Characteristics of Solidified Carbon Dioxide and Perspectives for Its Sustainable Application in Sewage Sludge Management
Abstract
:1. Introduction
2. Characteristics of Sludge
3. SCO2 Characteristics, Production Methods, and Applications
4. Production of SCO2 in Flue Gas Treatments and Biogas Upgrading Processes
5. Applications of SCO2 in Sludge Management
6. Applications of SCO2 in Sludge Pretreatment
7. Estimated Energy and Economic Efficiency
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AD | anaerobic digestion |
As | arsenic |
Ba | barium |
C | carbon |
Cd | cadmium |
CH4 | methane |
CHP | combined heat and power |
cfus | colony-forming units |
COD | chemical oxygen demand |
CO2 | carbon dioxide |
CPC | Chinese Petroleum Corporation |
Cr | chrome |
CST | capillary suction time |
Cu | copper |
DI | dry ice |
DM | dry matter |
DSS | dairy sewage sludge |
EU | European Union |
FTIR | Fourier-transform infrared |
GHG | greenhouse gas |
H | hydrogen |
Hg | mercury |
H2O | hydrogen oxide (water) |
H2S | hydrogen sulfide |
IATA | International Air Transport Association |
LBM | liquefied biomethane |
LNG | liquid natural gas |
LTC-SCO2 | low-temperature conditioning using solidified carbon dioxide |
Mn | manganese |
Mo | molybdenum |
MPN | most probable number |
N | nitrogen |
NH3 | ammonia |
Ni | nickel |
N/A | not applicable |
O | oxygen |
P | phosphorus |
PAHs | polycyclic aromatic hydrocarbons |
Pb | lead |
PCBs | polychlorinated biphenyls |
PFASs | perfluoroalkyl substances |
PFCs | perfluorocarbons |
PFOA | perfluorooctanoate |
PFOS | perflouroctane sulfonate |
PhCs | pharmaceuticals |
R | resistivity |
RNA | ribonucleic acid |
S | sulfur |
SCOD | soluble chemical oxygen demand |
SCO2 | solid carbon dioxide |
SDG | Sustainable Development Goal |
Se | selenium |
TOC | total organic carbon |
TRL | technology readiness level |
UN | United Nations |
US | United States |
WAS | waste-activated sludge |
WWAP | World Water Assessment Programme |
VFAs | volatile fatty acids |
VS | volatile solid |
VSS | volatile suspended solid |
Zn | zinc |
References
- Villamil, J.A.; Mohedano, A.F.; San Martín, J.; Rodriguez, J.J.; de la Rubia, M.A. Anaerobic Co-Digestion of the Process Water from Waste Activated Sludge Hydrothermally Treated with Primary Sewage Sludge. A New Approach for Sewage Sludge Management. Renew. Energy 2020, 146, 435–443. [Google Scholar] [CrossRef]
- Di Giacomo, G.; Romano, P. Evolution and Prospects in Managing Sewage Sludge Resulting from Municipal Wastewater Purification. Energies 2022, 15, 5633. [Google Scholar] [CrossRef]
- Dębowski, M.; Zieliński, M. Wastewater Treatment and Biogas Production: Innovative Technologies, Research and Development Directions. Energies 2022, 15, 2122. [Google Scholar] [CrossRef]
- World Water Assessment Programme. Available online: https://en.unesco.org/wwap (accessed on 10 June 2022).
- The United Nations World Water Development Report 2017. Wastewater: The Untapped Resource. Available online: https://stg-wedocs.unep.org/handle/20.500.11822/20448 (accessed on 10 June 2022).
- Zieliński, M.; Dębowski, M.; Kazimierowicz, J. The Effect of Static Magnetic Field on Methanogenesis in the Anaerobic Digestion of Municipal Sewage Sludge. Energies 2021, 14, 590. [Google Scholar] [CrossRef]
- Hoang, S.A.; Bolan, N.; Madhubashini, A.M.P.; Vithanage, M.; Perera, V.; Wijesekara, H.; Wang, H.; Srivastava, P.; Kirkham, M.B.; Mickan, B.S.; et al. Treatment Processes to Eliminate Potential Environmental Hazards and Restore Agronomic Value of Sewage Sludge: A Review. Environ. Pollut. 2022, 293, 118564. [Google Scholar] [CrossRef] [PubMed]
- Delanka-Pedige, H.M.K.; Munasinghe-Arachchige, S.P.; Abeysiriwardana-Arachchige, I.S.A.; Nirmalakhandan, N. Wastewater Infrastructure for Sustainable Cities: Assessment Based on UN Sustainable Development Goals (SDGs). Int. J. Sustain. Develop. World. Ecol. 2020, 28, 203–209. [Google Scholar] [CrossRef]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; UN: New York, NY, USA, 2015. [Google Scholar]
- Gao, N.; Kamran, K.; Quan, C.; Williams, P.T. Thermochemical Conversion of Sewage Sludge: A Critical Review. Prog. Energy Combust. Sci. 2020, 79, 100843. [Google Scholar] [CrossRef]
- Qu, J.; Dai, X.; Hu, H.Y.; Huang, X.; Chen, Z.; Li, T.; Cao, Y.; Daigger, G.T. Emerging Trends and Prospects for Municipal Wastewater Management in China. ACS EST Eng. 2022, 2, 323–336. [Google Scholar] [CrossRef]
- Eurostat. Sewage Sludge Production and Disposal—Products Datasets. Available online: https://ec.europa.eu/eurostat/web/products-datasets/-/env_ww_spd (accessed on 20 January 2023).
- Bartkowska, I.; Biedka, P.; Tałałaj, I.A. Analysis of the Quality of Stabilized Municipal Sewage Sludge. J. Ecol. Eng. 2019, 20, 200–208. [Google Scholar] [CrossRef]
- Meng, J.; Duan, H.; Yuan, Z.; Zheng, M. Gravity Settling and Centrifugation Increase the Acid Buffer Capacity of Activated Sludge. Sci. Total Environ. 2022, 820, 153231. [Google Scholar] [CrossRef]
- Xiao, H.; Liu, H.; Jin, M.; Deng, H.; Wang, J.; Yao, H. Process Control for Improving Dewatering Performance of Sewage Sludge Based on Carbonaceous Skeleton-Assisted Thermal Hydrolysis. Chemosphere 2022, 296, 134006. [Google Scholar] [CrossRef]
- Khanlari, A.; Sözen, A.; Afshari, F.; Şirin, C.; Tuncer, A.D.; Gungor, A. Drying Municipal Sewage Sludge with V-Groove Triple-Pass and Quadruple-Pass Solar Air Heaters along with Testing of a Solar Absorber Drying Chamber. Sci. Total Environ. 2020, 709, 136198. [Google Scholar] [CrossRef] [PubMed]
- Kiselev, A.; Magaril, E.; Magaril, R.; Panepinto, D.; Ravina, M.; Zanetti, M.C. Towards Circular Economy: Evaluation of Sewage Sludge Biogas Solutions. Eng. Resour. 2019, 8, 91. [Google Scholar] [CrossRef] [Green Version]
- Latosińska, J.; Kowalik, R.; Gawdzik, J. Risk Assessment of Soil Contamination with Heavy Metals from Municipal Sewage Sludge. Appl. Sci. 2021, 11, 548. [Google Scholar] [CrossRef]
- Ronda, A.; Gómez-Barea, A.; Haro, P.; de Almeida, V.F.; Salinero, J. Elements Partitioning during Thermal Conversion of Sewage Sludge. Fuel Process. Technol. 2019, 186, 156–166. [Google Scholar] [CrossRef]
- Černe, M.; Palčić, I.; Pasković, I.; Major, N.; Romić, M.; Filipović, V.; Igrc, M.D.; Perčin, A.; Goreta Ban, S.; Zorko, B.; et al. The Effect of Stabilization on the Utilization of Municipal Sewage Sludge as a Soil Amendment. Waste Manag. 2019, 94, 27–38. [Google Scholar] [CrossRef]
- González, D.; Colón, J.; Gabriel, D.; Sánchez, A. The Effect of the Composting Time on the Gaseous Emissions and the Compost Stability in a Full-Scale Sewage Sludge Composting Plant. Sci. Total Environ. 2019, 654, 311–323. [Google Scholar] [CrossRef]
- Vu, H.T.; Min, B. Enhanced Methane Fermentation of Municipal Sewage Sludge by Microbial Electrochemical Systems Integrated with Anaerobic Digestion. Int. J. Hydrogen Energy 2019, 44, 30357–30366. [Google Scholar] [CrossRef]
- Liu, Y.; Lin, R.; Man, Y.; Ren, J. Recent Developments of Hydrogen Production from Sewage Sludge by Biological and Thermochemical Process. Int. J. Hydrogen Energy 2019, 44, 19676–19697. [Google Scholar] [CrossRef]
- Buta, M.; Hubeny, J.; Zieliński, W.; Harnisz, M.; Korzeniewska, E. Sewage Sludge in Agriculture—The Effects of Selected Chemical Pollutants and Emerging Genetic Resistance Determinants on the Quality of Soil and Crops—A Review. Ecotoxicol. Environ. Saf. 2021, 214, 112070. [Google Scholar] [CrossRef]
- Przydatek, G.; Wota, A.K. Analysis of the Comprehensive Management of Sewage Sludge in Poland. J. Mater. Cycles Waste Manag. 2020, 22, 80–88. [Google Scholar] [CrossRef] [Green Version]
- Rorat, A.; Courtois, P.; Vandenbulcke, F.; Lemiere, S. Sanitary and Environmental Aspects of Sewage Sludge Management. In Industrial and Municipal Sludge: Emerging Concerns and Scope for Resource Recovery; Butterworth-Heinemann: Oxford, UK, 2019; pp. 155–180. [Google Scholar] [CrossRef]
- Gherghel, A.; Teodosiu, C.; De Gisi, S. A Review on Wastewater Sludge Valorisation and Its Challenges in the Context of Circular Economy. J. Clean. Prod. 2019, 228, 244–263. [Google Scholar] [CrossRef]
- Lü, H.; Chen, X.H.; Mo, C.H.; Huang, Y.H.; He, M.Y.; Li, Y.W.; Feng, N.X.; Katsoyiannis, A.; Cai, Q.Y. Occurrence and Dissipation Mechanism of Organic Pollutants during the Composting of Sewage Sludge: A Critical Review. Bioresour. Technol. 2021, 328, 124847. [Google Scholar] [CrossRef] [PubMed]
- Di Capua, F.; Spasiano, D.; Giordano, A.; Adani, F.; Fratino, U.; Pirozzi, F.; Esposito, G. High-Solid Anaerobic Digestion of Sewage Sludge: Challenges and Opportunities. Appl. Energy 2020, 278, 115608. [Google Scholar] [CrossRef]
