The Antimicrobial Activity of Curcumin and Xanthohumol on Bacterial Biofilms Developed over Dental Implant Surfaces
Abstract
:1. Introduction
2. Results
2.1. Antibacterial Effect of Curcumin and Xanthohumol on Planktonic Bacteria
- (a)
- For xanthohumol, the MICs were established at 20 µM for Streptococcus oralis, Veillonella parvula, Actinomyces naeslundii and Fusobacterium nucleatum, 10 µM for Porphyromonas gingivalis and 100 µM for Aggregatibacter actinomycetemcomitans. The MBCs were established at 20 µM for A. naeslundii, V. parvula and F. nucleatum, 10 µM for P. gingivalis, 50 µM for S. oralis and 100 µM for A. actinomycetemcomitans.
- (b)
- For curcumin, the MICs were established at 1 mM for S. oralis, A. naeslundii and A. actinomycetemcomitans and 500 µM for V. parvula, F. nucleatum and P. gingivalis and the MBCs at 1 mM for S. oralis, V. parvula, A. naeslundii, F. nucleatum and A. actinomycetemcomitans and 500 µM for P. gingivalis.
2.2. Antibacterial Effect of the Curcumin and Xanthohumol on the Dynamic Biofilm Model
2.2.1. Quantitative Polymerase Chain Reaction (qPCR) Analysis
2.2.2. Confocal Laser Scanning Microscopy (CLSM) Analysis
2.2.3. Scanning Electron Microscopy (SEM) Analysis
3. Discussion
4. Materials and Methods
4.1. Curcumin and Xanthohumol
4.2. Bacterial Strains and Culture Conditions
4.3. Antibacterial Effect of Curcumin and Xanthohumol against Planktonic Bacteria
4.4. In Vitro Multi-species Dynamic Biofilm Model
4.5. Decontamination Process
4.6. qPCR Analysis to Evaluate the Antimicrobial Efficacy
4.7. CLSM Analysis to Evaluate the Antibiofilm Effect
4.8. SEM Analysis to Evaluate the Morphology of the Biofilms on the Implant Surfaces
4.9. Data Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Berglundh, T.; Armitage, G.; Araujo, M.G.; Avila-Ortiz, G.; Blanco, J.; Camargo, P.M.; Chen, S.; Cochran, D.; Derks, J.; Figuero, E.; et al. Peri-implant diseases and conditions: Consensus report of workgroup 4 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J. Clin. Periodontol. 2018, 45 (Suppl. 20), S286–S291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rakic, M.; Galindo-Moreno, P.; Monje, A.; Radovanovic, S.; Wang, H.L.; Cochran, D.; Sculean, A.; Canullo, L. How frequent does peri-implantitis occur? A systematic review and meta-analysis. Clin. Oral Investig. 2018, 22, 1805–1816. [Google Scholar] [CrossRef] [PubMed]
- Derks, J.; Tomasi, C. Peri-implant health and disease. A systematic review of current epidemiology. J. Clin. Periodontol 2015, 42 (Suppl. 16), S158–S171. [Google Scholar] [CrossRef] [PubMed]
- Leonhardt, A.; Renvert, S.; Dahlen, G. Microbial findings at failing implants. Clin. Oral Implant. Res. 1999, 10, 339–345. [Google Scholar] [CrossRef]
- Figuero, E.; Graziani, F.; Sanz, I.; Herrera, D.; Sanz, M. Management of peri-implant mucositis and peri-implantitis. Periodontol. 2000 2014, 66, 255–273. [Google Scholar] [CrossRef] [PubMed]
- Polyzois, I. Treatment Planning for Periimplant Mucositis and Periimplantitis. Implant Dent. 2019, 28, 150–154. [Google Scholar] [CrossRef]
- Albouy, J.P.; Abrahamsson, I.; Persson, L.G.; Berglundh, T. Implant surface characteristics influence the outcome of treatment of peri-implantitis: An experimental study in dogs. J. Clin. Periodontol. 2011, 38, 58–64. [Google Scholar] [CrossRef] [Green Version]
- Rakic, M.; Lekovic, V.; Nikolic-Jakoba, N.; Vojvodic, D.; Petkovic-Curcin, A.; Sanz, M. Bone loss biomarkers associated with peri-implantitis. A cross-sectional study. Clin. Oral Implant. Res. 2013, 24, 1110–1116. [Google Scholar] [CrossRef]
- Muthukuru, M.; Zainvi, A.; Esplugues, E.O.; Flemmig, T.F. Non-surgical therapy for the management of peri-implantitis: A systematic review. Clin. Oral Implant. Res. 2012, 23 (Suppl. 6), 77–83. [Google Scholar] [CrossRef]
