to 3,048,953 78,519,415 to 78,523,602 | ctg326 ctg344 | 15.90 | ||||
TL | phi96100 | 2 (2.01) | SSR | 2,835,084 to 2,837,748 | ctg68 | 49.60 | |||
umc1139–umc1627 | 8 (8.01–8.03) | SSR | 2,989,632 to 3,048,953 78,519,415 to 78,523,602 | ctg326 ctg344 | 15.80 | ||||
phi033–umc1958 | 9 (9.01–9.01) | SSR | 11,237,266 to 11,239,266 11,778,648 to 11,782,406 | ctg371 ctg371 | 12.80 | ||||
TL/HO | phi049–phi453121 | 3 (3.00–3.01) | SSR | 1,728,270 to 1,730,270 1,627,384 to 1,635,027 | ctg111 ctg114 | 8.80 |
Hot Loci | Bin Location | Candidate Gene ID | Encoded Protein | Gene Location (bp) | Orthologs |
---|---|---|---|---|---|
Loci 1 | 1.01–1.02 | GRMZM2G017616 (LOX9) | Lipoxygenase 9 | Bin 1.02 16,572,327 to 16,582,222 | LOC_Os03g08220 (Oryza sativa) |
Loci 2 | 1.04 | GRMZM2G147698 (MYB156) | MYB-transcription factor 156 | Bin 1.04 64,242,265 to 64,247,094 | LOC_Os03g25550 (Oryza sativa) |
GRMZM2G311036 (bx10) | DIMBOA-glucoside O-methyltransferase | Bin 1.04 66,309,137 to 66,314,243 | Sb01g033880 (Sorghum bicolor) | ||
GRMZM2G336824 (bx11) | DIMBOA-glucoside O-methyltransferase | Bin 1.04 66,391,909 to 66,397,349 | Sb01g033880 (Sorghum bicolor) | ||
GRMZM2G023325 (bx12) | DIMBOA-glucoside O-methyltransferase | Bin 1.04 66,504,957 to 66,508,971 | Sb01g033880 (Sorghum bicolor) | ||
Loci 3 | 1.11 | GRMZM2G046163 (lgl) | Indole-3-glycerol phosphate lyase | Bin 1.11 288,336,957 to 288,342,082 | LOC_Os03g58290 (Oryza sativa) |
Loci 4 | 2.00–2.01 | GRMZM2G102471 (uce4) | Ubiquitin-conjugating enzyme 4 | Bin 2.00 2,806,677 to 2,812,518 | LOC_Os04g57220 (Oryza sativa) |
GRMZM2G119941 (incw4) | Invertase cell wall 4 | Bin 2.01 3,188,791 to 3,195,146 | LOC_Os04g56920 (Oryza sativa) | ||
GRMZM2G018716 (incw7) | Invertase cell wall 7 | Bin 2.01 3,227,856 to 3,233,490 | LOC_Os04g56930 (Oryza sativa) | ||
GRMZM2G018692 (incw6) | Invertase cell wall 6 | Bin 2.01 3,232,233 to 3,237,644 | LOC_Os04g56920 (Oryza sativa) | ||
GRMZM2G365166 (SAUR14) | Auxin-responsive protein SAUR36 | Bin 2.01 3,590,872 to 3,594,536 | LOC_Os04g56690 (Oryza sativa) | ||
GRMZM2G365162 (SAUR15) | Indole-3-acetic acid-induced protein ARG7 | Bin 2.01 3,600,982 to 3,605,199 | LOC_Os04g56680 (Oryza sativa) | ||
GRMZM2G040095 (LOX6) | Lipoxygenase 6 | Bin 2.02 4,190,652 to 4,197,763 | Sb06g031350 (Sorghum bicolor) | ||
Loci 5 | 2.03–2.04 | GRMZM2G123202 (MYB54) | MYB-transcription factor 54 | Bin 2.03 23,620,411 to 23,625,163 | LOC_Os04g45060 (Oryza sativa) |
GRMZM2G089806 (SAUR20) | Auxin-induced protein X10A | Bin 2.04 28,768,661 to 28,772,516 | LOC_Os04g43740 (Oryza sativa) | ||
Loci 6 | 2.04 | GRMZM2G130224 | Restriction endonuclease type II-like superfamily protein | Bin 2.04 37,078,026 to 37,083,625 | LOC_Os04g40900 (Oryza sativa) |
