Fluid Biomarkers of Central Nervous System (CNS) Involvement in Myotonic Dystrophy Type 1 (DM1)
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. CSF Biomarkers (Table 1)
Paper, Year | DM1 Patients | Controls | CSF Biomarkers Studied | Used Method |
---|---|---|---|---|
Winblad et al. [29], 2008 | 32, noncongenital (MA 41.8 y, MDD 16.8 y) | 32 healthy controls (42.2 y) | Ab42 ↓ T-tau ↑ P-tau - | ELISA |
Peric et al. [30], 2014 | 27 childhood/juvenile onset (MA 35 y, MDD 21.2 y) 47 adult onset (MA 46.7 y, MDD 17 y) | 27 healthy controls (50.9 y) | Ab42 ↓ in juvenile-onset DM1 T-tau - P-tau - Ab42/P-tau ↓ in adult-onset DM1 | ELISA |
Laforce et al. [31], 2022 | 6 noncognitively impaired and 3 cognitively impaired DM1 patients | 2 AD pts (67 y), no healthy controls | T-tau ↑ in 3 cognitively impaired DM1 P-tau ↑ in 3 cognitively impaired DM1 Ab42/Ab40 normal | automated chemiluminescent enzyme-immunoassay |
3.2. Blood-Based Biomarkers (Table 2)
Paper, Year | DM1 Patients | Controls | Biomarkers Studied | Used Method |
---|---|---|---|---|
Saak et al. [33], 2021 | 9 DM1 pts (MA 44.3 y, MDD 16.8 y) out of 62 pts with myopathies with CNS involvement | 485 healthy controls (MA 44.3 y), 13 pts with myopathies without CNS involvement (MA 41 y) | NfL ↑ | SiMoA |
van der Plas et al. [34], 2022 | 13 pre-manifest DM1 (MA 47.4 y) 40 DM1 pts (MA 46 y, MDD 12.9 y) | 70 healthy controls (43.6 y) | NfL ↑ T-tau ↓ GFAP ↑ (only in pre-manifest DM1) UCH-L1 - | SiMoA |
Nicoletti et al. [35], 2022 | 40 DM1 pts (MA 47.7 y, MDD 27.7 y) | 22 healthy controls (MA 45.6 y) | NfL ↑ | SiMoA |
Laforce et al. [31], 2022 | 9 noncognitively impaired and 3 cognitively impaired DM1 patients (MA 47 y) | 2 AD pts (MA 67 y), no healthy controls | NfL ↑ T-tau ↑ GFAP ↑ Ab42 ↑ Ab40 Ab42/Ab40 ratio ↑ (data regarding the 3 cognitively impaired DM1 pts vs. noncognitively impaired DM1 pts) | multiplex xMAP (Ab42, Ab40) SiMoA (NfL, T-tau, GFAP) |
4. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Ashizawa, T.; Sarkar, P.S. Myotonic dystrophy types 1 and 2. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2011; Volume 101, pp. 193–237. [Google Scholar] [CrossRef]
- Hamel, J.I. Myotonic Dystrophy. Continuum (Minneap Minn). Continuum. 2022, 28, 1715–1734. [Google Scholar] [CrossRef] [PubMed]
- Meola, G.; Cardani, R. Myotonic dystrophies: An update on clinical aspects, genetic, pathology, and molecular pathomechanisms. Biochim. Biophys. Acta 2015, 1852, 594–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harper, P.S. Myotonic Dystrophies, 3rd ed.; Harcourt Publishers Ltd.: London, UK, 2001. [Google Scholar]
- De Antonio, M.; Dogan, C.; Hamroun, D.; Mati, M.; Zerrouki, S.; Eymard, B.; Katsahian, S.; Bassez, G. French Myotonic Dystrophy Clinical Network. Unravelling the myotonic dystrophy type 1 clinical spectrum: A systematic registry-based study with implications for disease classification. Rev. Neurol. 2016, 172, 572–580. [Google Scholar] [CrossRef] [PubMed]
- Rossi, S.; Della Marca, G.; Ricci, M.; Perna, A.; Nicoletti, T.F.; Brunetti, V.; Meleo, E.; Calvello, M.; Petrucci, A.; Antonini, G.; et al. Prevalence and predictor factors of respiratory impairment in a large cohort of patients with Myotonic Dystrophy type 1 (DM1): A retrospective, cross sectional study. J. Neurol. Sci. 2019, 399, 118–124. [Google Scholar] [CrossRef]
