Experimental and Clinical Aspects of Sevoflurane Preconditioning and Postconditioning to Alleviate Hepatic Ischemia-Reperfusion Injury: A Scoping Review
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy
2.2. Inclusion Criteria
2.3. Study Selection
2.4. Data Extraction
3. Results
3.1. Experimental Studies
3.2. Clinical Studies
3.2.1. Liver Resections
3.2.2. Liver Transplantation
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Search Strategy
References
- Soares, R.O.S.; Losada, D.M.; Jordani, M.C.; Évora, P.; Castro-E-Silva, O. Ischemia/Reperfusion Injury Revisited: An Overview of the Latest Pharmacological Strategies. Int. J. Mol. Sci. 2019, 20, 5034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nieuwenhuijs-Moeke, G.; Bosch, D.; Leuvenink, H. Molecular Aspects of Volatile Anesthetic-Induced Organ Protection and Its Potential in Kidney Transplantation. Int. J. Mol. Sci. 2021, 22, 2727. [Google Scholar] [CrossRef] [PubMed]
- Cannistrà, M.; Ruggiero, M.; Zullo, A.; Gallelli, G.; Serafini, S.; Maria, M.; Naso, A.; Grande, R.; Serra, R.; Nardo, B. Hepatic ischemia reperfusion injury: A systematic review of literature and the role of current drugs and biomarkers. Int. J. Surg. 2016, 33 (Suppl. 1), S57–S70. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.; Naini, B.V.; Markovic, D.; Aziz, A.; Younan, S.; Lu, M.; Hirao, H.; Kadono, K.; Kojima, H.; DiNorcia, J.; et al. Ischemia-reperfusion injury and its relationship with early allograft dysfunction in liver transplant patients. Am. J. Transplant. 2020, 21, 614–625. [Google Scholar] [CrossRef] [PubMed]
- Kahn, J.; Schemmer, P. Control of Ischemia-Reperfusion Injury in Liver Transplantation: Potentials for Increasing the Donor Pool. Visc. Med. 2018, 34, 444–448. [Google Scholar] [CrossRef] [PubMed]
- Murry, C.E.; Jennings, R.B.; Reimer, K.A. Preconditioning with ischemia: A delay of lethal cell injury in ischemic myocardium. Circulation 1986, 74, 1124–1136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrowsky, H.; McCormack, L.; Trujillo, M.; Selzner, M.; Jochum, W.; Clavien, P.-A. A Prospective, Randomized, Controlled Trial Comparing Intermittent Portal Triad Clamping Versus Ischemic Preconditioning With Continuous Clamping for Major Liver Resection. Ann. Surg. 2006, 244, 921–930. [Google Scholar] [CrossRef]
- Belghiti, J.; Noun, R.; Malafosse, R.; Jagot, P.; Sauvanet, A.; Pierangeli, F.; Marty, J.; Farges, O. Continuous Versus Intermittent Portal Triad Clamping for Liver Resection. Ann. Surg. 1999, 229, 369–375. [Google Scholar] [CrossRef]
- Clavien, P.-A.; Selzner, M.; Rüdiger, H.A.; Graf, R.; Kadry, Z.; Rousson, V.; Jochum, W. A Prospective Randomized Study in 100 Consecutive Patients Undergoing Major Liver Resection With Versus Without Ischemic Preconditioning. Ann. Surg. 2003, 238, 843–852. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, S.; Leuschner, S.; McNally, S.J.; Garden, O.J.; Wigmore, S.J.; Harrison, E. Meta-analysis of ischaemic preconditioning for liver resections. Br. J. Surg. 2013, 100, 1689–1700. [Google Scholar] [CrossRef]
- Gurusamy, K.S.; Kumar, Y.; Pamecha, V.; Sharma, D.; Davidson, B.R. Ischaemic pre-conditioning for elective liver resections performed under vascular occlusion. Cochrane Database Syst. Rev. 2009, 1, CD007629. [Google Scholar] [CrossRef] [PubMed]