Loci 7 | 2.05 | GRMZM2G504910 | Tetratricopeptide repeat protein 27 homolog | Bin 2.06 168,638,340 to 168,652,992 | LOC_Os07g27180 (Oryza sativa) |
Loci 8 | 4.00–4.03 | GRMZM6G617209 (bx6) | 2-oxoglutarate-dependent dioxygenase | Bin 4.00 1,251,138 to 1,255,544 | LOC_Os03g48430.1 (Oryza sativa) |
GRMZM2G167549 (bx3) | Indolin-2-one monooxygenase | Bin 4.01 3,001,662 to 3,007,432 | Sb05g026080 (Sorghum bicolor) | ||
GRMZM2G172491 (bx4) | 3-hydroxy-indolin-2-one monoxygenase (P450) | Bin 4.01 3,049,715 to 3,055,536 | Sb05g026080 (Sorghum bicolor) | ||
GRMZM2G063756 (bx5) | BHBOA monoxgenase (P450) | Bin 4.01 3,111,425 to 3,117,001 | LOC_Os08g01510.1 (Oryza sativa) | ||
GRMZM2G085054 (bx8) | 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3 (4H)-one 2-D-glucosyltransferase | Bin 4.01 3,213,147 to 3,218,058 | LOC_Os11g25454.1 (Oryza sativa) | ||
GRMZM2G085381 (bx1) | Indole-3-glycerol phosphate lyase | Bin 4.01 3,259,262 to 3,264,506 | LOC_Os03g58300.1 (Oryza sativa) | ||
GRMZM2G085661 (bx2) | Indole-2-monooxygenase | Bin 4.01 3,263,713 to 3,268,868 | Sb05g026080 (Sorghum bicolor) | ||
Loci 9 | 4.04 | GRMZM2G441753 (bx7) | TRIBOA-glc O methyl transferase | Bin 4.04 18,243,663 to 18,246,553 | LOC_Os12g25450.1 (Oryza sativa) |
Loci 10 | 4.05 | GRMZM2G157306 (MYB92) | MYB-related-transcription factor 92 | Bin 4.05 34,497,413 to 34,505,954 | LOC_Os08g05510 (Oryza sativa) |
Loci 11 | 4.08 | Zm00001d052335 (POD23) | Peroxidase 23 | Bin 4.08 187,346,362 to 187,351,257 | |
Loci 12 | 5.03 | GRMZM2G102760 (LOX5) | Lipoxygenase 5 | Bin 5.03 12,284,156 to 12,292,064 | LOC_Os03g49380 (Oryza sativa) |
GRMZM2G332390 (SAUR48) | Auxin-responsive SAUR family member | Bin 5.03 15,029,401 to 15,033,175 | LOC_Os03g45850 (Oryza sativa) | ||
GRMZM2G113135 (SAUR49) | Auxin-responsive SAUR family member | Bin 5.03 60,953,699 to 60,958,116 | LOC_Os10g36703 (Oryza sativa) | ||
GRMZM2G330012 (SAUR50) | Auxin-responsive protein SAUR19 | Bin 5.03 56,965,982 to 56,969,995 | LOC_Os06g48860 (Oryza sativa) | ||
GRMZM2G361993 (SAUR51) | Auxin-responsive protein SAUR32 | Bin 5.03 60,953,699 to 60,958,116 | LOC_Os06g50040 (Oryza sativa) | ||
Loci 13 | 5.05–5.07 | GRMZM2G139300 (incw1) | Invertase cell wall 1 | Bin 5.04 169,496,097 to 169,503,589 | LOC_Os02g33110 (Oryza sativa) |
GRMZM2G159547 (MYB48) | MYB-transcription factor 48 | Bin 5.07 208,396,628 to 208,401,248 | LOC_Os02g51799 (Oryza sativa) | ||
Loci 14 | 6.02 | GRMZM2G150256 (mir2) | Maize insect resistance 2-cysteine protease | Bin 6.02 89,064,767 to 89,072,691 | Sb10g028000 (Sorghum bicolor) |
GRMZM2G150276 (mir1) | Maize insect resistance 1-cysteine protease | Bin 6.02 89,070,747 to 89,075,683 | Sb10g028010 (Sorghum bicolor) | ||