- Renvert, S.; Lindahl, C.; Roos Jansaker, A.M.; Persson, G.R. Treatment of peri-implantitis using an Er:YAG laser or an air-abrasive device: A randomized clinical trial. J. Clin. Periodontol. 2011, 38, 65–73. [Google Scholar] [CrossRef]
- Renvert, S.; Polyzois, I.; Persson, G.R. Treatment modalities for peri-implant mucositis and peri-implantitis. Am. J. Dent. 2013, 26, 313–318. [Google Scholar] [PubMed]
- Mellado-Valero, A.; Buitrago-Vera, P.; Sola-Ruiz, M.F.; Ferrer-Garcia, J.C. Decontamination of dental implant surface in peri-implantitis treatment: A literature review. Med. Oral Patol. Oral Cir. Bucal 2013, 18, e869–e876. [Google Scholar] [CrossRef] [PubMed]
- Sanz-Martin, I.; Doolittle-Hall, J.; Teles, R.P.; Patel, M.; Belibasakis, G.N.; Hammerle, C.H.F.; Jung, R.E.; Teles, F.R.F. Exploring the microbiome of healthy and diseased peri-implant sites using Illumina sequencing. J. Clin. Periodontol. 2017, 44, 1274–1284. [Google Scholar] [CrossRef] [Green Version]
- Costerton, J.W.; Montanaro, L.; Arciola, C.R. Biofilm in implant infections: Its production and regulation. Int. J. Artif. Organs 2005, 28, 1062–1068. [Google Scholar] [CrossRef] [PubMed]
- Machtei, E.E.; Frankenthal, S.; Levi, G.; Elimelech, R.; Shoshani, E.; Rosenfeld, O.; Tagger-Green, N.; Shlomi, B. Treatment of peri-implantitis using multiple applications of chlorhexidine chips: A double-blind, randomized multi-centre clinical trial. J. Clin. Periodontol. 2012, 39, 1198–1205. [Google Scholar] [CrossRef]
- Renvert, S.; Lessem, J.; Dahlen, G.; Lindahl, C.; Svensson, M. Topical minocycline microspheres versus topical chlorhexidine gel as an adjunct to mechanical debridement of incipient peri-implant infections: A randomized clinical trial. J. Clin. Periodontol. 2006, 33, 362–369. [Google Scholar] [CrossRef]
- Stein, J.M.; Hammacher, C.; Michael, S.S. Combination of ultrasonic decontamination, soft tissue curettage, and submucosal air polishing with povidone-iodine application for non-surgical therapy of peri-implantitis: 12 Month clinical outcomes. J. Periodontol. 2017, 89, 139–147. [Google Scholar] [CrossRef]
- Galofre, M.; Palao, D.; Vicario, M.; Nart, J.; Violant, D. Clinical and microbiological evaluation of the effect of Lactobacillus reuteri in the treatment of mucositis and peri-implantitis: A triple-blind randomized clinical trial. J. Periodontal Res. 2018, 53, 378–390. [Google Scholar] [CrossRef]
- Scribante, A.; Butera, A.; Alovisi, M. Customized Minimally Invasive Protocols for the Clinical and Microbiological Management of the Oral Microbiota. Microorganisms 2022, 10, 675. [Google Scholar] [CrossRef]
- Butera, A.; Pascadopoli, M.; Pellegrini, M.; Gallo, S.; Zampetti, P.; Cuggia, G.; Scribante, A. Domiciliary Use of Chlorhexidine vs. Postbiotic Gels in Patients with Peri-Implant Mucositis: A Split-Mouth Randomized Clinical Trial. Appl. Sci. 2022, 12, 2800. [Google Scholar] [CrossRef]
- Bassetti, M.; Schar, D.; Wicki, B.; Eick, S.; Ramseier, C.A.; Arweiler, N.B.; Sculean, A.; Salvi, G.E. Anti-infective therapy of peri-implantitis with adjunctive local drug delivery or photodynamic therapy: 12-month outcomes of a randomized controlled clinical trial. Clin. Oral Implant. Res. 2014, 25, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro-Vidal, H.; Sánchez, M.C.; Figuero, E.; Herrera, D.; Sanz, M. Biofilm formation on dental implant surfaces—In vitro dynamic model. Clin. Oral Implant. Res. 2019, 30, 8. [Google Scholar] [CrossRef]
- Sanchez, M.C.; Alonso-Espanol, A.; Ribeiro-Vidal, H.; Alonso, B.; Herrera, D.; Sanz, M. Relevance of Biofilm Models in Periodontal Research: From Static to Dynamic Systems. Microorganisms 2021, 9, 428. [Google Scholar] [CrossRef]