- Koniuszewska, I.; Korzeniewska, E.; Harnisz, M.; Czatzkowska, M. Intensification of Biogas Production Using Various Technologies: A Review. Int. J. Energy Res. 2020, 44, 6240–6258. [Google Scholar] [CrossRef]
- Bharathiraja, B.; Sudharsana, T.; Jayamuthunagai, J.; Praveenkumar, R.; Chozhavendhan, S.; Iyyappan, J. Biogas Production-A Review on Composition, Fuel Properties, Feed Stock and Principles of Anaerobic Digestion Article in Renewable and Sustainable Energy Reviews Optimization of Anaerobic Conditions for the Treatment of Textile Dye Wastewater Using Mixed Culture View Project Biogas Production-A Review on Composition, Fuel Properties, Feed Stock and Principles of Anaerobic Digestion. Renew. Sustain. Energy Rev. 2018, 90, 570–582. [Google Scholar] [CrossRef]
- Rosen, M.A. Energy Sustainability with a Focus on Environmental Perspectives. Earth Syst. Environ. 2021, 5, 217–230. [Google Scholar] [CrossRef]
- EuropeanParliament. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the Promotion of the Use of Energy from Renewable Sources and Amending and Subsequently Repealing Directives 2001/77/EC and 2003/30/EC. Off. J. Eur. Union 2009. [Google Scholar]
- Nikiema, M.; Barsan, N.; Maiga, Y.; Somda, M.K.; Mosnegutu, E.; Ouattara, C.A.T.; Dianou, D.; Traore, A.S.; Nedeff, V.; Ouattara, A.S. Optimization of Biogas Production from Sewage Sludge: Impact of Combination with Bovine Dung and Leachate from Municipal Organic Waste. Sustainability 2022, 14, 4380. [Google Scholar] [CrossRef]
- Aghel, B.; Behaein, S.; Wongwises, S.; Shadloo, M.S. A Review of Recent Progress in Biogas Upgrading: With Emphasis on Carbon Capture. Biomass Bioenergy 2022, 160, 106422. [Google Scholar] [CrossRef]
- Kazimierowicz, J.; Zieliński, M.; Dębowski, M. Influence of the Heating Method on the Efficiency of Biomethane Production from Expired Food Products. Fermentation 2021, 7, 12. [Google Scholar] [CrossRef]
- Volschan Junior, I.; de Almeida, R.; Cammarota, M.C. A Review of Sludge Pretreatment Methods and Co-Digestion to Boost Biogas Production and Energy Self-Sufficiency in Wastewater Treatment Plants. J. Water Process Eng. 2021, 40, 101857. [Google Scholar] [CrossRef]
- Mancuso, G.; Langone, M.; Andreottola, G.; Bruni, L. Effects of Hydrodynamic Cavitation, Low-Level Thermal and Low-Level Alkaline Pre-Treatments on Sludge Solubilisation. Ultrason. Sonochem. 2019, 59, 104750. [Google Scholar] [CrossRef] [PubMed]
- Zubrowska-Sudol, M.; Podedworna, J.; Sytek-Szmeichel, K.; Bisak, A.; Krawczyk, P.; Garlicka, A. The Effects of Mechanical Sludge Disintegration to Enhance Full-Scale Anaerobic Digestion of Municipal Sludge. Therm. Sci. Eng. Prog. 2018, 5, 289–295. [Google Scholar] [CrossRef]
- Nabi, M.; Zhang, G.; Li, F.; Zhang, P.; Wu, Y.; Tao, X.; Bao, S.; Wang, S.; Chen, N.; Ye, J.; et al. Enhancement of High Pressure Homogenization Pretreatment on Biogas Production from Sewage Sludge: A Review. Desalin. Water Treat. 2018, 175, 4–8. [Google Scholar] [CrossRef]
- Aylin Alagöz, B.; Yenigün, O.; Erdinçler, A. Ultrasound Assisted Biogas Production from Co-Digestion of Wastewater Sludges and Agricultural Wastes: Comparison with Microwave Pre-Treatment. Ultrason. Sonochem. 2018, 40, 193–200. [Google Scholar] [CrossRef]
- Zieliński, M.; Dȩbowski, M.; Krzemieniewski, M.; Rusanowska, P.; Zielińska, M.; Cydzik-Kwiatkowska, A.; Głowacka-Gil, A. Application of an Innovative Ultrasound Disintegrator for Sewage Sludge Conditioning before Methane Fermentation. J. Ecol. Eng. 2018, 19, 240–247. [Google Scholar] [CrossRef]
- Yin, Y.; Wang, J. Enhanced Sewage Sludge Disintegration and Hydrogen Production by Ionizing Radiation Pretreatment in the Presence of Fe2+. ACS Sustain. Chem. Eng. 2019, 7, 15548–15557. [Google Scholar] [CrossRef]
- Zieliński, M.; Dębowski, M.; Kazimierowicz, J. Microwave Radiation Influence on Dairy Waste Anaerobic Digestion in a Multi-Section Hybrid Anaerobic Reactor (M-SHAR). Processes 2021, 9, 1772. [Google Scholar] [CrossRef]
- Rózycki, S.; Banas, M. Exergy Analysis of Cavitation Pretreatment of Sludge. E3S Web Conf. 2018, 49, 00089. [Google Scholar] [CrossRef] [Green Version]
- Waclawek, S.; Grübel, K.; Silvestri, D.; Padil, V.V.T.; Waclawek, M.; Cerník, M.; Varma, R.S. Disintegration of Wastewater Activated Sludge (WAS) for Improved Biogas Production. Energies 2018, 12, 21. [Google Scholar] [CrossRef] [Green Version]
- Yesil, H.; Molaey, R.; Calli, B.; Tugtas, A.E. Removal and Recovery of Heavy Metals from Sewage Sludge via Three-Stage Integrated Process. Chemosphere 2021, 280, 130650. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Xiao, X.; Wang, J.; Hong, M.; Deng, C.; Li, Y.Y.; Liu, J. Enhancing Phosphorus Recovery from Sewage Sludge Using Anaerobic-Based Processes: Current Status and Perspectives. Bioresour. Technol. 2021, 341, 125899. [Google Scholar] [CrossRef]
- Zawieja, I.; Worwąg, M. Biogas Production from Excess Sludge Oxidized with Peracetic Acid (PAA). Energies 2021, 14, 3434. [Google Scholar] [CrossRef]
- Tuncay, S.; Akcakaya, M.; Icgen, B. Ozonation of Sewage Sludge Prior to Anaerobic Digestion Led to Methanosaeta Dominated Biomethanation. Fuel 2022, 313, 122690. [Google Scholar] [CrossRef]
- Masłoń, A.; Czarnota, J.; Szaja, A.; Szulzyk-Cieplak, J.; Łagód, G. The Enhancement of Energy Efficiency in a Wastewater Treatment Plant through Sustainable Biogas Use: Case Study from Poland. Energies 2020, 13, 6056. [Google Scholar] [CrossRef]
- Hosseini Koupaie, E.; Lin, L.; Bazyar Lakeh, A.A.; Azizi, A.; Dhar, B.R.; Hafez, H.; Elbeshbishy, E. Performance Evaluation and Microbial Community Analysis of Mesophilic and Thermophilic Sludge Fermentation Processes Coupled with Thermal Hydrolysis. Renew. Sustain. Energy Rev. 2021, 141, 110832. [Google Scholar] [CrossRef]
- Zawieja, I.E. The Course of the Methane Fermentation Process of Dry Ice Modified Excess Sludge. Arch. Environ. Prot. 2019, 45, 50–58. [Google Scholar] [CrossRef]
- Khanh Nguyen, V.; Kumar Chaudhary, D.; Hari Dahal, R.; Hoang Trinh, N.; Kim, J.; Chang, S.W.; Hong, Y.; Duc La, D.; Nguyen, X.C.; Hao Ngo, H.; et al. Review on Pretreatment Techniques to Improve Anaerobic Digestion of Sewage Sludge. Fuel 2021, 285, 119105. [Google Scholar] [CrossRef]
- Yang, G.; Wang, J. Enhancing Biohydrogen Production from Disintegrated Sewage Sludge by Combined Sodium Citrate-Thermal Pretreatment. J. Clean. Prod. 2021, 312, 127756. [Google Scholar] [CrossRef]
- Atelge, M.R.; Atabani, A.E.; Banu, J.R.; Krisa, D.; Kaya, M.; Eskicioglu, C.; Kumar, G.; Lee, C.; Yildiz, Y.; Unalan, S.; et al. A Critical Review of Pretreatment Technologies to Enhance Anaerobic Digestion and Energy Recovery. Fuel 2020, 270, 117494. [Google Scholar] [CrossRef]
- Ampese, L.C.; Sganzerla, W.G.; Di Domenico Ziero, H.; Mudhoo, A.; Martins, G.; Forster-Carneiro, T. Research Progress, Trends, and Updates on Anaerobic Digestion Technology: A Bibliometric Analysis. J. Clean. Prod. 2022, 331, 130004. [Google Scholar] [CrossRef]
- Kasinath, A.; Fudala-Ksiazek, S.; Szopinska, M.; Bylinski, H.; Artichowicz, W.; Remiszewska-Skwarek, A.; Luczkiewicz, A. Biomass in Biogas Production: Pretreatment and Codigestion. Renew. Sustain. Energy Rev. 2021, 150, 111509. [Google Scholar] [CrossRef]
- Yin, Y.; Wang, J. Mechanisms of Enhanced Hydrogen Production from Sewage Sludge by Ferrous Ion: Insights into Functional Genes and Metabolic Pathways. Bioresour. Technol. 2021, 321, 124435. [Google Scholar] [CrossRef] [PubMed]
- Lippert, T.; Bandelin, J.; Xu, Y.; Liu, Y.C.; Robles, G.H.; Drewes, J.E.; Koch, K. From Pre-Treatment to Co-Treatment—How Successful Is Ultrasonication of Digested Sewage Sludge in Continuously Operated Anaerobic Digesters? Renew. Energy 2020, 166, 56–65. [Google Scholar] [CrossRef]
- Yildiz, S.; Oran, E. Sewage Sludge Disintegration by Electrocoagulation. Int. J. Environ. Health Res. 2018, 29, 531–543. [Google Scholar] [CrossRef]
- Zhen, G.; Lu, X.; Kato, H.; Zhao, Y.; Li, Y.Y. Overview of Pretreatment Strategies for Enhancing Sewage Sludge Disintegration and Subsequent Anaerobic Digestion: Current Advances, Full-Scale Application and Future Perspectives. Renew. Sustain. Energy Rev. 2017, 69, 559–577. [Google Scholar] [CrossRef]
- Le, T.M.; Vo, P.T.; Do, T.A.; Tran, L.T.; Truong, H.T.; Le, T.T.X.; Chen, Y.H.; Chang, C.C.; Chang, C.Y.; Tran, Q.T.; et al. Effect of Assisted Ultrasonication and Ozone Pretreatments on Sludge Characteristics and Yield of Biogas Production. Processes 2019, 7, 743. [Google Scholar] [CrossRef] [Green Version]
- Yousef, A.M.; El-Maghlany, W.M.; Eldrainy, Y.A.; Attia, A. Upgrading Biogas to Biomethane and Liquid CO2: A Novel Cryogenic Process. Fuel 2019, 251, 611–628. [Google Scholar] [CrossRef]
- Billig, E.; Decker, M.; Benzinger, W.; Ketelsen, F.; Pfeifer, P.; Peters, R.; Stolten, D.; Thrän, D. Non-Fossil CO2 Recycling—The Technical Potential for the Present and Future Utilization for Fuels in Germany. J. CO2 Util. 2019, 30, 130–141. [Google Scholar] [CrossRef]