GRMZM2G423833 (MYB115) | MYB-transcription factor 115 | Bin 6.02 89,299,116 to 89,305,100 | LOC_Os06g40330.1 (Oryza sativa) | ||
GRMZM2G093789 (MYB59) | MYB-transcription factor 59 | Bin 6.02 89,401,621 to 89,417,741 | LOC_Os06g40330.1 (Oryza sativa) | ||
Loci 15 | 8.01–8.03 | GRMZM2G312419 (MYB60) | MYB-transcription factor 60 | Bin 8.01 2,760,493 to 2,764,284 | LOC_Os01g16810 (Oryza sativa) |
GRMZM2G096358 (MYB22) | MYB-transcription factor 22 | Bin 8.02 11,485,302 to 11,489,135 | LOC_Os01g03720 (Oryza sativa) | ||
GRMZM2G143274 (MYB76) | MYB-transcription factor 76 | Bin 8.02 16,771,384 to 16,774,583 | LOC_Os01g07430 (Oryza sativa) | ||
GRMZM2G119693 (MYB91) | MYB-transcription factor 91 | Bin 8.03 63,067,162 to 63,070,647 | LOC_Os05g46610 (Oryza sativa) | ||
Loci 16 | 8.04–8.05 | GRMZM2G179679 | Sugars will eventually be exported transporter 3a | Bin 8.04 112,055,118 to 112,059,831 | LOC_Os05g12320 (Oryza sativa) |
GRMZM2G171781 (MYB30) | MYB-transcription factor 30 | Bin 8.05 128,604,416 to 128,609,501 | LOC_Os05g04820 (Oryza sativa) | ||
Loci 17 | 8.06 | GRMZM2G431066 (SAUR70) | Auxin-responsive protein SAUR50 | Bin 8.06 164,748,431 to 164,752,132 | |
Loci 18 | 9.01 | GRMZM2G451533 (SAUR71) | SAUR-like auxin-responsive protein family | Bin 9.01 11,435,786 to 11,439,677 | LOC_Os06g09550 (Oryza sativa) |
Loci 19 | 10.04 | Zm00001d024752 (POD21) | Peroxidase 21 | Bin 10.04 86,134,891 to 86,138,913 | |
GRMZM2G127490 (MYB149) | MYB-transcription factor 149 | Bin 10.04 87,799,992 to 87,806,148 | LOC_Os05g04820 (Oryza sativa) | ||
GRMZM2G123633 (incw3) | Invertase cell wall 3 | Bin 10.04 114,307,030 to 114,312,422 | LOC_Os04g33720 (Oryza sativa) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, Y.; Zhao, X.; Chao, W.; Lu, P.; Bai, X.; Mao, T. Genetic Variation, DIMBOA Accumulation, and Candidate Gene Identification in Maize Multiple Insect-Resistance. Int. J. Mol. Sci. 2023, 24, 2138. https://doi.org/10.3390/ijms24032138
Niu Y, Zhao X, Chao W, Lu P, Bai X, Mao T. Genetic Variation, DIMBOA Accumulation, and Candidate Gene Identification in Maize Multiple Insect-Resistance. International Journal of Molecular Sciences. 2023; 24(3):2138. https://doi.org/10.3390/ijms24032138
Chicago/Turabian StyleNiu, Yining, Xiaoqiang Zhao, Wun Chao, Peina Lu, Xiaodong Bai, and Taotao Mao. 2023. "Genetic Variation, DIMBOA Accumulation, and Candidate Gene Identification in Maize Multiple Insect-Resistance" International Journal of Molecular Sciences 24, no. 3: 2138. https://doi.org/10.3390/ijms24032138
APA StyleNiu, Y., Zhao, X., Chao, W., Lu, P., Bai, X., & Mao, T. (2023). Genetic Variation, DIMBOA Accumulation, and Candidate Gene Identification in Maize Multiple Insect-Resistance. International Journal of Molecular Sciences, 24(3), 2138. https://doi.org/10.3390/ijms24032138