- Al-Maweri, S.A.; Nassani, M.Z.; Alaizari, N.; Kalakonda, B.; Al-Shamiri, H.M.; Alhajj, M.N.; Al-Soneidar, W.A.; Alahmary, A.W. Efficacy of aloe vera mouthwash versus chlorhexidine on plaque and gingivitis: A systematic review. Int. J. Dent. Hyg. 2020, 18, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Chen, J.; Panagodage Perera, N.K.; Liang, X. Effects of Herbal Mouthwashes on Plaque and Inflammation Control for Patients with Gingivitis: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Evid. Based Complement. Altern. Med. 2020, 2020, 2829854. [Google Scholar] [CrossRef] [PubMed]
- Halboub, E.; Al-Maweri, S.A.; Al-Wesabi, M.; Al-Kamel, A.; Shamala, A.; Al-Sharani, A.; Koppolu, P. Efficacy of propolis-based mouthwashes on dental plaque and gingival inflammation: A systematic review. BMC Oral Health 2020, 20, 198. [Google Scholar] [CrossRef] [PubMed]
- Adamczak, A.; Ozarowski, M.; Karpinski, T.M. Curcumin, a Natural Antimicrobial Agent with Strain-Specific Activity. Pharmaceuticals 2020, 13, 153. [Google Scholar] [CrossRef]
- Zhang, Y.; Gu, Y.; Lee, H.M.; Hambardjieva, E.; Vrankova, K.; Golub, L.M.; Johnson, F. Design, synthesis and biological activity of new polyenolic inhibitors of matrix metalloproteinases: A focus on chemically-modified curcumins. Curr. Med. Chem. 2012, 19, 4348–4358. [Google Scholar] [CrossRef]
- Zhang, Y.; McClain, S.A.; Lee, H.M.; Elburki, M.S.; Yu, H.; Gu, Y.; Zhang, Y.; Wolff, M.; Johnson, F.; Golub, L.M. A Novel Chemically Modified Curcumin “Normalizes” Wound-Healing in Rats with Experimentally Induced Type I Diabetes: Initial Studies. J. Diabetes Res. 2016, 2016, 5782904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Golub, L.M.; Greenwald, R.A. Clinical applications of non-antibacterial tetracyclines. Part II. Pharmacol. Res. 2011, 64, 549–550. [Google Scholar] [CrossRef] [PubMed]
- Golub, L.M.; Lee, H.M. Periodontal therapeutics: Current host-modulation agents and future directions. Periodontol. 2000 2020, 82, 186–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hatcher, H.; Planalp, R.; Cho, J.; Torti, F.M.; Torti, S.V. Curcumin: From ancient medicine to current clinical trials. Cell Mol. Life Sci. 2008, 65, 1631–1652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marchiani, A.; Rozzo, C.; Fadda, A.; Delogu, G.; Ruzza, P. Curcumin and curcumin-like molecules: From spice to drugs. Curr. Med. Chem. 2014, 21, 204–222. [Google Scholar] [CrossRef] [PubMed]
- Hewlings, S.J.; Kalman, D.S. Curcumin: A Review of Its Effects on Human Health. Foods 2017, 6, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moghadamtousi, S.Z.; Kadir, H.A.; Hassandarvish, P.; Tajik, H.; Abubakar, S.; Zandi, K. A review on antibacterial, antiviral, and antifungal activity of curcumin. Biomed Res. Int. 2014, 2014, 186864. [Google Scholar] [CrossRef] [Green Version]
- Praditya, D.; Kirchhoff, L.; Bruning, J.; Rachmawati, H.; Steinmann, J.; Steinmann, E. Anti-infective Properties of the Golden Spice Curcumin. Front. Microbiol. 2019, 10, 912. [Google Scholar] [CrossRef] [Green Version]
- Rai, M.; Ingle, A.P.; Pandit, R.; Paralikar, P.; Anasane, N.; Santos, C.A.D. Curcumin and curcumin-loaded nanoparticles: Antipathogenic and antiparasitic activities. Expert Rev. Anti-Infect. Ther. 2020, 18, 367–379. [Google Scholar] [CrossRef]
- Basnet, P.; Skalko-Basnet, N. Curcumin: An anti-inflammatory molecule from a curry spice on the path to cancer treatment. Molecules 2011, 16, 4567–4598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotha, R.R.; Luthria, D.L. Curcumin: Biological, Pharmaceutical, Nutraceutical, and Analytical Aspects. Molecules 2019, 24, 2930. [Google Scholar] [CrossRef] [Green Version]
- Rozalski, M.; Micota, B.; Sadowska, B.; Stochmal, A.; Jedrejek, D.; Wieckowska-Szakiel, M.; Rozalska, B. Antiadherent and antibiofilm activity of Humulus lupulus L. derived products: New pharmacological properties. Biomed Res. Int. 2013, 2013, 101089. [Google Scholar] [CrossRef]
- Mah, T.F.; O’Toole, G.A. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 2001, 9, 34–39. [Google Scholar] [CrossRef]