- Butterworth, J.F.; Mackey, D.C.; Wasnick, J.D. Morgan & Mikhail’s Clinical Anesthesiology, 5th ed.; McGraw-Hill Education: New York, NY, USA, 2013. [Google Scholar]
- Preckel, B.; Schlack, W.; Comfère, T.; Obal, D.; Barthel, H.; Thämer, V. Effects of enflurane, isoflurane, sevoflurane and desflurane on reperfusion injury after regional myocardial ischaemia in the rabbit heart in vivo. Br. J. Anaesth. 1998, 81, 905–912. [Google Scholar] [CrossRef]
- Ohsumi, A.; Marseu, K.; Slinger, P.; McRae, K.; Kim, H.; Guan, Z.; Hwang, D.M.; Liu, M.; Keshavjee, S.; Cypel, M. Sevoflurane Attenuates Ischemia-Reperfusion Injury in a Rat Lung Transplantation Model. Ann. Thorac. Surg. 2017, 103, 1578–1586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.-K.; Yu, L.-N.; Zhang, F.-J.; Yang, M.-J.; Yu, J.; Yan, M.; Chen, G. Postconditioning with sevoflurane protects against focal cerebral ischemia and reperfusion injury via PI3K/Akt pathway. Brain Res. 2010, 1357, 142–151. [Google Scholar] [CrossRef] [PubMed]
- Landoni, G.; Greco, T.; Biondi-Zoccai, G.; Neto, C.N.; Febres, D.; Pintaudi, M.; Pasin, L.; Cabrini, L.; Finco, G.; Zangrillo, A. Anaesthetic drugs and survival: A Bayesian network meta-analysis of randomized trials in cardiac surgery. Br. J. Anaesth. 2013, 111, 886–896. [Google Scholar] [CrossRef] [Green Version]
- Likhvantsev, V.V.; Landoni, G.; Levikov, D.I.; Grebenchikov, O.A.; Skripkin, Y.V.; Cherpakov, R.A. Sevoflurane Versus Total Intravenous Anesthesia for Isolated Coronary Artery Bypass Surgery With Cardiopulmonary Bypass: A Randomized Trial. J. Cardiothorac. Vasc. Anesthesia 2016, 30, 1221–1227. [Google Scholar] [CrossRef] [Green Version]
- Peters, M.D.J.; Godfrey, C.; McInerney, P.; Munn, Z.; Tricco, A.C.; Khalil, H. Chapter 11: Scoping Reviews (2020 Version). Available online: https://synthesismanual.jbi.global (accessed on 10 February 2022).
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
- Bellanti, F.; Mirabella, L.; Mitarotonda, D.; Blonda, M.; Tamborra, R.; Cinnella, G.; Fersini, A.; Ambrosi, A.; Dambrosio, M.; Vendemiale, G.; et al. Propofol but not sevoflurane prevents mitochondrial dysfunction and oxidative stress by limiting HIF-1α activation in hepatic ischemia/reperfusion injury. Free Radic. Biol. Med. 2016, 96, 323–333. [Google Scholar] [CrossRef]
- Imai, M.; Kon, S.; Inaba, H. Effects of halothane, isoflurane and sevoflurane on ischemiareperfusion injury in the perfused liver of fasted rats. Acta Anaesthesiol. Scand. 1996, 40, 1242–1248. [Google Scholar] [CrossRef]
- Bedirli, N.; Ofluoglu, E.; Kerem, M.; Utebey, G.; Alper, M.; Yilmazer, D.; Bedirli, A.; Ozlu, O.; Pasaoglu, H. Hepatic Energy Metabolism and the Differential Protective Effects of Sevoflurane and Isoflurane Anesthesia in a Rat Hepatic Ischemia-Reperfusion Injury Model. Obstet. Anesthesia Dig. 2008, 106, 830–837. [Google Scholar] [CrossRef] [Green Version]
- Soubhia, A.F.; Lauz, S.; Montero, E.F.D.S.; Menezes, A.; Mespaque, L.B.; Facin, E. Effects of the Inhalational Anesthetics Halothane and Sevoflurane on an Experimental Model of Hepatic Injury. Rev. Bras. Anestesiol. 2011, 61, 591–603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molin, S.Z.D.; Kruel, C.R.; de Fraga, R.S.; Alboim, C.; de Oliveira, J.R.; Alvares-Da-Silva, M.R. Differential protective effects of anaesthesia with sevoflurane or isoflurane: An animal experimental model simulating liver transplantation. Eur. J. Anaesthesiol. 2014, 31, 695–700. [Google Scholar] [CrossRef]