- Groh, W.J.; Lowe, M.R.; Zipes, D.P. Severity of cardiac conduction involvement and arrhythmias in myotonic dystrophy type 1 correlates with age and CTG repeat length. J. Cardiovasc. Electrophysiol. 2002, 13, 444–448. [Google Scholar] [CrossRef]
- Timchenko, L. Myotonic Dystrophy: From Molecular Pathogenesis to Therapeutics. Int. J. Mol. Sci. 2022, 23, 11954. [Google Scholar] [CrossRef]
- Simoncini, C.; Spadoni, G.; Simoncini, E.; Santoni, L.; Angelini, C.; Ricci, G.; Siciliano, G. Central Nervous System Involvement as Outcome Measure for Clinical Trials Efficacy in Myotonic Dystrophy Type 1. Front. Neurol. 2020, 11, 624. [Google Scholar] [CrossRef]
- Okkersen, K.; Buskes, M.; Groenewoud, J.; Kessels, R.P.; Knoop, H.; van Engelen, B.; Raaphorst, J. The cognitive profile of myotonic dystrophy type 1: A systematic review and meta-analysis. Cortex 2017, 95, 143–155. [Google Scholar] [CrossRef] [PubMed]
- Modoni, A.; Silvestri, G.; Pomponi, M.G.; Mangiola, F.; Tonali, P.A.; Marra, C. Characterization of the pattern of cognitive impairment in myotonic dystrophy type 1. Arch. Neurol. 2004, 61, 1943–1947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meola, G.; Sansone, V.; Perani, D.; Scarone, S.; Cappa, S.; Dragoni, C.; Cattaneo, E.; Cotelli, M.; Gobbo, C.; Fazio, F.; et al. Executive dysfunction and avoidant personality trait in myotonic dystrophy type 1 (DM-1) and in proximal myotonic myopathy (PROMM/DM-2). Neuromuscul. Disord. 2003, 13, 813–821. [Google Scholar] [CrossRef] [PubMed]
- Weijs, R.; Okkersen, K.; van Engelen, B.; Küsters, B.; Lammens, M.; Aronica, E.; Raaphorst, J.; van Cappellen van Walsum, A.M. Human brain pathology in myotonic dystrophy type 1: A systematic review. Neuropathology 2021, 41, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Meinke, P.; Hintze, S.; Limmer, S.; Schoser, B. Myotonic Dystrophy-A Progeroid Disease? Front. Neurol. 2018, 9, 601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pascual-Gilabert, M.; López-Castel, A.; Artero, R. Myotonic dystrophy type 1 drug development: A pipeline toward the market. Drug Discov. Today 2021, 26, 1765–1772. [Google Scholar] [CrossRef]
- NIH Definitions Working Group. Biomarkers and Surrogate Endpoints. In Biomarkers and Surrogate Endpoints in Clinical Research: Definitions and Conceptual Model; Elsevier: Amsterdam, The Netherlands, 2000; pp. 1–9. [Google Scholar]
- Aronson, J.K.; Ferner, R.E. Biomarkers-A General Review. Curr. Protoc. Pharmacol. 2017, 76, 9.23.1–9.23.17. [Google Scholar] [CrossRef]
- Minnerop, M.; Gliem, C.; Kornblum, C. Current Progress in CNS Imaging of Myotonic Dystrophy. Front. Neurol. 2018, 9, 646. [Google Scholar] [CrossRef] [Green Version]
- Conforti, R.; de Cristofaro, M.; Cristofano, A.; Brogna, B.; Sardaro, A.; Tedeschi, G.; Cirillo, S.; Di Costanzo, A. Brain MRI abnormalities in the adult form of myotonic dystrophy type 1: A longitudinal case series study. Neuroradiol. J. 2016, 29, 36–45. [Google Scholar] [CrossRef] [Green Version]