- Donlan, R.M.; Costerton, J.W. Biofilms: Survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 2002, 15, 167–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davies, D. Understanding biofilm resistance to antibacterial agents. Nat. Rev. Drug Discov. 2003, 2, 114–122. [Google Scholar] [CrossRef]
- Costerton, J.W.; Lewandowski, Z.; Caldwell, D.E.; Korber, D.R.; Lappin-Scott, H.M. Microbial biofilms. Annu Rev. Microbiol. 1995, 49, 711–745. [Google Scholar] [CrossRef] [PubMed]
- Ntrouka, V.; Hoogenkamp, M.; Zaura, E.; van der Weijden, F. The effect of chemotherapeutic agents on titanium-adherent biofilms. Clin. Oral Implant. Res. 2011, 22, 1227–1234. [Google Scholar] [CrossRef] [PubMed]
- Ntrouka, V.I.; Slot, D.E.; Louropoulou, A.; Van der Weijden, F. The effect of chemotherapeutic agents on contaminated titanium surfaces: A systematic review. Clin. Oral Implant. Res. 2011, 22, 681–690. [Google Scholar] [CrossRef] [PubMed]
- Henderson, E.; Schneider, S.; Petersen, F.C.; Haugen, H.J.; Wohlfahrt, J.C.; Ekstrand, K.; Ekfeldt, A. Chemical debridement of contaminated titanium surfaces: An in vitro study. Acta Odontol. Scand 2013, 71, 957–964. [Google Scholar] [CrossRef] [PubMed]
- Charalampakis, G.; Ramberg, P.; Dahlen, G.; Berglundh, T.; Abrahamsson, I. Effect of cleansing of biofilm formed on titanium discs. Clin. Oral Implant. Res. 2015, 26, 931–936. [Google Scholar] [CrossRef] [PubMed]
- John, G.; Becker, J.; Schwarz, F. Rotating titanium brush for plaque removal from rough titanium surfaces--an in vitro study. Clin. Oral Implant. Res. 2014, 25, 838–842. [Google Scholar] [CrossRef]
- Marotti, J.; Tortamano, P.; Cai, S.; Ribeiro, M.S.; Franco, J.E.; de Campos, T.T. Decontamination of dental implant surfaces by means of photodynamic therapy. Lasers Med. Sci. 2013, 28, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Paster, B.J.; Boches, S.K.; Galvin, J.L.; Ericson, R.E.; Lau, C.N.; Levanos, V.A.; Sahasrabudhe, A.; Dewhirst, F.E. Bacterial diversity in human subgingival plaque. J. Bacteriol. 2001, 183, 3770–3783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bermejo, P.; Sanchez, M.C.; Llama-Palacios, A.; Figuero, E.; Herrera, D.; Sanz Alonso, M. Biofilm formation on dental implants with different surface micro-topography: An in vitro study. Clin. Oral Implant. Res. 2019, 30, 725–734. [Google Scholar] [CrossRef] [PubMed]
- Bermejo, P.; Sanchez, M.C.; Llama-Palacios, A.; Figuero, E.; Herrera, D.; Sanz, M. Topographic characterization of multispecies biofilms growing on dental implant surfaces: An in vitro model. Clin. Oral Implant. Res. 2019, 30, 229–241. [Google Scholar] [CrossRef] [PubMed]
- Drescher, K.; Dunkel, J.; Cisneros, L.H.; Ganguly, S.; Goldstein, R.E. Fluid dynamics and noise in bacterial cell-cell and cell-surface scattering. Proc. Natl. Acad. Sci. USA 2011, 108, 10940–10945. [Google Scholar] [CrossRef] [Green Version]
- Loesche, W.J. Clinical and microbiological aspects of chemotherapeutic agents used according to the specific plaque hypothesis. J. Dent. Res. 1979, 58, 2404–2412. [Google Scholar] [CrossRef] [Green Version]
- Sekino, S.; Ramberg, P.; Uzel, N.G.; Socransky, S.; Lindhe, J. Effect of various chlorhexidine regimens on salivary bacteria and de novo plaque formation. J. Clin. Periodontol. 2003, 30, 919–925. [Google Scholar] [CrossRef]
- Pulcini, A.; Bollain, J.; Sanz-Sanchez, I.; Figuero, E.; Alonso, B.; Sanz, M.; Herrera, D. Clinical effects of the adjunctive use of a 0.03% chlorhexidine and 0.05% cetylpyridinium chloride mouth rinse in the management of peri-implant diseases: A randomized clinical trial. J. Clin. Periodontol. 2019, 46, 342–353. [Google Scholar] [CrossRef]
- Jones, C.G. Chlorhexidine: Is it still the gold standard? Periodontol. 2000 1997, 15, 55–62. [Google Scholar] [CrossRef]
- Van Strydonck, D.A.; Slot, D.E.; Van der Velden, U.; Van der Weijden, F. Effect of a chlorhexidine mouthrinse on plaque, gingival inflammation and staining in gingivitis patients: A systematic review. J. Clin. Periodontol. 2012, 39, 1042–1055. [Google Scholar] [CrossRef]