- Paglini, R.; Gandiglio, M.; Lanzini, A. Technologies for Deep Biogas Purification and Use in Zero-Emission Fuel Cells Systems. Energies 2022, 15, 3551. [Google Scholar] [CrossRef]
- Machnicka, A.; Grübel, K.; Wacławek, S.; Sikora, K. Waste-Activated Sludge Disruption by Dry Ice: Bench Scale Study and Evaluation of Heat Phase Transformations. Environ. Sci. Pollut. Res. 2019, 26, 26488–26499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naqvi, S.R.; Tariq, R.; Shahbaz, M.; Naqvi, M.; Aslam, M.; Khan, Z.; Mackey, H.; Mckay, G.; Al-Ansari, T. Recent Developments on Sewage Sludge Pyrolysis and Its Kinetics: Resources Recovery, Thermogravimetric Platforms, and Innovative Prospects. Comput. Chem. Eng. 2021, 150, 107325. [Google Scholar] [CrossRef]
- Frąc, M.; Jezierska-Tys, S.; Oszust, K.; Gryta, A.; Pastor, M. Assessment of Microbiological and Biochemical Properties of Dairy Sewage Sludge. Int. J. Environ. Sci. Technol. 2017, 14, 679–688. [Google Scholar] [CrossRef] [Green Version]
- Syed-Hassan, S.S.A.; Wang, Y.; Hu, S.; Su, S.; Xiang, J. Thermochemical Processing of Sewage Sludge to Energy and Fuel: Fundamentals, Challenges and Considerations. Renew. Sustain. Energy Rev. 2017, 80, 888–913. [Google Scholar] [CrossRef]
- Conserva, S.; Tatti, F.; Torretta, V.; Ferronato, N.; Viotti, P. An Integrated Approach to the Biological Reactor–Sedimentation Tank System. Eng. Resour. 2019, 8, 94. [Google Scholar] [CrossRef] [Green Version]
- Carrera, J.; Carbó, O.; Doñate, S.; Suárez-Ojeda, M.E.; Pérez, J. Increasing the Energy Production in an Urban Wastewater Treatment Plant Using a High-Rate Activated Sludge: Pilot Plant Demonstration and Energy Balance. J. Clean. Prod. 2022, 354, 131734. [Google Scholar] [CrossRef]
- Czerwionka, K.; Wilinska, A.; Tuszynska, A. The Use of Organic Coagulants in the Primary Precipitation Process at Wastewater Treatment Plants. Water 2020, 12, 1650. [Google Scholar] [CrossRef]
- Capodaglio, A.G.; Olsson, G. Energy Issues in Sustainable Urban Wastewater Management: Use, Demand Reduction and Recovery in the Urban Water Cycle. Sustainability 2019, 12, 266. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Hou, T.; Zhang, Z.; Shimizu, K.; Lei, Z.; Lee, D.J. Anaerobic Co-Digestion of Hydrolysate from Anaerobically Digested Sludge with Raw Waste Activated Sludge: Feasibility Assessment of a New Sewage Sludge Management Strategy in the Context of a Local Wastewater Treatment Plant. Bioresour. Technol. 2020, 314, 123748. [Google Scholar] [CrossRef]
- Hurynovich, A.; Kwietniewski, M.; Romanovski, V. Evaluation of the Possibility of Utilization of Sewage Sludge from a Wastewater Treatment Plant-Case Study. Desalin. Water Treat. 2021, 227, 16–25. [Google Scholar] [CrossRef]
- Jin, L.Y.; Zhang, P.Y.; Zhang, G.M.; Li, J. Study of Sludge Moisture Distribution and Dewatering Characteristic after Cationic Polyacrylamide (C-PAM) Conditioning. Desalin. Water Treat. 2016, 57, 29377–29383. [Google Scholar] [CrossRef]
- Ding, A.; Zhang, R.; Ngo, H.H.; He, X.; Ma, J.; Nan, J.; Li, G. Life Cycle Assessment of Sewage Sludge Treatment and Disposal Based on Nutrient and Energy Recovery: A Review. Sci. Total Environ. 2021, 769, 144451. [Google Scholar] [CrossRef]
- Kwarciak-Kozłowska, A. Co-Composting of Sewage Sludge and Wetland Plant Material from a Constructed Wetland Treating Domestic Wastewater. In Industrial and Municipal Sludge: Emerging Concerns and Scope for Resource Recovery; Butterworth-Heinemann: Oxford, UK, 2019; pp. 337–360. [Google Scholar] [CrossRef]
- Romanos, D.M.; Nemer, N.; Khairallah, Y.; Abi Saab, M.T. Application of Sewage Sludge for Cereal Production in a Mediterranean Environment (Lebanon). Int. J. Recycl. Org. Waste Agric. 2021, 10, 233–244. [Google Scholar] [CrossRef]
- Nascimento, A.L.; de Souza, A.J.; Oliveira, F.C.; Coscione, A.R.; Viana, D.G.; Regitano, J.B. Chemical Attributes of Sewage Sludges: Relationships to Sources and Treatments, and Implications for Sludge Usage in Agriculture. J. Clean. Prod. 2020, 258, 120746. [Google Scholar] [CrossRef]
- Dhanker, R.; Chaudhary, S.; Goyal, S.; Garg, V.K. Influence of Urban Sewage Sludge Amendment on Agricultural Soil Parameters. Environ. Technol. Innov. 2021, 23, 101642. [Google Scholar] [CrossRef]
- Tyagi, V.K.; Lo, S.L. Sludge: A Waste or Renewable Source for Energy and Resources Recovery? Renew. Sustain. Energy Rev. 2013, 25, 708–728. [Google Scholar] [CrossRef]
- Bora, A.P.; Gupta, D.P.; Durbha, K.S. Sewage Sludge to Bio-Fuel: A Review on the Sustainable Approach of Transforming Sewage Waste to Alternative Fuel. Fuel 2020, 259, 116262. [Google Scholar] [CrossRef]
- Zhang, X.; Yan, S.; Tyagi, R.D.; Surampalli, R.Y.; Valéro, J.R. Wastewater Sludge as Raw Material for Microbial Oils Production. Appl. Energy 2014, 135, 192–201. [Google Scholar] [CrossRef]
- Pathak, A.; Dastidar, M.G.; Sreekrishnan, T.R. Bioleaching of Heavy Metals from Sewage Sludge: A Review. J. Environ. Manag. 2009, 90, 2343–2353. [Google Scholar] [CrossRef]
- Kan, T.; Strezov, V.; Evans, T. Effect of the Heating Rate on the Thermochemical Behavior and Biofuel Properties of Sewage Sludge Pyrolysis. Energy Fuels 2016, 30, 1564–1570. [Google Scholar] [CrossRef]
- Thipkhunthod, P.; Meeyoo, V.; Rangsunvigit, P.; Kitiyanan, B.; Siemanond, K.; Rirksomboon, T. Predicting the Heating Value of Sewage Sludges in Thailand from Proximate and Ultimate Analyses. Fuel 2005, 84, 849–857. [Google Scholar] [CrossRef]
- Gerasimov, G.; Khaskhachikh, V.; Potapov, O.; Dvoskin, G.; Kornileva, V.; Dudkina, L. Pyrolysis of Sewage Sludge by Solid Heat Carrier. Waste Manag. 2019, 87, 218–227. [Google Scholar] [CrossRef]
- Wu, J.; Liao, Y.; Lin, Y.; Tian, Y.; Ma, X. Study on Thermal Decomposition Kinetics Model of Sewage Sludge and Wheat Based on Multi Distributed Activation Energy. Energy 2019, 185, 795–803. [Google Scholar] [CrossRef]
- Zhang, Y.-F.; Zhang, S.-Y.; Mao, Q.; Li, H.; Wang, C.-W.; Jiang, F.-H.; Lyu, J.-F. Volatility and Partitioning of Cd and Pb during Sewage Sludge Thermal Conversion. Waste Manag. 2018, 75, 333–339. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Q.; Hu, H.; Liu, P.; Hu, X.; Li, A.; Yao, H. Catalytic Role of Conditioner CaO in Nitrogen Transformation during Sewage Sludge Pyrolysis. Proc. Combust. Inst. 2015, 35, 2759–2766. [Google Scholar] [CrossRef]
- Xu, Q.; Tang, S.; Wang, J.; Ko, J.H. Pyrolysis Kinetics of Sewage Sludge and Its Biochar Characteristics. Process Saf. Environ. Prot. 2018, 115, 49–56. [Google Scholar] [CrossRef]
- Delibacak, S.; Voronina, L.; Morachevskaya, E.; Ongun, A.R. Use of Sewage Sludge in Agricultural Soils: Useful or Harmful. Eurasian J. Soil Sci. 2020, 9, 126–139. [Google Scholar] [CrossRef] [Green Version]
- Kumbhakar, S.K.; Chauhan, R.; Jadhav, S.K.; Quraishi, A. Lead Induced-Toxicity in Vegetables, Its Mitigation Strategies, and Potential Health Risk Assessment: A Review. Int. J. Environ. Sci. Technol. 2022, 1–26. [Google Scholar] [CrossRef]
- Yang, W.; Song, W.; Li, J.; Zhang, X. Bioleaching of Heavy Metals from Wastewater Sludge with the Aim of Land Application. Chemosphere 2020, 249, 126134. [Google Scholar] [CrossRef]
- Machnicka, A.; Grübel, K. The Effect of Pre-Treatment and Anaerobic Digestion for Pathogens Reduction in Agricultural Utilization of Sewage Sludge. Environ. Sci. Pollut. Res. Int. 2022, 2022, 252464827. [Google Scholar] [CrossRef]
- Fijalkowski, K.; Rorat, A.; Grobelak, A.; Kacprzak, M.J. The Presence of Contaminations in Sewage Sludge—The Current Situation. J. Environ. Manag. 2017, 203, 1126–1136. [Google Scholar] [CrossRef]
- Corrêa Martins, M.N.; de Souza, V.V.; da Silva Souza, T. Genotoxic and Mutagenic Effects of Sewage Sludge on Higher Plants. Ecotoxicol. Environ. Saf. 2016, 124, 489–496. [Google Scholar] [CrossRef]
- Kończak, M.; Oleszczuk, P. Application of Biochar to Sewage Sludge Reduces Toxicity and Improve Organisms Growth in Sewage Sludge-Amended Soil in Long Term Field Experiment. Sci. Total Environ. 2018, 625, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Mulchandani, A.; Westerhoff, P. Recovery Opportunities for Metals and Energy from Sewage Sludges. Bioresour. Technol. 2016, 215, 215–226. [Google Scholar] [CrossRef] [Green Version]
- Straub, T.M.; Pepper, I.L.; Gerba, C.P. Hazards from Pathogenic Microorganisms in Land-Disposed Sewage Sludge. Rev. Environ. Contam. Toxicol. 1993, 132, 55–91. [Google Scholar] [CrossRef]
- Ward, R.L.; McFeters, G.A.; Yeager, J.G. Pathogens in Sludge: Occurrence, Inactivation, and Potential for Regrowth (Technical Report) | OSTI.GOV. Available online: https://www.osti.gov/biblio/6598411 (accessed on 26 June 2022).