- Jeong, J.; Kim, D.; Kim, K.; Ryu, S.; Han, S.; Shin, B.; Kim, G.; Gwak, M.; Ko, J. Ischemic Preconditioning Produces Comparable Protection Against Hepatic Ischemia/Reperfusion Injury Under Isoflurane and Sevoflurane Anesthesia in Rats. Transplant. Proc. 2017, 49, 2188–2193. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Du, Y.; Zeng, H.; Xing, H.; Tian, C.; Zou, X. Comparison of Inflammatory Markers Between the Sevoflurane and Isoflurane Anesthesia in a Rat Model of Liver Ischemia/Reperfusion Injury. Transplant. Proc. 2019, 51, 2071–2075. [Google Scholar] [CrossRef] [PubMed]
- Ishida, H.; Kadota, Y.; Sameshima, T.; Nishiyama, A.; Oda, T.; Kanmura, Y. Comparison between sevoflurane and isoflurane anesthesia in pig hepatic ischemia-reperfusion injury. J. Anesthesia 2002, 16, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Shiraishi, S.; Cho, S.; Akiyama, D.; Ichinomiya, T.; Shibata, I.; Yoshitomi, O.; Maekawa, T.; Ozawa, E.; Miyaaki, H.; Hara, T. Sevoflurane has postconditioning as well as preconditioning properties against hepatic warm ischemia–reperfusion injury in rats. J. Anesthesia 2019, 33, 390–398. [Google Scholar] [CrossRef]
- Figueira, E.R.R.; Rocha-Filho, J.A.; Lanchotte, C.; Coelho, A.M.M.; Nakatani, M.; Tatebe, E.R.; Lima, J.A.V.; Mendes, C.O.; de Araujo, B.; Abdo, E.E.; et al. Sevoflurane Preconditioning plus Postconditioning Decreases Inflammatory Response with Hemodynamic Recovery in Experimental Liver Ischemia Reperfusion. Gastroenterol. Res. Pract. 2019, 2019, 5758984. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.P.; Jiang, P.; Liu, L.; Liu, H. Protective effect of sevoflurane on hepatic ischaemia/reperfusion injury in the rat: A dose-response study. Eur. J. Anaesthesiol. 2013, 30, 612–617. [Google Scholar] [CrossRef]
- Morita, T.; Ishikawa, M.; Sakamoto, A. Identical MicroRNAs Regulate Liver Protection during Anaesthetic and Ischemic Preconditioning in Rats: An animal study. PLoS ONE 2015, 10, e0125866. [Google Scholar] [CrossRef]
- Balzan, S.M.; Gava, V.G.; Rieger, A.; Pra, D.; Trombini, L.; Zenkner, F.F.; Horta, J.A.; Azambuja, G.; Schopf, L.; de Souza, P.L. Ischemic versus pharmacologic hepatic preconditioning. J. Surg. Res. 2014, 191, 134–139. [Google Scholar] [CrossRef]
- Yamada, T.; Nagata, H.; Kosugi, S.; Suzuki, T.; Morisaki, H.; Kotake, Y. Interaction between anesthetic conditioning and ischemic preconditioning on metabolic function after hepatic ischemia-reperfusion in rabbits. J. Anesth. 2018, 32, 599–607. [Google Scholar] [CrossRef] [PubMed]
- Kong, H.Y.; Zhu, S.M.; Wang, L.Q.; He, Y.; Xie, H.Y.; Zheng, S.S. Sevoflurane protects against acute kidney injury in a small-size liver transplantation model. Am. J. Nephrol. 2010, 32, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Yu, J.; Wu, J.; Qi, F.; Wang, H.; Wang, Z.; Wang, Z. The Effects of Two Anesthetics, Propofol and Sevoflurane, on Liver Ischemia/Reperfusion Injury. Cell Physiol. Biochem. 2016, 38, 1631–1642. [Google Scholar] [CrossRef]
- Liu, D.; Jin, X.; Zhang, C.; Shang, Y. Sevoflurane relieves hepatic ischemia-reperfusion injury by inhibiting the expression of Grp78. Biosci. Rep. 2018, 38, BSR20180549. [Google Scholar] [CrossRef] [Green Version]