- Monje, A.; Amerio, E.; Cha, J.K.; Kotsakis, G.; Pons, R.; Renvert, S.; Sanz-Martin, I.; Schwarz, F.; Sculean, A.; Stavropoulos, A.; et al. Strategies for implant surface decontamination in peri-implantitis therapy. Int. J. Oral Implantol. 2022, 15, 213–248. [Google Scholar]
- Brunello, G.; Becker, K.; Scotti, L.; Drescher, D.; Becker, J.; John, G. The Effects of Three Chlorhexidine-Based Mouthwashes on Human Osteoblast-Like SaOS-2 Cells. An In Vitro Study. Int. J. Mol. Sci. 2021, 22, 9986. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.H.; Hu, C.C.; Lee, S.S.; Chou, M.Y.; Chang, Y.C. Cytotoxicity of chlorhexidine on human osteoblastic cells is related to intracellular glutathione levels. Int. Endod J. 2010, 43, 430–435. [Google Scholar] [CrossRef] [PubMed]
- Giannelli, M.; Chellini, F.; Margheri, M.; Tonelli, P.; Tani, A. Effect of chlorhexidine digluconate on different cell types: A molecular and ultrastructural investigation. Toxicol. Vitr. 2008, 22, 308–317. [Google Scholar] [CrossRef] [PubMed]
- Schraufstatter, E.; Bernt, H. Antibacterial action of curcumin and related compounds. Nature 1949, 164, 456. [Google Scholar] [CrossRef] [PubMed]
- Lutomski, J.; Kedzia, B.; Debska, W. Effect of an alcohol extract and of active ingredients from Curcuma longa on bacteria and fungi (author’s transl). Planta Med. 1974, 26, 9–19. [Google Scholar] [CrossRef]
- Li, B.; Li, X.; Lin, H.; Zhou, Y. Curcumin as a Promising Antibacterial Agent: Effects on Metabolism and Biofilm Formation in S. mutans. Biomed Res. Int. 2018, 2018, 4508709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jahanizadeh, S.; Yazdian, F.; Marjani, A.; Omidi, M.; Rashedi, H. Curcumin-loaded chitosan/carboxymethyl starch/montmorillonite bio-nanocomposite for reduction of dental bacterial biofilm formation. Int. J. Biol. Macromol. 2017, 105, 757–763. [Google Scholar] [CrossRef]
- Guimaraes, M.R.; Coimbra, L.S.; de Aquino, S.G.; Spolidorio, L.C.; Kirkwood, K.L.; Rossa, C., Jr. Potent anti-inflammatory effects of systemically administered curcumin modulate periodontal disease in vivo. J. Periodontal Res. 2011, 46, 269–279. [Google Scholar] [CrossRef]
- Arunachalam, L.T.; Sudhakar, U.; Vasanth, J.; Khumukchum, S.; Selvam, V.V. Comparison of anti-plaque and anti-gingivitis effect of curcumin and chlorhexidine mouth rinse in the treatment of gingivitis: A clinical and biochemical study. J. Indian Soc. Periodontol. 2017, 21, 478–483. [Google Scholar] [CrossRef]
- Chatterjee, A.; Debnath, K.; Rao, N.K.H. A comparative evaluation of the efficacy of curcumin and chlorhexidine mouthrinses on clinical inflammatory parameters of gingivitis: A double-blinded randomized controlled clinical study. J. Indian Soc. Periodontol. 2017, 21, 132–137. [Google Scholar] [CrossRef]
- Waghmare, P.F.; Chaudhari, A.U.; Karhadkar, V.M.; Jamkhande, A.S. Comparative evaluation of turmeric and chlorhexidine gluconate mouthwash in prevention of plaque formation and gingivitis: A clinical and microbiological study. J. Contemp Dent. Pract. 2011, 12, 221–224. [Google Scholar] [CrossRef]
- Mali, A.M.; Behal, R.; Gilda, S.S. Comparative evaluation of 0.1% turmeric mouthwash with 0.2% chlorhexidine gluconate in prevention of plaque and gingivitis: A clinical and microbiological study. J. Indian Soc. Periodontol. 2012, 16, 386–391. [Google Scholar] [CrossRef] [PubMed]
- Muglikar, S.; Patil, K.C.; Shivswami, S.; Hegde, R. Efficacy of curcumin in the treatment of chronic gingivitis: A pilot study. Oral Health Prev Dent. 2013, 11, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Maleki Dizaj, S.; Shokrgozar, H.; Yazdani, J.; Memar, M.Y.; Sharifi, S.; Ghavimi, M.A. Antibacterial Effects of Curcumin Nanocrystals against Porphyromonas gingivalis Isolated from Patients with Implant Failure. Clin. Pract. 2022, 12, 809–817. [Google Scholar] [CrossRef]