- Coppola, S.; Manfredi, C. Risanamento Igienico Dei Fanghi Risultanti Dalla Depurazione Delle Acque Reflue. Nuovi Ann. Ig. Microbiol. 1983, 34, 223–239. [Google Scholar] [PubMed]
- Dumontet, S.; Scopa, A.; Kerje, S.; Krovacek, K. The Importance of Pathogenic Organisms in Sewage and Sewage Sludge. J. Air Waste Manag. Assoc. 2011, 51, 848–860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Bertoldi, M.; Coppola, S.; Spinosa, L. Health Implications in Sew-Age Sludge Composting. In Disinfection of Sewage Sludge: Technical, Economic and Microbiological Aspects; Bruce, A.M., Havelaar, A.H., L’Hermite, P., Eds.; Commission of the European Communities: Dordrecht, Germany, 1983; pp. 165–178. [Google Scholar]
- Amoah, I.D.; Singh, G.; Stenström, T.A.; Reddy, P. Detection and Quantification of Soil-Transmitted Helminths in Environmental Samples: A Review of Current State-of-the-Art and Future Perspectives. Acta Trop. 2017, 169, 187–201. [Google Scholar] [CrossRef] [PubMed]
- Srinivasiah, S.; Bhavsar, J.; Thapar, K.; Liles, M.; Schoenfeld, T.; Wommack, K.E. Phages across the Biosphere: Contrasts of Viruses in Soil and Aquatic Environments. Res. Microbiol. 2008, 159, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Williamson, K.E.; Radosevich, M.; Wommack, K.E. Abundance and Diversity of Viruses in Six Delaware Soils. Appl. Environ. Microbiol. 2005, 71, 3119–3125. [Google Scholar] [CrossRef] [Green Version]
- Khalil, A.I.; Hassouna, M.S.; El-Ashqar, H.M.A.; Fawzi, M. Changes in Physical, Chemical and Microbial Parameters during the Composting of Municipal Sewage Sludge. World J. Microbiol. Biotechnol. 2011, 27, 2359–2369. [Google Scholar] [CrossRef]
- Koyuncu, S. Occurrence of Organic Micropollutants and Heavy Metals in the Soil after the Application of Stabilized Sewage Sludge. J. Environ. Health Sci. Eng. 2022, 20, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Moško, J.; Pohořelý, M.; Cajthaml, T.; Jeremiáš, M.; Robles-Aguilar, A.A.; Skoblia, S.; Beňo, Z.; Innemanová, P.; Linhartová, L.; Michalíková, K.; et al. Effect of Pyrolysis Temperature on Removal of Organic Pollutants Present in Anaerobically Stabilized Sewage Sludge. Chemosphere 2021, 265, 129082. [Google Scholar] [CrossRef] [PubMed]
- Abril, C.; Santos, J.L.; Martín, J.; Aparicio, I.; Alonso, E. Occurrence, Fate and Environmental Risk of Anionic Surfactants, Bisphenol A, Perfluorinated Compounds and Personal Care Products in Sludge Stabilization Treatments. Sci. Total Environ. 2020, 711, 135048. [Google Scholar] [CrossRef] [PubMed]
- Phan, H.V.; Wickham, R.; Xie, S.; McDonald, J.A.; Khan, S.J.; Ngo, H.H.; Guo, W.; Nghiem, L.D. The Fate of Trace Organic Contaminants during Anaerobic Digestion of Primary Sludge: A Pilot Scale Study. Bioresour. Technol. 2018, 256, 384–390. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Gil, L.; Papa, M.; Feretti, D.; Ceretti, E.; Mazzoleni, G.; Steimberg, N.; Pedrazzani, R.; Bertanza, G.; Lema, J.M.; Carballa, M. Is Anaerobic Digestion Effective for the Removal of Organic Micropollutants and Biological Activities from Sewage Sludge? Water Res. 2016, 102, 211–220. [Google Scholar] [CrossRef]
- Li, Y.; Bräunig, J.; Angelica, G.C.; Thai, P.K.; Mueller, J.F.; Yuan, Z. Formation and Partitioning Behaviour of Perfluoroalkyl Acids (PFAAs) in Waste Activated Sludge during Anaerobic Digestion. Water Res. 2021, 189, 116583. [Google Scholar] [CrossRef]
- Braguglia, C.M.; Coors, A.; Gallipoli, A.; Gianico, A.; Guillon, E.; Kunkel, U.; Mascolo, G.; Richter, E.; Ternes, T.A.; Tomei, M.C.; et al. Quality Assessment of Digested Sludges Produced by Advanced Stabilization Processes. Environ. Sci. Pollut. Res. 2015, 22, 7216–7235. [Google Scholar] [CrossRef]
- Boruszko, D. Research on the Influence of Anaerobic Stabilization of Various Dairy Sewage Sludge on Biodegradation of Polycyclic Aromatic Hydrocarbons PAHs with the Use of Effective Microorganisms. Environ. Res. 2017, 155, 344–352. [Google Scholar] [CrossRef]
- Kinney, C.A.; Furlong, E.T.; Kolpin, D.W.; Burkhardt, M.R.; Zaugg, S.D.; Werner, S.L.; Bossio, J.P.; Benotti, M.J. Bioaccumulation of Pharmaceuticals and Other Anthropogenic Waste Indicators in Earthworms from Agricultural Soil Amended with Biosolid or Swine Manure. Environ. Sci. Technol. 2008, 42, 1863–1870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verlicchi, P.; Zambello, E. Pharmaceuticals and Personal Care Products in Untreated and Treated Sewage Sludge: Occurrence and Environmental Risk in the Case of Application on Soil—A Critical Review. Sci. Total Environ. 2015, 538, 750–767. [Google Scholar] [CrossRef] [PubMed]
- Zacs, D.; Bartkevics, V. Trace Determination of Perfluorooctane Sulfonate and Perfluorooctanoic Acid in Environmental Samples (Surface Water, Wastewater, Biota, Sediments, and Sewage Sludge) Using Liquid Chromatography—Orbitrap Mass Spectrometry. J. Chromatogr. A 2016, 1473, 109–121. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Hu, J.; Tanaka, S.; Fujii, S. Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoic Acid (PFOA) in Sewage Treatment Plants. Water Res. 2009, 43, 2399–2408. [Google Scholar] [CrossRef]
- Marazza, D.; Macrelli, S.; D’Angeli, M.; Righi, S.; Hornung, A.; Contin, A. Greenhouse Gas Savings and Energy Balance of Sewage Sludge Treated through an Enhanced Intermediate Pyrolysis Screw Reactor Combined with a Reforming Process. Waste Manag. 2019, 91, 42–53. [Google Scholar] [CrossRef]
- Markowski, M.; Białobrzewski, I.; Zieliński, M.; Dębowski, M.; Krzemieniewski, M. Optimizing Low-Temperature Biogas Production from Biomass by Anaerobic Digestion. Renew. Energy 2014, 69, 219–225. [Google Scholar] [CrossRef]
- Ostojski, A.; Swinarski, M. Importance of Energy Potential of Sewage Sludge in Terms of Closed Circuit Management—The “Wschód” WWTP Case Study. Annu. Set Environ. Prot. 2018, 20, 1252–1268. [Google Scholar]
- Liu, X.; Chang, F.; Wang, C.; Jin, Z.; Wu, J.; Zuo, J.; Wang, K. Pyrolysis and Subsequent Direct Combustion of Pyrolytic Gases for Sewage Sludge Treatment in China. Appl. Therm. Eng. 2018, 128, 464–470. [Google Scholar] [CrossRef]
- Chen, J.; He, Y.; Liu, J.; Liu, C.; Xie, W.; Kuo, J.; Zhang, X.; Li, S.; Liang, J.; Sun, S.; et al. The Mixture of Sewage Sludge and Biomass Waste as Solid Biofuels: Process Characteristic and Environmental Implication. Renew. Energy 2019, 139, 707–717. [Google Scholar] [CrossRef]
- Wnukowski, M.; Kordylewski, W.; Łuszkiewicz, D.; Leśniewicz, A.; Ociepa, M.; Michalski, J. Sewage Sludge-Derived Producer Gas Valorization with the Use of Atmospheric Microwave Plasma. Waste Biomass Valorization 2020, 11, 4289–4303. [Google Scholar] [CrossRef] [Green Version]
- Agabo-García, C.; Pérez, M.; Rodríguez-Morgado, B.; Parrado, J.; Solera, R. Biomethane Production Improvement by Enzymatic Pre-Treatments and Enhancers of Sewage Sludge Anaerobic Digestion. Fuel 2019, 255, 115713. [Google Scholar] [CrossRef]
- El-Qelish, M.; Chatterjee, P.; Dessì, P.; Kokko, M.; El-Gohary, F.; Abo-Aly, M.; Rintala, J. Bio-Hydrogen Production from Sewage Sludge: Screening for Pretreatments and Semi-Continuous Reactor Operation. Waste Biomass Valorization 2020, 11, 4225–4234. [Google Scholar] [CrossRef]
- Barber, C.R. The Sublimation Temperature of Carbon Dioxide. Br. J. Appl. Phys. 1966, 17, 391. [Google Scholar] [CrossRef]
- Jamil, M.; Iqbal, A.; He, N.; Cheok, Q. Thermophysical Properties and Heat Transfer Performance of Novel Dry-Ice-Based Sustainable Hybrid Lubri-Coolant. Sustainability 2022, 14, 2430. [Google Scholar] [CrossRef]
- Jean, D.S.; Lee, D.J.; Chang, C.Y. Direct Sludge Freezing Using Dry Ice. Adv. Environ. Res. 2001, 5, 145–150. [Google Scholar] [CrossRef]
- Baluch, N.; Mohtar, S.; Abdullah, C.S. Dry-Ice Blasting of Auto Robotic Assemblies. Int. J. Supply Chain Manag. 2016, 5, 97–103. [Google Scholar]
- Vansant, J.; Koziel, P.-W. Technical and Industrial Applications of CO2. In An Economy Based on Carbon Dioxide and Water; Aresta, M., Karimi, I., Kawi, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 73–103. [Google Scholar] [CrossRef]
- Kosasih, L.; Bhandari, B.; Prakash, S.; Bansal, N.; Gaiani, C. Physical and Functional Properties of Whole Milk Powders Prepared from Concentrate Partially Acidified with CO2 at Two Temperatures. Int. Dairy J. 2016, 56, 4–12. [Google Scholar] [CrossRef] [Green Version]
- Verma, N.; Khanna, S.; Kapila, B. Comprehensive Chemistry XI.; Laxmi Publications: New Delhi, India, 2010. [Google Scholar]
- Spennemann, D.H.R. Promoting and Marketing a Revolutionary Cooking Appliance in the 1840s Stanislas Sorel’s Portable Stove “Le Cordon Bleu” (1834–1849). J. Hist. Res. Mark. 2018, 10, 37–59. [Google Scholar] [CrossRef]
- Argo, M. The Assessment of Experimental Methods of Serial Number Restoration. University of Central Oklahoma. Available online: https://www.proquest.com/openview/5b95b1757c1c1a1f24247f43f699c696/1?pq-origsite=gscholar&cbl=18750 (accessed on 12 June 2022).