- Sima, L.J.; Ma, X.W. Effect of sevoflurane on hepatic ischemia-reperfusion injury in rats via JAK2-STAT3 pathway. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 1350–1356. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.; Zhou, S.; Zong, J.; Wang, Z. Sevoflurane exerts protective effects on liver ischemia/reperfusion injury by regulating NFKB3 expression via miR-9-5p. Exp. Ther. Med. 2019, 17, 2632–2640. [Google Scholar] [CrossRef]
- Ma, H.; Yang, B.; Yu, L.; Gao, Y.; Ye, X.; Liu, Y.; Li, Z.; Li, H.; Li, E. Sevoflurane protects the liver from ischemia-reperfusion injury by regulating Nrf2/HO-1 pathway. Eur. J. Pharmacol. 2021, 898, 173932. [Google Scholar] [CrossRef]
- Granja, T.F.; Kohler, D.; Schad, J.; de Oliveira, C.B.; Konrad, F.; Hoch-Gutbrod, M.; Streienberger, A.; Rosenberger, P.; Straub, A. Adenosine Receptor Adora2b Plays a Mechanistic Role in the Protective Effect of the Volatile Anesthetic Sevoflurane during Liver Ischemia/Reperfusion. Anesthesiology 2016, 125, 547–560. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.; Liu, D.; Chen, S.; Li, X.; Ge, M.; Huang, W. Sevoflurane preconditioning activates HGF/Met-mediated autophagy to attenuate hepatic ischemia-reperfusion injury in mice. Cell Signal 2021, 82, 109966. [Google Scholar] [CrossRef]
- Xu, L.; Ge, F.; Hu, Y.; Yu, Y.; Guo, K.; Miao, C. Sevoflurane Postconditioning Attenuates Hepatic Ischemia-Reperfusion Injury by Limiting HMGB1/TLR4/NF-κB Pathway via Modulating microRNA-142 in vivo and in vitro. Front. Pharmacol. 2021, 12, 646307. [Google Scholar] [CrossRef]
- Ji, H.; Li, H.; Zhang, H.; Cheng, Z. Role of microRNA-218-5p in sevoflurane-induced protective effects in hepatic ischemia/reperfusion injury mice by regulating GAB2/PI3K/AKT pathway. Mol. Med. Rep. 2022, 25, 1. [Google Scholar] [CrossRef]
- Liu, H.; Yuan, Y.; Rao, D. Sevoflurane alleviates liver ischemia reperfusion injury through inactivation of the traf6/nf-κb signaling pathway. Trop. J. Pharm. Res. 2021, 20, 2043–2048. [Google Scholar] [CrossRef]
- Ingram, H.; Dogan, M.; Eason, J.D.; Kuscu, C.; Kuscu, C. MicroRNAs: Novel Targets in Hepatic Ischemia-Reperfusion Injury. Biomedicines 2022, 10, 791. [Google Scholar] [CrossRef] [PubMed]
- Gong, C.; Zhou, X.; Lai, S.; Wang, L.; Liu, J. Long Noncoding RNA/Circular RNA-miRNA-mRNA Axes in Ischemia-Reperfusion Injury. Biomed. Res. Int. 2020, 2020, 8838524. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Wang, X.; Xiong, Y.; Ma, X.; Qu, L. Effect of sevoflurane pretreatment in relieving liver ischemia/reperfusion-induced pulmonary and hepatic injury. Acta Cir. Bras. 2019, 34, e201900805. [Google Scholar] [CrossRef]
- Mikrou, A.; Kalimeris, K.A.; Lilis, I.; Papoutsidakis, N.; Nastos, K.; Papadaki, H.; Kostopanagiotou, G.G.; Zarkadis, I.K. Molecular studies of the immunological effects of the sevoflurane preconditioning in the liver and lung in a rat model of liver ischemia/reperfusion injury. Mol. Immunol. 2016, 72, 1–8. [Google Scholar] [CrossRef]
- Wu, Y.; Gu, C.; Huang, X. Sevoflurane protects against hepatic ischemia/reperfusion injury by modulating microRNA-200c regulation in mice. Biomed. Pharmacother. 2016, 84, 1126–1136. [Google Scholar] [CrossRef]
- He, B.; Yang, F.; Ning, Y.; Li, Y. Sevoflurane alleviates hepatic ischaemia/reperfusion injury by up-regulating miR-96 and down-regulating FOXO4. J. Cell Mol. Med. 2021, 25, 5899–5911. [Google Scholar] [CrossRef]