- Hu, P.; Huang, P.; Chen, M.W. Curcumin reduces Streptococcus mutans biofilm formation by inhibiting sortase A activity. Arch Oral Biol. 2013, 58, 1343–1348. [Google Scholar] [CrossRef] [PubMed]
- Tonon, C.C.; Panariello, B.; Chorilli, M.; Spolidorio, D.M.P.; Duarte, S. Effect of curcumin-loaded photoactivatable polymeric nanoparticle on peri-implantitis-related biofilm. Photodiagnosis Photodyn. Ther. 2022, 40, 103150. [Google Scholar] [CrossRef] [PubMed]
- Al-Maweri, S.A.; Alhajj, M.N.; Deshisha, E.A.; Alshafei, A.K.; Ahmed, A.I.; Almudayfi, N.O.; Alshammari, S.A.; Alsharif, A.; Kassim, S. Curcumin mouthwashes versus chlorhexidine in controlling plaque and gingivitis: A systematic review and meta-analysis. Int. J. Dent. Hyg. 2022, 20, 53–61. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, L.; Mazurel, D.; Zheng, H.; Yang, J.; Deng, D. Clinical efficacy of curcumin versus chlorhexidine as an adjunct to scaling and root planing for the treatment of periodontitis: A systematic review and meta-analysis. Phytother Res. 2021, 35, 5980–5991. [Google Scholar] [CrossRef]
- Shinada, K.; Tagashira, M.; Watanabe, H.; Sopapornamorn, P.; Kanayama, A.; Kanda, T.; Ikeda, M.; Kawaguchi, Y. Hop bract polyphenols reduced three-day dental plaque regrowth. J. Dent. Res. 2007, 86, 848–851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cermak, P.; Olsovska, J.; Mikyska, A.; Dusek, M.; Kadleckova, Z.; Vanicek, J.; Nyc, O.; Sigler, K.; Bostikova, V.; Bostik, P. Strong antimicrobial activity of xanthohumol and other derivatives from hops (Humulus lupulus L.) on gut anaerobic bacteria. APMIS 2017, 125, 1033–1038. [Google Scholar] [CrossRef]
- Sleha, R.; Radochova, V.; Mikyska, A.; Houska, M.; Bolehovska, R.; Janovska, S.; Pejchal, J.; Muckova, L.; Cermak, P.; Bostik, P. Strong Antimicrobial Effects of Xanthohumol and Beta-Acids from Hops against Clostridioides difficile Infection In Vivo. Antibiotics 2021, 10, 392. [Google Scholar] [CrossRef] [PubMed]
- Leonida, M.D.; Belbekhouche, S.; Benzecry, A.; Peddineni, M.; Suria, A.; Carbonnier, B. Antibacterial hop extracts encapsulated in nanochitosan matrices. Int. J. Biol. Macromol. 2018, 120, 1335–1343. [Google Scholar] [CrossRef] [PubMed]
- Sakai, K.; Koyama, N.; Fukuda, T.; Mori, Y.; Onaka, H.; Tomoda, H. Search method for inhibitors of Staphyloxanthin production by methicillin-resistant Staphylococcus aureus. Biol. Pharm Bull 2012, 35, 48–53. [Google Scholar] [CrossRef] [Green Version]
- Maresso, A.W.; Schneewind, O. Sortase as a target of anti-infective therapy. Pharmacol. Rev. 2008, 60, 128–141. [Google Scholar] [CrossRef] [PubMed]
- Leoni, L.; Landini, P. Microbiological methods for target-oriented screening of biofilm inhibitors. Methods Mol. Biol. 2014, 1147, 175–186. [Google Scholar] [CrossRef]
- Niederau, C.; Bhargava, S.; Schneider-Kramman, R.; Jankowski, J.; Craveiro, R.B.; Wolf, M. Xanthohumol exerts anti-inflammatory effects in an in vitro model of mechanically stimulated cementoblasts. Sci. Rep. 2022, 12, 14970. [Google Scholar] [CrossRef]
- Bogdanova, K.; Roderova, M.; Kolar, M.; Langova, K.; Dusek, M.; Jost, P.; Kubelkova, K.; Bostik, P.; Olsovska, J. Antibiofilm activity of bioactive hop compounds humulone, lupulone and xanthohumol toward susceptible and resistant staphylococci. Res. Microbiol. 2018, 169, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro-Vidal, H.; Sanchez, M.C.; Alonso-Espanol, A.; Figuero, E.; Ciudad, M.J.; Collado, L.; Herrera, D.; Sanz, M. Antimicrobial Activity of EPA and DHA against Oral Pathogenic Bacteria Using an In Vitro Multi-Species Subgingival Biofilm Model. Nutrients 2020, 12, 2812. [Google Scholar] [CrossRef]
- Sanchez, M.C.; Llama-Palacios, A.; Blanc, V.; Leon, R.; Herrera, D.; Sanz, M. Structure, viability and bacterial kinetics of an in vitro biofilm model using six bacteria from the subgingival microbiota. J. Periodontal Res. 2011, 46, 252–260. [Google Scholar] [CrossRef]