- Murphy, M.; McSweeney, T. Technical Assessment of Dry Ice Limits on Aircraft. Business 2013, 2013, 108118613. [Google Scholar]
- De Blasio, F.V. Atmosphere, Climate and Life on Mars. In Mysteries of Mars; Praxis: Cham, Switzerland, 2018; pp. 163–189. [Google Scholar] [CrossRef]
- Vandaele, A.C.; Mahieux, A.; Robert, S.; Drummond, R.; Wilquet, V.; Bertaux, J.L. Carbon Monoxide Short Term Variability Observed on Venus with SOIR/VEX. Planet. Space Sci. 2015, 113–114, 237–255. [Google Scholar] [CrossRef]
- Leigh, F. Onwards to the Ice Giants. Astron. Geophys. 2020, 61, 5.22–5.27. [Google Scholar] [CrossRef]
- Wilk, A.; Więcław-Solny, L.; Tatarczuk, A.; Krótki, A.; Spietz, T.; Chwoła, T. Solvent Selection for CO2 Capture from Gases with High Carbon Dioxide Concentration. Korean J. Chem. Eng. 2017, 348, 2275–2283. [Google Scholar] [CrossRef]
- Máša, V.; Horňák, D.; Petrilák, D. Industrial Use of Dry Ice Blasting in Surface Cleaning. J. Clean. Prod. 2021, 329, 129630. [Google Scholar] [CrossRef]
- Kohli, R. Applications of Solid Carbon Dioxide (Dry Ice) Pellet Blasting for Removal of Surface Contaminants. Dev. Surf. Contam. Clean. Appl. Clean. Tech. 2019, 11, 117–169. [Google Scholar] [CrossRef]
- Ismalaj, T.; Sackett, D.L. An Inexpensive Replacement for Dry Ice in the Laboratory. Anal. Biochem. 2015, 474, 38–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polar. The Polar ® Insulated Container System Dry Ice Experience The “POLAR” Difference. Available online: www.bonarplastics.com (accessed on 12 June 2022).
- Cold Jet Dry Ice Production and Pelletizers. Available online: https://www.dryiceproduction.com/en/dry-ice.php (accessed on 7 August 2022).
- Vansant, J.; Rogiers, C. CO2 Cleaning and PH Control in the Food Industry. In Gases in Agro-Food Processes; Academic Press: Cambridge, MA, USA, 2019; pp. 571–581. [Google Scholar] [CrossRef]
- Kazimierowicz, J.; Bartkowska, I.; Walery, M. Effect of Low-Temperature Conditioning of Excess Dairy Sewage Sludge with the Use of Solidified Carbon Dioxide on the Efficiency of Methane Fermentation. Energies 2020, 14, 150. [Google Scholar] [CrossRef]
- Benvenuto, M.A. Industrial Chemistry; De Gruyter: Amsterdam, The Netherlands, 2013. [Google Scholar] [CrossRef]
- Riad Mossad, R. Supermarkets: Refrigerated Food Cabinets. In Encyclopedia of Energy Engineering and Technology, 2nd ed.; Tayor and Francis: London, UK, 2014; pp. 1811–1817. [Google Scholar] [CrossRef]
- Fahrni, M.L.; Ismail, I.A.N.; Refi, D.M.; Almeman, A.; Yaakob, N.C.; Saman, K.M.; Mansor, N.F.; Noordin, N.; Babar, Z.U.D. Management of COVID-19 Vaccines Cold Chain Logistics: A Scoping Review. J. Pharm. Policy Pract. 2022, 15, 16. [Google Scholar] [CrossRef]
- Zhao, Y.; Ning, J.; Sun, Z. Establishment and Experimental Verification of Temperature Prediction Model for Quick-Frozen Strawberry Jetted with Dry Ice. J. Food Process Eng. 2022, 2022, e14098. [Google Scholar] [CrossRef]
- Dannhorn, A.; Kazanc, E.; Ling, S.; Nikula, C.; Karali, E.; Serra, M.P.; Vorng, J.L.; Inglese, P.; Maglennon, G.; Hamm, G.; et al. Universal Sample Preparation Unlocking Multimodal Molecular Tissue Imaging. Anal. Chem. 2020, 92, 11080–11088. [Google Scholar] [CrossRef]
- Aresta, M.; Dibenedetto, A. Use of CO as Technical Fluid (Technological Uses of CO). Carbon Dioxide Revolut. 2021, 2021, 123–138. [Google Scholar] [CrossRef]
- Adhikari, B.M.; Truong, T.; Prakash, S.; Bansal, N.; Bhandari, B. Impact of Incorporation of CO2 on the Melting, Texture and Sensory Attributes of Soft-Serve Ice Cream. Int. Dairy J. 2020, 109, 104789. [Google Scholar] [CrossRef]
- Øksenvåg, J.H.C.; Fossen, M.; Farooq, U. Study on How Oil Type and Weathering of Crude Oils Affect Interaction with Sea Ice and Polyethylene Skimmer Material. Mar. Pollut. Bull. 2019, 145, 306–315. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, C.J.; Nicewicz, D.A. Milled Dry Ice as a C1 Source for the Carboxylation of Aryl Halides. Synlett 2021, 32, 814–816. [Google Scholar] [CrossRef] [PubMed]
- Maier, D.; Dirk, E. Advances in Insect Pest Management in Postharvest Storage of Cereals: Use of Controlled Atmosphere and Temperature Control; Taylor and Francis: London, UK, 2020; pp. 231–266. [Google Scholar] [CrossRef]
- Grosshagauer, S.; Steinschaden, R.; Pignitter, M. Strategies to Increase the Oxidative Stability of Cold Pressed Oils. LWT 2019, 106, 72–77. [Google Scholar] [CrossRef]
- Sanders, T. An Introduction to Technical Theatre; Pacific University Libraries: Forest Grove, OR, USA, 2018. [Google Scholar]
- Yugay, A.; Albadi, M.M.; Agarwal, A.; Nadder, M.A.; Gadelhak, A.M.; Masoner, M. Ice Plug as a Well Barrier: The Story of Success. In Proceedings of the Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, United Arab Emirates, 12–15 November 2018. [Google Scholar] [CrossRef]
- Crawley, S.E.; Borden, J.H. Detection and Monitoring of Bed Bugs (Hemiptera: Cimicidae): Review of the Underlying Science, Existing Products and Future Prospects. Pest Manag. Sci. 2021, 77, 5334–5346. [Google Scholar] [CrossRef]
- Hinkle, N.C.; Corrigan, R.M. External Parasites and Poultry Pests. In Diseases of Poultry, 14th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2019; pp. 1135–1156. [Google Scholar] [CrossRef]
- Santoso, M.A.; Cui, W.; Amin, H.M.F.; Christensen, E.G.; Nugroho, Y.S.; Rein, G.; Santoso, M.A.; Cui, W.; Amin, H.M.F.; Christensen, E.G.; et al. Laboratory Study on the Suppression of Smouldering Peat Wildfires: Effects of Flow Rate and Wetting Agent. Int. J. Wildl. Fire 2021, 30, 378–390. [Google Scholar] [CrossRef]
- O’Hern, R.; Pearlstein, E. Label Removal from Deteriorated Leather-Bound Books. J. Inst. Conserv. 2013, 36, 109–124. [Google Scholar] [CrossRef]
- Burt, V. Adhesive Bonding. Alum. Sci. Technol. 2018, 2018, 783–789. [Google Scholar] [CrossRef]
- Mat, M.N.H.; Asmuin, N.Z.; Md Basir, M.F.; Safaei, M.R.; Mohd Kasihmuddin, M.S.; Ahmad Khairuddin, T.K.; Godarzi, M. Optimizing Nozzle Convergent Angle Using Central Composite Design on the Particle Velocity and Acoustic Power Level for Single-Hose Dry Ice Blasting Nozzle. J. Therm. Anal. Calorim. 2021, 144, 2159–2173. [Google Scholar] [CrossRef]
- Onofre, A.; Godina, R.; Carvalho, H.; Catarino, I. Eco-Innovation in the Cleaning Process: An Application of Dry Ice Blasting in Automotive Painting Industry. J. Clean. Prod. 2020, 272, 122987. [Google Scholar] [CrossRef]
- Rice, M.; Baird, C.; Stikeleather, L.; Morrow, W.; Morgan, E.; Meyer, R.; Acvaa, D. Production Tool Carbon Dioxide System for On-Farm Euthanasia of Pigs in Small Groups. J. Swine Health Prod. 2014, 22, 248–254. [Google Scholar]
- Simione, F.; Sharp, T. Best Practices for Storing and Shipping Cryopreserved Cells. Vitr. Cell. Dev. Biol. Anim. 2017, 53, 888–895. [Google Scholar] [CrossRef]
- EIGA. Guidelines for Safe and Hygienic Handling of Dry Ice; EIGA: Brussels, Belgium, 2018. [Google Scholar]
- European Parliament. EUR-Lex—02008R1272-20220301—EN—EUR-Lex. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02008R1272-20220301 (accessed on 12 June 2022).
- World Health Organization. Guidance on Regulations for the Transport of Infectious Substances 2019–2020; WHO: Geneva, Switzerland, 2019. [Google Scholar]
- Federal Aviation Administration. Pack Safe—Dry Ice. Available online: https://www.faa.gov/hazmat/packsafe/more_info/?hazmat=11 (accessed on 12 June 2022).