- Gliem, C.; Minnerop, M.; Roeske, S.; Gärtner, H.; Schoene-Bake, J.C.; Adler, S.; Witt, J.A.; Hoffstaedter, F.; Schneider-Gold, C.; Betz, R.C.; et al. Tracking the brain in myotonic dystrophies: A 5-year longitudinal follow-up study. PLoS ONE 2019, 14, e0213381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Labayru, G.; Jimenez-Marin, A.; Fernández, E.; Villanua, J.; Zulaica, M.; Cortes, J.M.; Díez, I.; Sepulcre, J.; López de Munain, A.; Sistiaga, A. Neurodegeneration trajectory in pediatric and adult/late DM1: A follow-up MRI study across a decade. Ann. Clin. Transl. Neurol. 2020, 7, 1802–1815. [Google Scholar] [CrossRef]
- Labayru, G.; Camino, B.; Jimenez-Marin, A.; Garmendia, J.; Villanua, J.; Zulaica, M.; Cortes, J.M.; Munain, A.L.d.; Sistiaga, A. White matter integrity changes and neurocognitive functioning in adult-late onset DM1: A follow-up DTI study. Sci Rep. 2022, 12, 3988. [Google Scholar] [CrossRef]
- Cabada, T.; Díaz, J.; Iridoy, M.; López, P.; Jericó, I.; Lecumberri, P.; Remirez, B.; Seijas, R.; Gomez, M. Longitudinal study in patients with myotonic dystrophy type 1: Correlation of brain MRI abnormalities with cognitive performances. Neuroradiology 2021, 63, 1019–1029. [Google Scholar] [CrossRef]
- Bosco, G.; Diamanti, S.; Meola, G.; DM-CNS Group. Workshop Report: Consensus on biomarkers of cerebral involvement in myotonic dystrophy, 2–3 December 2014, Milan, Italy. Neuromuscul. Disord. 2015, 25, 813–823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koehorst, E.; Ballester-Lopez, A.; Arechavala-Gomeza, V.; Martínez-Piñeiro, A.; Nogales-Gadea, G. The Biomarker Potential of miRNAs in Myotonic Dystrophy Type I. J. Clin. Med. 2020, 9, 3939. [Google Scholar] [CrossRef] [PubMed]
- Schraen-Maschke, S.; Sergeant, N.; Dhaenens, C.-M.; Bombois, S.; Deramecourt, V.; Caillet-Boudin, M.-L.; Pasquier, F.; Maurage, C.-A.; Sablonnière, B.; Vanmechelen, E.; et al. Tau as a biomarker of neurodegenerative diseases. Biomark. Med. 2008, 2, 363–384. [Google Scholar] [CrossRef] [Green Version]
- Sinsky, J.; Pichlerova, K.; Hanes, J. Tau Protein Interaction Partners and Their Roles in Alzheimer’s Disease and Other Tauopathies. Int. J. Mol. Sci. 2021, 22, 9207. [Google Scholar] [CrossRef]
- Xu, C.; Zhao, L.; Dong, C. A Review of Application of Aβ42/40 Ratio in Diagnosis and Prognosis of Alzheimer’s Disease. J. Alzheimer’s Dis. 2022, 90, 495–512. [Google Scholar] [CrossRef]
- Winblad, S.; Månsson, J.E.; Blennow, K.; Jensen, C.; Samuelsson, L.; Lindberg, C. Cerebrospinal fluid tau and amyloid beta42 protein in patients with myotonic dystrophy type 1. Eur. J. Neurol. 2008, 15, 947–952. [Google Scholar] [CrossRef]
- Peric, S.; Mandic-Stojmenovic, G.; Markovic, I.; Stefanova, E.; Ilic, V.; Parojcic, A.; Misirlic-Dencic, S.; Ostojic, M.; Rakocevic-Stojanovic, V.; Kostic, V. Cerebrospinal fluid biomarkers of neurodegeneration in patients with juvenile and classic myotonic dystrophy type 1. Eur. J. Neurol. 2014, 21, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Laforce, R.J.; Dallaire-Théroux, C.; Racine, A.M.; Dent, G.; Salinas-Valenzuela, C.; Poulin, E.; Cayer, A.M.; Bédard-Tremblay, D.; Rouleau-Bonenfant, T.; St-Onge, F.; et al. Tau positron emission tomography, cerebrospinal fluid and plasma biomarkers of neurodegeneration, and neurocognitive testing: An exploratory study of participants with myotonic dystrophy type 1. J. Neurol. 2022, 269, 3579–3587. [Google Scholar] [CrossRef]