- Sanchez, M.C.; Marin, M.J.; Figuero, E.; Llama-Palacios, A.; Leon, R.; Blanc, V.; Herrera, D.; Sanz, M. Quantitative real-time PCR combined with propidium monoazide for the selective quantification of viable periodontal pathogens in an in vitro subgingival biofilm model. J. Periodontal Res. 2014, 49, 20–28. [Google Scholar] [CrossRef]
- Sanchez, M.C.; Llama-Palacios, A.; Fernandez, E.; Figuero, E.; Marin, M.J.; Leon, R.; Blanc, V.; Herrera, D.; Sanz, M. An in vitro biofilm model associated to dental implants: Structural and quantitative analysis of in vitro biofilm formation on different dental implant surfaces. Dent. Mater 2014, 30, 1161–1171. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, M.C.; Ribeiro-Vidal, H.; Bartolome, B.; Figuero, E.; Moreno-Arribas, M.V.; Sanz, M.; Herrera, D. New Evidences of Antibacterial Effects of Cranberry Against Periodontal Pathogens. Foods 2020, 9, 246. [Google Scholar] [CrossRef] [PubMed]
Bacterial Species | Treatments | Mean (SD) | Global p | % Reduction of Viable Counts, as Compared with PBS |
---|---|---|---|---|
S. oralis | PBS | 7.00 × 105 (4.00 × 105) | <0.000 | Reference |
XN | 1.77 × 104 (1.71 × 104) | 97.47 | ||
CUR | 7.74 × 103 (6.10 × 105) | 98.89 | ||
DMSO | 8.54 × 105 (1.23 × 107) | NA | ||
CHX | 1.36 × 104 (1.39 × 104) | 98.05 | ||
A. naeslundii | PBS | 1.56 × 107 (1.52 × 107) | 0.000 | Reference |
XN | 5.25 × 105 (4.34 × 105) | 96.64 | ||
CUR | 3.28 × 105 (6.90 × 105) | 97.90 | ||
DMSO | 1.08 × 107 (9.65 × 106) | 30.67 | ||
CHX | 9.36 × 105 (9.67 × 105) | 94.01 | ||
V. parvula | PBS | 8.81 × 107 (6.99 × 107) | <0.000 | Reference |
XN | 1.31 × 106 (1.25 × 106) | 98.52 | ||
CUR | 2.59 × 105 (2.72 × 105) | 99.71 | ||
DMSO | 6.80 × 107 (5.36 × 107) | 22.74 | ||
CHX | 2.91 × 106 (6.35 × 106) | 96.70 | ||
F. nucleatum | PBS | 7.70 × 105 (4.94 × 105) | <0.000 | Reference |
XN | 3.16 × 104 (4.12 × 104) | 95.90 | ||
CUR | 5.61 × 104 (1.13 × 105) | 92.71 | ||
DMSO | 6.58 × 105 (4.03 × 105) | 14.51 | ||
CHX | 4.57 × 104 (8.37 × 104) | 94.06 | ||
P. gingivalis | PBS | 1.38 × 106 (5.26 × 105) | <0.000 | Reference |
XN | 1.11 × 104 (5.80 × 103) | 99.20 | ||
CUR | 3.87 × 103 (2.47 × 103) | 99.72 | ||
DMSO | 1.41 × 106 (1.01 × 106) | NA | ||
CHX | 2.51 × 104 (2.60 × 104) | 98.18 | ||
A. actinomycetemcomitans | PBS | 4.81 × 105 (4.46 × 105) | 0.001 | Reference |
XN | 1.62 × 104 (1.34 × 104) | 96.64 | ||
CUR | 5.82 × 103 (4.33 × 103) | 98.79 | ||
DMSO | 4.76 × 105 (5.73 × 105) | 1.06 | ||
CHX | 1.38 × 104 (9.06 × 103) | 97.12 |
Bacterial Species | Comparisons | Mean Difference | 95% Confidence Interval for Difference | Post-Hoc p | |
---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||
S. oralis | PBS-CHX | 6.87 × 105 | 2.29 × 105 | 1.14 × 106 | 0.001 |
PBS-XN | 6.83 × 105 | 2.25 × 105 | 1.14 × 106 | 0.001 | |
PBS-CUR | 6.93 × 105 | 2.35 × 105 | 1.15 × 106 | 0.001 | |
PBS-DMSO | −1.53 × 105 | −6.10 × 105 | 3.03 × 105 | 1.000 | |
CHX-XN | −4.10 × 103 | −4.61 × 105 | 4.53 × 105 | 1.000 | |
CHX-CUR | 5.89 × 103 | −4.51 × 105 | 4.63 × 105 | 1.000 | |
CHX-DMSO | −8.40 × 105 | −1.29 × 106 | −3.83 × 105 | <0.001 | |
XN-CUR | 9.99 × 103 | −4.47 × 105 | 4.67 × 105 | 1.000 | |
XN-DMSO | −8.36 × 105 | −1.29 × 106 | −3.79 × 105 | <0.001 | |
CUR-DMSO | −8.46 × 105 | −1.30 × 106 | −3.89 × 105 | <0.001 | |
A. naeslundii | PBS-CHX | 1.47 × 107 | 3.39 × 106 | 2.60 × 107 | 0.004 |
PBS-XN | 1.51 × 107 | 3.80 × 106 | 2.64 × 107 | 0.003 | |
PBS-CUR | 1.53 × 107 | 4.00 × 106 | 2.66 × 107 | 0.002 | |
PBS-DMSO | 4.79 × 106 | −6,51 × 106 | 1.61 × 107 | 1.000 | |
CHX-XN | 4.11 × 105 | −1.09 × 107 | 1.17 × 107 | 1.000 | |
CHX-CUR | 6.07 × 105 | −1.07 × 107 | 1.19 × 107 | 1.000 | |
CHX-DMSO | −9.90 × 106 | −2.12 × 107 | 1.40 × 106 | 0.129 | |
XN-CUR | 1.96 × 105 | −1.11 × 107 | 1.15 × 107 | 1.000 | |
XN-DMSO | −1.03 × 107 | −2.16 × 107 | 9.94 × 105 | 0.099 | |