- Rehman, A.; Ma, H.; Ozturk, I.; Ulucak, R. Sustainable Development and Pollution: The Effects of CO2 Emission on Population Growth, Food Production, Economic Development, and Energy Consumption in Pakistan. Environ. Sci. Pollut. Res. 2022, 29, 17319–17330. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Guo, X.; Xiao, B. What Causes Growth of Global Greenhouse Gas Emissions? Evidence from 40 Countries. Sci. Total Environ. 2019, 661, 750–766. [Google Scholar] [CrossRef] [PubMed]
- Nunes, L.J.R.; Dias, M.F. Perception of Climate Change Effects over Time and the Contribution of Different Areas of Knowledge to Its Understanding and Mitigation. Environ. Sci. Clim. 2022, 10, 7. [Google Scholar] [CrossRef]
- Rayer, Q.; Jenkins, S.; Walton, P. Defining Net-Zero and Climate Recommendations for Carbon Offsetting. In Business and Policy Solutions to Climate Change; Springer: Berlin/Heidelberg, Germany, 2022; pp. 13–35. [Google Scholar] [CrossRef]
- Bouzarovski, S.; Thomson, H.; Cornelis, M. Confronting Energy Poverty in Europe: A Research and Policy Agenda. Energies 2021, 14, 858. [Google Scholar] [CrossRef]
- Hassan, T.N.A.T.; Shariff, A.M.; Pauzi, M.M.M.; Khidzir, M.S.; Surmi, A. Insights on Cryogenic Distillation Technology for Simultaneous CO2 and H2S Removal for Sour Gas Fields. Molecules 2022, 27, 1424. [Google Scholar] [CrossRef] [PubMed]
- Font-Palma, C.; Cann, D.; Udemu, C.; García, O. Review of Cryogenic Carbon Capture Innovations and Their Potential Applications. Environ. Sci. C 2021, 7, 58. [Google Scholar] [CrossRef]
- Kotowicz, J.; Janusz, K. Ways to Reduce CO2 Emissions from Energy Processes. Energy Mark. 2007, 1, 10–18. [Google Scholar]
- Wijayanta, A.T.; Oda, T.; Purnomo, C.W.; Kashiwagi, T.; Aziz, M. Liquid Hydrogen, Methylcyclohexane, and Ammonia as Potential Hydrogen Storage: Comparison Review. Int. J. Hydrogen Energy 2019, 44, 15026–15044. [Google Scholar] [CrossRef]
- Song, C.; Liu, Q.; Deng, S.; Li, H.; Kitamura, Y. Cryogenic-Based CO2 Capture Technologies: State-of-the-Art Developments and Current Challenges. Renew. Sustain. Energy Rev. 2019, 101, 265–278. [Google Scholar] [CrossRef]
- Zhang, Z.; Pan, S.Y.; Li, H.; Cai, J.; Olabi, A.G.; Anthony, E.J.; Manovic, V. Recent Advances in Carbon Dioxide Utilization. Renew. Sustain. Energy Rev. 2020, 125, 109799. [Google Scholar] [CrossRef]
- Shah, G.; Ahmad, E.; Pant, K.K.; Vijay, V.K. Comprehending the Contemporary State of Art in Biogas Enrichment and CO2 Capture Technologies via Swing Adsorption. Int. J. Hydrogen Energy 2021, 46, 6588–6612. [Google Scholar] [CrossRef]
- Nguyen, L.N.; Kumar, J.; Vu, M.T.; Mohammed, J.A.H.; Pathak, N.; Commault, A.S.; Sutherland, D.; Zdarta, J.; Tyagi, V.K.; Nghiem, L.D. Biomethane Production from Anaerobic Co-Digestion at Wastewater Treatment Plants: A Critical Review on Development and Innovations in Biogas Upgrading Techniques. Sci. Total Environ. 2021, 765, 142753. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.U.; Lee, J.T.E.; Bashir, M.A.; Dissanayake, P.D.; Ok, Y.S.; Tong, Y.W.; Shariati, M.A.; Wu, S.; Ahring, B.K. Current Status of Biogas Upgrading for Direct Biomethane Use: A Review. Renew. Sustain. Energy Rev. 2021, 149, 111343. [Google Scholar] [CrossRef]
- Nachtmann, K. Efficient Storage and Mobile Use of Biogas as Liquid Biomethane; Effiziente Speicherung Und Mobile Nutzung von Biogas Als Flüssiges Biomethan. Landtechnik 2017, 72, 179–201. [Google Scholar] [CrossRef]
- Kolbinger, Q. Betrachtung Des Marktpotenzials Eines Verfahrens Zur Kryogenen Aufbereitung von Biogas. Master’s Thesis, 2016. [Google Scholar]
- Thiruselvi, D.; Kumar, P.S.; Kumar, M.A.; Lay, C.H.; Aathika, S.; Mani, Y.; Jagadiswary, D.; Dhanasekaran, A.; Shanmugam, P.; Sivanesan, S.; et al. A Critical Review on Global Trends in Biogas Scenario with Its Up-Gradation Techniques for Fuel Cell and Future Perspectives. Int. J. Hydrogen Energy 2021, 46, 16734–16750. [Google Scholar] [CrossRef]
- Chandra, R.; Isha, A.; Kumar, S.; Khan, S.A.; Subbarao, P.M.V.; Vijay, V.K.; Chandel, A.K.; Chaudhary, V.P. Potentials and Challenges of Biogas Upgradation as Liquid Biomethane. In Biogas Production; Springer: Cham, Switzerland, 2020; pp. 307–328. [Google Scholar] [CrossRef]
- Kapoor, R.; Ghosh, P.; Kumar, M.; Vijay, V.K. Evaluation of Biogas Upgrading Technologies and Future Perspectives: A Review. Environ. Sci. Pollut. Res. 2019, 26, 11631–11661. [Google Scholar] [CrossRef]
- Hönig, V.; Prochazka, P.; Obergruber, M.; Smutka, L.; Kucerová, V. Economic and Technological Analysis of Commercial LNG Production in the EU. Energies 2019, 12, 1565. [Google Scholar] [CrossRef] [Green Version]
- Marchi, M.; Neri, E.; Pulselli, F.M.; Bastianoni, S. CO2 Recovery from Wine Production: Possible Implications on the Carbon Balance at Territorial Level. J. CO2 Util. 2018, 28, 137–144. [Google Scholar] [CrossRef]
- Spatolisano, E.; de Angelis, A.R.; Pellegrini, L.A. Middle Scale Hydrogen Sulphide Conversion and Valorisation Technologies: A Review. ChemBioEng Rev. 2022, 9, 370–392. [Google Scholar] [CrossRef]
- Wu, B.; Dai, X.; Chai, X. Critical Review on Dewatering of Sewage Sludge: Influential Mechanism, Conditioning Technologies and Implications to Sludge Re-Utilizations. Water Res. 2020, 180, 115912. [Google Scholar] [CrossRef] [PubMed]
- Cao, B.; Zhang, T.; Zhang, W.; Wang, D. Enhanced Technology Based for Sewage Sludge Deep Dewatering: A Critical Review. Water Res. 2021, 189, 116650. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Xu, Q.; Du, Z.; Zhang, W.; Wang, D.; Peng, Y. Mechanistic Insights into the Effects of Biopolymer Conversion on Macroscopic Physical Properties of Waste Activated Sludge during Hydrothermal Treatment: Importance of the Maillard Reaction. Sci. Total Environ. 2021, 769, 144798. [Google Scholar] [CrossRef]
- Nie, E.; He, P.; Zhang, H.; Hao, L.; Shao, L.; Lü, F. How Does Temperature Regulate Anaerobic Digestion? Renew. Sustain. Energy Rev. 2021, 150, 111453. [Google Scholar] [CrossRef]
- Xin, X.; Pang, H.; She, Y.; Hong, J. Insights into Redox Mediators-Resource Harvest/Application with Power Production from Waste Activated Sludge through Freezing/Thawing-Assisted Anaerobic Acidogenesis Coupling Microbial Fuel Cells. Bioresour. Technol. 2020, 311, 123469. [Google Scholar] [CrossRef]
- Corbo, M.R. Evaluation of the Effects of Alternative Physical Approach on the Metabolism and Functional Traits of Useful Microorganisms. Ph.D. Thesis, University of Foggia, Foggia, Italy, 2018. [Google Scholar] [CrossRef]
- Zainuddin, M.F.; Fai, C.K.; Ariff, A.B.; Rios-Solis, L.; Halim, M. Current Pretreatment/Cell Disruption and Extraction Methods Used to Improve Intracellular Lipid Recovery from Oleaginous Yeasts. Microorganisms 2021, 9, 251. [Google Scholar] [CrossRef]
- Grübel, K.; Wacławek, S.; Machnicka, A.; Nowicka, E. Synergetic Disintegration of Waste Activated Sludge: Improvement of the Anaerobic Digestion and Hygienization of Sludge. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 2018, 53, 1067–1074. [Google Scholar] [CrossRef]
- Zawieja, I. Effect of Dry Ice Modification of Excess Sludge on the Methane Fermentation Process. Annu. Set Environ. Prot. 2018, 20, 558–573. [Google Scholar]
- Mehrotra, T.; Dev, S.; Banerjee, A.; Chatterjee, A.; Singh, R.; Aggarwal, S. Use of Immobilized Bacteria for Environmental Bioremediation: A Review. J. Environ. Chem. Eng. 2021, 9, 105920. [Google Scholar] [CrossRef]
- Hu, K.; Jiang, J.Q.; Zhao, Q.L.; Lee, D.J.; Wang, K.; Qiu, W. Conditioning of Wastewater Sludge Using Freezing and Thawing: Role of Curing. Water Res. 2011, 45, 5969–5976. [Google Scholar] [CrossRef] [PubMed]
- Pellegrini, L.A.; De Guido, G.; Langé, S. Biogas to Liquefied Biomethane via Cryogenic Upgrading Technologies. Renew. Energy 2018, 124, 75–83. [Google Scholar] [CrossRef]