- Leuzy, A.; Cullen, N.C.; Mattsson-Carlgren, N.; Hansson, O. Current advances in plasma and cerebrospinal fluid biomarkers in Alzheimer’s disease. Curr. Opin. Neurol. 2021, 34, 266–274. [Google Scholar] [CrossRef]
- Saak, A.; Benkert, P.; Akgün, K.; Willemse, E.; Kuhle, J.; Ziemssen, T.; Jackson, S.; Schaefer, J. Serum Neurofilament Light Chain: A Marker of Nervous System Damage in Myopathies. Front. Neurosci. 2021, 15, 791670. [Google Scholar] [CrossRef] [PubMed]
- van der Plas, E.; Long, J.D.; Koscik, T.R.; Magnotta, V.; Monckton, D.G.; Cumming, S.A.; Gottschalk, A.C.; Hefti, M.; Gutmann, L.; Nopoulos, P.C. Blood-Based Markers of Neuronal Injury in Adult-Onset Myotonic Dystrophy Type 1. Front. Neurol. 2022, 12, 791065. [Google Scholar] [CrossRef] [PubMed]
- Nicoletti, T.F.; Rossi, S.; Vita, M.G.; Perna, A.; Guerrera, G.; Lino, F.; Iacovelli, C.; Di Natale, D.; Modoni, A.; Battistini, L.; et al. Elevated serum Neurofilament Light chain (NfL) as a potential biomarker of neurological involvement in Myotonic Dystrophy type 1 (DM1). J. Neurol. 2022, 269, 5085–5092. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Mielke, M.M. An Update on Blood-Based Markers of Alzheimer’s Disease Using the SiMoA Platform. Neurol. Ther. 2019, 8 (Suppl. S2), 73–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Mandelkow, E. Tau in physiology and pathology. Nat. Rev. Neurosci. 2016, 17, 5–21. [Google Scholar] [CrossRef] [PubMed]
- Arendt, T.; Stieler, J.T.; Holzer, M. Tau and tauopathies. Brain Res. Bull. 2016, 126 (Pt 3), 238–292. [Google Scholar] [CrossRef]
- Hamasaki, H.; Maeda, N.; Sasagasako, N.; Honda, H.; Shijo, M.; Mori, S.I.; Yagita, K.; Arahata, H.; Iwaki, T. Neuropathology of classic myotonic dystrophy type 1 is characterized by both early initiation of primary age-related tauopathy of the hippocampus and unique 3-repeat tauopathy of the brainstem. J. Neuropathol. Exp. Neurol. 2022, 82, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Bayoumy, S.; Verberk, I.M.W.; den Dulk, B.; Hussainali, Z.; Zwan, M.; van der Flier, W.M.; Ashton, N.J.; Zetterberg, H.; Blennow, K.; Vanbrabant, J.; et al. Clinical and analytical comparison of six Simoa assays for plasma P-tau isoforms P-tau181, P-tau217, and P-tau231. Alzheimer’s Res. Ther. 2021, 13, 198. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rossi, S.; Silvestri, G. Fluid Biomarkers of Central Nervous System (CNS) Involvement in Myotonic Dystrophy Type 1 (DM1). Int. J. Mol. Sci. 2023, 24, 2204. https://doi.org/10.3390/ijms24032204
Rossi S, Silvestri G. Fluid Biomarkers of Central Nervous System (CNS) Involvement in Myotonic Dystrophy Type 1 (DM1). International Journal of Molecular Sciences. 2023; 24(3):2204. https://doi.org/10.3390/ijms24032204
Chicago/Turabian StyleRossi, Salvatore, and Gabriella Silvestri. 2023. "Fluid Biomarkers of Central Nervous System (CNS) Involvement in Myotonic Dystrophy Type 1 (DM1)" International Journal of Molecular Sciences 24, no. 3: 2204. https://doi.org/10.3390/ijms24032204
APA StyleRossi, S., & Silvestri, G. (2023). Fluid Biomarkers of Central Nervous System (CNS) Involvement in Myotonic Dystrophy Type 1 (DM1). International Journal of Molecular Sciences, 24(3), 2204. https://doi.org/10.3390/ijms24032204