CUR-DMSO | −1.05 × 107 | −2.18 × 107 | 7.98 × 105 | 0.086 | |
V. parvula | PBS-CHX | 8.52 × 107 | 2.99 × 107 | 1.40 × 108 | <0.001 |
PBS-XN | 8.68 × 107 | 3.15 × 107 | 1.42 × 108 | <0.001 | |
PBS-CUR | 8.78 × 107 | 3.25 × 107 | 1.43 × 108 | <0.001 | |
PBS-DMSO | 1.97 × 107 | −3.55 × 107 | 7.50 × 107 | 1.000 | |
CHX-XN | 1.60 × 106 | −5.37 × 107 | 5.69 × 107 | 1.000 | |
CHX-CUR | 2.65 × 106 | −5.27 × 107 | 5.80 × 107 | 1.000 | |
CHX-DMSO | −6.54 × 107 | −1.20 × 108 | −1.01 × 107 | 0.011 | |
XN-CUR | 1.05 × 106 | −5.43 × 107 | 5.63 × 107 | 1.000 | |
XN-DMSO | −6.70 × 107 | −1.22 × 108 | −1.17 × 107 | 0.009 | |
CUR-DMSO | −6.80 × 107 | −1.23 × 108 | −1.27 × 107 | 0.007 | |
F. nucleatum | PBS-CHX | 7.24 × 105 | 3.14 × 105 | 1.13 × 106 | <0.001 |
PBS-XN | 7.38 × 105 | 3.29 × 105 | 1.15 × 106 | <0.001 | |
PBS-CUR | 7.14 × 105 | 3.04 × 105 | 1.12 × 106 | <0.001 | |
PBS-DMSO | 1.11 × 105 | −2.97 × 105 | 5.21 × 105 | 1.000 | |
CHX-XN | 1.41 × 104 | −3.95 × 105 | 4.24 × 105 | 1.000 | |
CHX-CUR | −1.04 × 104 | −4.20 × 105 | 3.99 × 105 | 1.000 | |
CHX-DMSO | −6.12 × 105 | −1.02 × 106 | −2.02 × 105 | 0.001 | |
XN-CUR | −2.45 × 104 | −4.34 × 105 | 3.85 × 105 | 1.000 | |
XN-DMSO | −6.26 × 105 | −1.03 × 106 | −2.16 × 105 | <0.001 | |
CUR-DMSO | −6.01 × 105 | −1.01 × 106 | −1.92 × 105 | 0.001 | |
P. gingivalis | PBS-CHX | 1.35 × 106 | 6.42 × 105 | 2.06 × 106 | <0.001 |
PBS-XN | 1.37 × 106 | 6.55 × 105 | 2.08 × 106 | <0.001 | |
PBS-CUR | 1.37 × 106 | 6.63 × 105 | 2.09 × 106 | <0.001 | |
PBS-DMSO | −2.69 × 104 | −7.38 × 105 | 6.84 × 105 | 1.000 | |
CHX-XN | 1.40 × 104 | −6.99 × 105 | 7.24 × 105 | 1.000 | |
CHX-CUR | 2.12 × 104 | −6.90 × 105 | 7.33 × 105 | 1.000 | |
CHX-DMSO | −1.38 × 106 | −2.09 × 106 | −6.69 × 105 | <0.001 | |
XN-CUR | 7.21 × 103 | −7.03 × 105 | 7.20 × 105 | 1.000 | |
XN-DMSO | −1.39 × 106 | −2.10 × 106 | −6.81 × 105 | <0.001 | |
CUR-DMSO | −1.40 × 106 | −2.11 × 106 | −6.90 × 105 | <0.001 | |
A. actinomycetemcomitans | PBS-CHX | 4.67 × 105 | 1.23 × 104 | 9.22 × 105 | 0.040 |
PBS-XN | 4.65 × 105 | 9.59 × 103 | 9.20 × 105 | 0.042 | |
PBS-CUR | 4.75 × 105 | 2.04 × 104 | 9.30 × 105 | 0.035 | |
PBS-DMSO | 5.10 × 103 | −4.49 × 105 | 4.60 × 105 | 1.000 | |
CHX-XN | −2.33 × 103 | −4.58 × 105 | 4.52 × 105 | 1.000 | |
CHX-CUR | 8.02 × 103 | −4.47 × 105 | 4.63 × 105 | 1.000 | |
CHX-DMSO | −4.62 × 105 | −9.17 × 105 | −7.24 × 103 | 0.044 | |
XN-CUR | 1.03 × 104 | −4.44 × 105 | 4.66 × 105 | 1.000 | |
XN-DMSO | −4.59 × 105 | −9.14 × 105 | −4.48 × 103 | 0.046 | |
CUR-DMSO | −4.70 × 105 | −9.25 × 105 | −1.52 × 104 | 0.038 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alonso-Español, A.; Bravo, E.; Ribeiro-Vidal, H.; Virto, L.; Herrera, D.; Alonso, B.; Sanz, M. The Antimicrobial Activity of Curcumin and Xanthohumol on Bacterial Biofilms Developed over Dental Implant Surfaces. Int. J. Mol. Sci. 2023, 24, 2335. https://doi.org/10.3390/ijms24032335
Alonso-Español A, Bravo E, Ribeiro-Vidal H, Virto L, Herrera D, Alonso B, Sanz M. The Antimicrobial Activity of Curcumin and Xanthohumol on Bacterial Biofilms Developed over Dental Implant Surfaces. International Journal of Molecular Sciences. 2023; 24(3):2335. https://doi.org/10.3390/ijms24032335
Chicago/Turabian StyleAlonso-Español, Andrea, Enrique Bravo, Honorato Ribeiro-Vidal, Leire Virto, David Herrera, Bettina Alonso, and Mariano Sanz. 2023. "The Antimicrobial Activity of Curcumin and Xanthohumol on Bacterial Biofilms Developed over Dental Implant Surfaces" International Journal of Molecular Sciences 24, no. 3: 2335. https://doi.org/10.3390/ijms24032335
APA StyleAlonso-Español, A., Bravo, E., Ribeiro-Vidal, H., Virto, L., Herrera, D., Alonso, B., & Sanz, M. (2023). The Antimicrobial Activity of Curcumin and Xanthohumol on Bacterial Biofilms Developed over Dental Implant Surfaces. International Journal of Molecular Sciences, 24(3), 2335. https://doi.org/10.3390/ijms24032335