- Rao, B.; Wang, G.; Xu, P. Recent Advances in Sludge Dewatering and Drying Technology. Engineering 2022, 40, 3049–3063. [Google Scholar] [CrossRef]
- MacDonald, B.A.; Oakes, K.D.; Adams, M. Molecular Disruption through Acid Injection into Waste Activated Sludge—A Feasibility Study to Improve the Economics of Sludge Dewatering. J. Clean. Prod. 2018, 176, 966–975. [Google Scholar] [CrossRef]
- Horschig, T.; Welfle, A.; Billig, E.; Thrän, D. From Paris Agreement to Business Cases for Upgraded Biogas: Analysis of Potential Market Uptake for Biomethane Plants in Germany Using Biogenic Carbon Capture and Utilization Technologies. Biomass Bioenergy 2019, 120, 313–323. [Google Scholar] [CrossRef] [Green Version]
- Wu, K.; Hu, Y.; Zhang, L.; Xu, L.; Yang, Z. Promoting the Sustainable Fabrication of Bricks from Municipal Sewage Sludge through Modifying Calcination: Microstructure and Performance Characterization. Constr. Build. Mater. 2022, 324, 126401. [Google Scholar] [CrossRef]
- Seviour, E.M.; Mcilroy, S.; Seviour, R.J. Microbial Ecology of Activated Sludge; IWA Publishing: London, UK, 2010. [Google Scholar]
- Sun, F.; Xiao, K.K.; Zhu, W.; Withanage, N.; Zhou, Y. Enhanced Sludge Solubilization and Dewaterability by Synergistic Effects of Nitrite and Freezing. Water Res. 2018, 130, 208–214. [Google Scholar] [CrossRef]
- Diak, J.; Örmeci, B.; Proux, C. Freeze–Thaw Treatment of RBC Sludge from a Remote Mining Exploration Facility in Subarctic Canada. Water Sci. Technol. 2011, 63, 1309–1313. [Google Scholar] [CrossRef]
- Montusiewicz, A.; Lebiocka, M.; Rozej, A.; Zacharska, E.; Pawłowski, L. Freezing/Thawing Effects on Anaerobic Digestion of Mixed Sewage Sludge. Bioresour. Technol. 2010, 101, 3466–3473. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, J.; Kakimoto, K.; Ogawa, H.; Kato, Y. Pretreatment of Waste Activated Sludge Results in Enhancement of Its Anaerobic Digesting Efficiency. J. Jpn. Soc. Water Environ. 1995, 18, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Jan, T.W.; Adav, S.S.; Lee, D.J.; Wu, R.M.; Su, A.; Tay, J.H. Hydrogen Fermentation and Methane Production from Sludge with Pretreatments. Energy Fuels 2008, 22, 98–102. [Google Scholar] [CrossRef]
- Meyer, T.; Chen, X.; Tran, H.N.; Allen, D.G.; Edwards, E.A. Natural Freezing-Thawing and Its Impact on Dewaterability and Anaerobic Digestibility of Biosludge. Environ. Eng. Sci. 2017, 34, 357–366. [Google Scholar] [CrossRef]
- Grübel, K.; Wacławek, S.; Kuglarz, M.; Wacławek, M.; Černík, M. Improvement of the Thermophilic Anaerobic Digestion and Hygienisation of Waste Activated Sludge by Synergistic Pretreatment. J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng. 2019, 54, 694–700. [Google Scholar] [CrossRef] [PubMed]
- Grübel, K.; Machnicka, A. The Use of Hybrid Disintegration of Activated Sludge to Improve Anaerobic Stabilization Process. Ecol. Eng. Environ. Technol. 2020, 21, 1–8. [Google Scholar] [CrossRef]
- Barrios, J.A.; Cano, A.; Rivera, F.F.; Cisneros, M.E.; Durán, U. Efficiency of Integrated Electrooxidation and Anaerobic Digestion of Waste Activated Sludge. Biotechnol. Biofuels 2021, 14, 81. [Google Scholar] [CrossRef] [PubMed]
- Ngo, P.L.; Udugama, I.A.; Gernaey, K.V.; Young, B.R.; Baroutian, S. Mechanisms, Status, and Challenges of Thermal Hydrolysis and Advanced Thermal Hydrolysis Processes in Sewage Sludge Treatment. Chemosphere 2021, 281, 130890. [Google Scholar] [CrossRef] [PubMed]
- Toniolo, S.; Tosato, R.C.; Gambaro, F.; Ren, J. Life Cycle Thinking Tools: Life Cycle Assessment, Life Cycle Costing and Social Life Cycle Assessment. In Life Cycle Sustainability Assessment for Decision-Making—Methodologies and Case Studies; Elsevier: Amsterdam, The Netherlands, 2020; pp. 39–56. [Google Scholar] [CrossRef]
- Trading Economics. EU Carbon Permits—2022 Data—2005-2021 Historical—2023 Forecast—Price—Quote. 2022. Available online: https://tradingeconomics.com/commodity/carbon (accessed on 28 December 2022).
Parameter | Unit | Primary Sludge | Secondary Sludge | |||||
---|---|---|---|---|---|---|---|---|
Total dry solids | weight as per dry basis (wt.%) | 5–9 | 27.58 | 27.58 | 0.8–1.2 | 25.36 | 25.36 | 0.83–12 |
Volatile solids | 60–80 | 60–80 | 18.8 | 59–68 | 59–68 | 15.5 | 30.88 | |
Phosphorous | 0.8–2.8 | 34.13 | 0.5–0.7 | 28.76 | 0.8–11 | |||
Nitrogen | 1.5–4 | 33.82 | 33.82 | 2.4–5.0 | 49.91 | 49.91 | 1.5–6 | |
Protein | 20–30 | 2–30 | 33–41 | 32–41 | 15–41 | |||
Lipids | 7–35 | 5–12 | ||||||
Potassium | 0–1 | 0.5–0.7 | 0.4–3 | |||||
Cellulose | 8–15 | 7–9.7 | ||||||
Silica | 15–20 | 10–20 | ||||||
Iron | Fe g/kg | 2–4 | ||||||
pH | - | 5–8 | 5.61 | 6.5–8 | 6.42 | 5–8 | ||
Organic acids | mg/L as acetate | 200–2000 | 1100–1700 | 200–2000 | ||||
Alkalinity | mg/L as CaCO3 | 500–1500 | 580–1100 | |||||
Energy content | kJ/kg DM | 23,000–29,000 | 23,000–29,000 | 19,000–23,000 | 19,000–23,000 | |||
Reference: | [83] | [84] | [85] | [83] | [84] | [85] | [86] | |
Parameter | Unit | Sewage sludge | ||||||
Moisture content | weight as per dry basis (wt.%) | 7.65 a | 6.1 a | 10.84 a | 7.33 a | 2.37 a | 1.05 a | 78 b |
Volatile matter content | 51.66 a | 53.0 a | 48.31 a | 62.97 a | 45.47 a | 47.92 a | 55.8 e | |
Ash content | 35.02 a | 38.4 a | 33.88 a | 16.33 a | 45.81 a | 45.51 a | 33.7 e | |
Fixed carbon | 5.67 b | 8.6 a | 6.97 b | 13.37 b | 6.35 b | 5.52 b | 10.5 e | |
Higher Heating Value | MJ/kg | 13.16 | 13.9 | 11.79 | 15.2 | 11.14 | - | - |
C | weight as per dry basis (wt.%) | 58.5 c | 31.1 a | 27.38 d | 38.28 d | 24.63 a | 25.93 a | 32.8 a |
H | 5.8 c | 4.2 a | 3.92 d | 5.92 d | 3.32 a | 4.21 a | 10.2 a | |
N | 0.53 c | 3.3 a | 9.90 d | 1.0 d | 2.96 a | 4.78 a | 5.4 e | |
S | 1.43 c | 1.1 a | 0.45 d | 0.09 d | 1.06 a | 1.03 a | 1.7 a | |
O | 33.74 b | 24.3 a | 13.64 b | 31.06 b | 19.85 b | 22.02 a | 24.5 a | |
Reference: | [87] | [88] | [89] | [90] | [91] | [92] | [93] |
Element | Concentration | Permitted Range | Ref. |
---|---|---|---|
mg/kg DM | |||
As | 5.6–56.1 | not limited | [10,98,99] |
Ba | 41.5–1300 | not limited | [10,98,99] |
Cd | 0.83 ± 0.06 | 20–40 | [98,99,100] |
Cr | 18.6 ± 2.2 | not limited | [98,99,100] |
Cu | 75.8 ± 7.0 | 1000–1750 | [10,99,100] |
Hg | 0.1–1.1 | 16–25 | [10,99] |
Mo | 1.7–75 | not limited | [10,99,101] |
Ni | 8.6–420 | 300–400 | [10,99,101] |
Pb | 4.0–429.8 | 750–1200 | [10,99,101] |
Se | 2 | not limited | [10,99,101] |
Zn | 0–7500 | 2500–4000 | [10,99] |
Type | Organism | Density | |||||
---|---|---|---|---|---|---|---|
#/g DM | Bacteria/g DM | cfus/g | MPN/g DM | ||||
Virus | Various enteric viruses | 102–104 | 3·102 | 87–417·107 | |||
Bacteria | Total coliforms | 108–109 | 7·108 | 104–109 | 1.1·109 | 3.2·109 | |
Fecal coliforms | 107–108 | 8·106 | 104–108 | 1.9·105 | 3·107 | ||
Fecal streptococci | 106–107 | 2·102 | |||||
Salmonella sp. | 102–103 | 9·102 | 103–106 | 2.9·102 | 3.3·107 | ||
Protozoa | Giardia sp. | 102–103 | 102–103 | ||||
Helminths | Ascaris sp. | 102–103 | 1·103 | 1.75 | |||
Trichuris vulpis | 102 | <102 | |||||
Toxocara sp. | 101–102 | 3·102 | 3.25 | ||||
Reference: | [102,103] * | [102,103] ** | [104,105] | [105,106] | [98,107,108,109] | [110] |
Compound | Concentration ng/g | Ref. | |
---|---|---|---|
PAHs | Anthracene | 13–724 | [98,118] |
Benzofluoranthene | 9.9–1477 | [98,118] | |
Benzopyrene | 17.9–1475.5 | [10,98] | |
Chrysene | 21–2020.5 | [98,118] | |
Fluoranthene | 34.5–3216.8 | [98,118] | |
Phenanthrene | 13–5552.2 | [98,118] | |
Pyrene | 47.2–26,337 | [98,118] | |
PhCs found in sewage sludge-amended soils | Caffeine | not detected | [10,119,120] |
Ciprofloxacin | 350–400 | [10,119,120] | |
Diclofenac | 1.16 | [10,119,120] | |
Galaxolide | 633 | [10,119,120] | |
Ibuprofen | 5.03 | [10,119,120] | |
Triclosan | 833 | [10,119,120] | |
Trimethoprim | 0.64 | [10,119,120] | |
Tonalide | 113 | [10,119,120] | |
PFASs | PFOA | 1.22 | [10,121] |
PFOA | 1 | [10,122] | |
PFOS | 1.31 | [10,121] | |
PFOS | 5 | [10,122] |
Type of SCO2 | Size | Appearance | Sublimation Rate | Primary Users | Application | Ref. |
---|---|---|---|---|---|---|
Snow | N/A | Similar to water snow | Fastest sublimation rate; Shortest shelf life; Quick cooling | Meat establishments | Flash freezing | [135,145,150] |
Pellets | 1–3 mm | Rice-like granules | Fast sublimation rate; Short shelf life; Quick cooling | Processors of foodstuffs; DI blasting companies; Theaters and nightclubs; Farmers; Fire services; Car mechanics | Short-distance, small-parcel shipping Dry ice blasting; Food processing (for freezing foodstuffs); Smoke and fog effects for theaters and nightclubs; Rodent control; Firefighting; Automotive mechanics; Sludge management and pretreatment | [135,148,150,151] |
Nuggets | 6–19 mm | Small cylinders of dry ice | Average sublimation rate; Average shelf life | Bioservices companies (laboratories); Bakeries; Meat establishments | Long-distance, large-parcel shipping; Food processing (for packing and shipping foodstuffs/products) Sludge management and pretreatment | [135,147,150] |
Slabs | 210 × 125 × 18 mm (standard block dimensions vary by country) | Strips or boards of dry ice | Slow sublimation rate | Long shelf life Distributors; Airline caterers | Shipping; Airline catering (a typical 19 mm strip matches the size of catering trays); Corpse refrigeration | [135,145,150] |
Blocks | 250 × 250 × 125 mm (standard block dimensions vary by country) | Blocks of dry ice | Slowest sublimation rate | Longest shelf life Grocery store warehouses; Ice cream parlours | Shipping; Shaved ice blasting; Food processing; Corpse refrigeration | [135,148,150] |
Sewage Sludge | Sewage Sludge before Conditioning | SCO2-to-Sludge Ratio (by Volume) | Effect of Conditioning | Ref. |
---|---|---|---|---|
Waste-activated sludge | SCOD: 65 mg/L; Proteins: 56 mg/L; RNA: 10.07 mg/L; Carbohydrates: 12 mg/L; Ammoniacal nitrogen: 1.1 mg/L; Phosphates: 48 mg/L; Capillary suction time (CST): 46.2 s Turbidity: 57 mg SO2/L | 0.25/1 | SCOD: 205 mg/L; Degree of disintegration: 15% Proteins: 99 mg/L; RNA: 10.35 mg/L; Carbohydrates: 27 mg/L; Ammoniacal nitrogen: 8.5 mg/L; Phosphates: 52 mg/L; CST: 44.9 s Turbidity: 274 mg SO2/L | [67] |
0.50/1 | SCOD: 480 mg/L; Degree of disintegration: 28% Proteins: 155 mg/L; RNA: 11.0 mg/L; Carbohydrates: 39 mg/L; Ammoniacal nitrogen: 15.5 mg/L; Phosphates: 98 mg/L; CST: 34.8 s Turbidity: 310 mg SO2/L | |||
0.75/1 | SCOD: 600 mg/L; Degree of disintegration: 39% Proteins: 200 mg/L; RNA: 11.95 mg/L; Carbohydrates: 50 mg/L; Ammoniacal nitrogen: 18.8 mg/L; Phosphates: 122 mg/L; CST: 28.5 s Turbidity: 370 mg SO2/L | |||
1/1 | SCOD: 889 mg/L; Degree of disintegration: 48% Proteins: 291 mg/L; RNA: 12.23 mg/L; Carbohydrates: 83 mg/L; Ammoniacal nitrogen: 24.0 mg/L; Phosphates: 133 mg/L; CST: 22.8 s Turbidity: 410 mg SO2/L | |||
Waste-activated sludge | CST: 43.7 s Solid content: 6.25 % w/w Index for the bound moisture and structure of the sludge flocs (hf/hI): 0.97 | 75 g/200 g | Zone settling velocity (ZSV): 76.1 μm/s CST: 33.9 s Solid content: 15.7 % w/w hf/hI: 0.35 | [133] |
Ferric hydroxide sludge | ZSV: 94 μm/s CST: 51.8 s Solid content: 14.5 % w/w hf/hI: 0.35 Particle size: 61.7 μm | ZSV: 390 μm/s CST: 38.7 s Solid content: 18.6 % w/w hf/hI: 0.096 Particle size: 51.8 μm | ||
Oily sludge | CST: 87.2 s Particle size: 15.5 μm | CST: 58.7 s Particle size: 26.2 μm | ||
Waste-activated sludge | E. coli: 5.88 log cfus/gTS; Ascaris sp.: 2.08 log eggs/kgTS; Trichuris sp.: 1.96 log eggs/kgTS; Toxocara sp: 3.05 log eggs/kgTS; | 1/1 | E. coli: 5.82 log cfus/gTS; Ascaris sp.: 2.03 log eggs/kgTS; Trichuris sp.: 1.88 log eggs/kgTS; Toxocara sp: 2.34 log eggs/kgTS; | [97] |
Sewage Sludge | Sewage Sludge before Pretreatment Processes | SCO2-to-Sludge Ratio (by Volume) | Performance of SCO2-Based Sludge Pretreatment Processes | Ref. |
---|---|---|---|---|
Waste-activated sludge | TS: 10.89 ± 0.27 * g/L; VSS: 7.05 ± 0.75 * g/L; VFAs: 75 ± 4 mg CH3COOH/L, 238 ± 2.4 * mg CH3COOH/L; SCOD: 126 ± 4 mg O2/L, 561 ± 3.7 * mg O2/L; TOC: 42 ± 1 mg/L, 193 ± 1.5 * mg/L; Kjeldahl nitrogen: 56 ± 2 mg N/L, 965 ± 2.5 * mg N/L; Ammoniacal nitrogen: 52 ± 1 mg N-NH4/L, 941 ± 4.7 * mg N-NH4/L; pH: 7.2 ± 0.1, 7.14 ± 0.15 *; Alkalinity: 3120 ± 10 * mg Ca CO3/L; Digestion degree: 40%; Biogas: 0.43 L/gVSS | 0.55/1 | TS: 7.94 ± 0.64 * g/L; VSS: 4.55 ± 0.41 * g/L; VFAs: 245 ± 5 mg CH3COOH/L, 321 ± 1.6 * mg CH3COOH/L; SCOD: 400 ± 10 mg O2/L, 761 ± 7.3 * mg O2/L; TOC: 110 ± 2 mg/L, 211 ± 1.2 * mg/L; Kjeldahl nitrogen: 78 ± 2.5 mg N/L, 995 ± 2.7 * mg N/L; Ammoniacal nitrogen: 90 ± 2 mg N-NH4/L, 982 ± 2.4 * mg N-NH4/L; pH: 6.4 ± 0.1, 6.87 ± 0.06 *; Alkalinity: 3820 ± 28 * mg Ca CO3/L; Digestion degree: 60%; Biogas: 0.62 L/gVSS | [53] |
VFAs: 65 mg CH3COOH/L, 519 * mg CH3COOH/L; SCOD: 110 mg O2/L, 143 * mg O2/L; TOC: 26 mg/L, 484 * mg/L; pH: 7.04 | 0.35/1 | VFAs: 164 mg CH3COOH/L, 954 * mg CH3COOH/L; SCOD: 293 mg O2/L, 2731 * mg O2/L; TOC: 78 mg/L, 831 * mg/L; pH: 6.35 | [208] | |
Biogas: 2380 ± 78 mL/L; Methane: 61 ± 1% | 1/1 + hydrodynamic cavitation | Biogas: 2622 ± 82–3860 ± 132 mL/L; Methane: 61 ± 1–64 ± 2% | [97] | |
SCOD: 123 ± 20 mg O2/L; Biogas: 2543 mL/d/L | 1/1 +2M NaOH | SCOD: 2120 ± 75 mg O2/L; Biogas: 3310–3843 mL/d/L | [223] | |
SCOD: 100 ± 4 mg O2/L; Biogas: 2547 L; Methane: 59–62% | 0.75/1 +2M NaOH | SCOD: 1890 ± 73 mg O2/L; Biogas: 2090–2933 L; Methane: 61–64% | [224] | |
Dairy sewage sludge | SCOD: 400.5 ± 23.8 mg O2/L; Ammoniacal nitrogen: 131.5 ± 16.7 mg N-NH4/L; Orthophosphate: 159.3 ± 22.4 mg P-PO43−/L Biogas: 440.7 ± 21.5 mL/gVS; Methane: 61.2 ± 1.3% | 0.1/1 | SCOD: 450.3 ± 25.6 mg O2/L; Ammoniacal nitrogen: 155.2 ± 10.2 mg N-NH4/L; Orthophosphate: 198.5 ± 23.1 mg P-PO43−/L Biogas: 528.84 ± 38.5 mL/gVS; Methane: 63.8 ± 2.8% | [151] |
0.2/1 | SCOD: 479.2 ± 10.5 mg O2/L; Ammoniacal nitrogen: 166.8 ± 11.4 mg N-NH4/L; Orthophosphate: 236.9 ± 25.8 mg P-PO43−/L Biogas: 564.10 ± 41.6 mL/gVS; Methane: 64.5 ± 1.7% | |||
0.3/1 | SCOD: 490.6 ± 12.9 mg O2/L; Ammoniacal nitrogen: 171.2 ± 10.5 mg N-NH4/L; Orthophosphate: 260.1 ± 20.1 mg P-PO43−/L Biogas: 630.20 ± 45.5 mL/gVS; Methane: 68.7 ± 1.5% | |||
0.4/1 | SCOD: 495.2 ± 26.4 mg O2/L; Ammoniacal nitrogen: 180.3 ± 12.6 mg N-NH4/L; Orthophosphate: 275.6 ± 33.4 mg P-PO43−/L Biogas: 581.72 ± 39.4 mL/gVS; Methane: 66.3 ± 2.1% | |||
0.5/1 | SCOD: 510.5 ± 28.5 mg O2/L; Ammoniacal nitrogen: 185.9 ± 11.1 mg N-NH4/L; Orthophosphate: 300.6 ± 35.9 mg P-PO43−/L Biogas: 572.91 ± 32.2 mL/gVS; Methane: 66.2 ± 1.9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kazimierowicz, J.; Dębowski, M. Characteristics of Solidified Carbon Dioxide and Perspectives for Its Sustainable Application in Sewage Sludge Management. Int. J. Mol. Sci. 2023, 24, 2324. https://doi.org/10.3390/ijms24032324
Kazimierowicz J, Dębowski M. Characteristics of Solidified Carbon Dioxide and Perspectives for Its Sustainable Application in Sewage Sludge Management. International Journal of Molecular Sciences. 2023; 24(3):2324. https://doi.org/10.3390/ijms24032324
Chicago/Turabian StyleKazimierowicz, Joanna, and Marcin Dębowski. 2023. "Characteristics of Solidified Carbon Dioxide and Perspectives for Its Sustainable Application in Sewage Sludge Management" International Journal of Molecular Sciences 24, no. 3: 2324. https://doi.org/10.3390/ijms24032324
APA StyleKazimierowicz, J., & Dębowski, M. (2023). Characteristics of Solidified Carbon Dioxide and Perspectives for Its Sustainable Application in Sewage Sludge Management. International Journal of Molecular Sciences, 24(3), 2324. https://doi.org/10.3390/ijms24032324