- Beck-Schimmer, B.; Roth Z’graggen, B.; Booy, C.; Koppel, S.; Spahn, D.R.; Schlapfer, M.; Schadde, E. Sevoflurane Protects Hepatocytes From Ischemic Injury by Reducing Reactive Oxygen Species Signaling of Hepatic Stellate Cells: Translational Findings Based on a Clinical Trial. Anesth. Analg. 2018, 127, 1058–1065. [Google Scholar] [CrossRef] [Green Version]
- Gallo, S.; Sala, V.; Gatti, S.; Crepaldi, T. Cellular and molecular mechanisms of HGF/Met in the cardiovascular system. Clin. Sci. 2015, 129, 1173–1193. [Google Scholar] [CrossRef]
- Andrews, D.T.; Royse, C.; Royse, A.G. The mitochondrial permeability transition pore and its role in anaesthesia-triggered cellular protection during ischaemia-reperfusion injury. Anaesth. Intensiv. Care 2012, 40, 46–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, J.L.; Gruszczyk, A.V.; Beach, T.E.; Murphy, M.P.; Saeb-Parsy, K. Mitochondrial mechanisms and therapeutics in ischaemia reperfusion injury. Pediatr. Nephrol. 2019, 34, 1167–1174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Yuan, T.; Zhao, X.; Lv, G.Y.; Liu, H.Q. Protective effects of sevoflurane in hepatic ischemia-reperfusion injury. Int. J. Immunopathol. Pharmacol. 2016, 29, 300–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alphonsus, C.S.; Rodseth, R.N. The endothelial glycocalyx: A review of the vascular barrier. Anaesthesia 2014, 69, 777–784. [Google Scholar] [CrossRef]
- Cavalcante, F.P.; Coelho, A.M.; Machado, M.C.; Sampietre, S.N.; Patzina, R.A.; Diniz, M.A.; Chaib, E.; D’Albuquerque, L.A. Mechanisms of the beneficial effect of sevoflurane in liver ischemia/reperfusion injury. Acta Cir. Bras. 2015, 30, 749–755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beck-Schimmer, B.; Breitenstein, S.; Bonvini, J.M.; Lesurtel, M.; Ganter, M.; Weber, A.; Puhan, M.A.; Clavien, P.A. Protection of pharmacological postconditioning in liver surgery: Results of a prospective randomized controlled trial. Ann. Surg. 2012, 256, 837–844. [Google Scholar] [CrossRef]
- Beck-Schimmer, B.; Breitenstein, S.; Urech, S.; Conno, E.D.; Wittlinger, M.; Puhan, M.; Jochum, W.; Spahn, D.R.; Graf, R.; Clavien, P.A. A randomized controlled trial on pharmacological preconditioning in liver surgery using a volatile anesthetic. Ann. Surg. 2008, 248, 909–916. [Google Scholar] [CrossRef] [Green Version]
- Eichler, K.; Urner, M.; Twerenbold, C.; Kern, S.; Brugger, U.; Spahn, D.R.; Beck-Schimmer, B.; Ganter, M.T. Economic Evaluation of Pharmacologic Pre- and Postconditioning With Sevoflurane Compared With Total Intravenous Anesthesia in Liver Surgery: A Cost Analysis. Anesth. Analg. 2017, 124, 925–933. [Google Scholar] [CrossRef] [Green Version]
- Song, J.C.; Sun, Y.M.; Yang, L.Q.; Zhang, M.Z.; Lu, Z.J.; Yu, W.F. A comparison of liver function after hepatectomy with inflow occlusion between sevoflurane and propofol anesthesia. Anesth. Analg. 2010, 111, 1036–1041. [Google Scholar] [CrossRef] [Green Version]
- Slankamenac, K.; Breitenstein, S.; Beck-Schimmer, B.; Graf, R.; Puhan, M.A.; Clavien, P.A. Does pharmacological conditioning with the volatile anaesthetic sevoflurane offer protection in liver surgery? HPB 2012, 14, 854–862. [Google Scholar] [CrossRef] [Green Version]
- Simillis, C.; Robertson, F.P.; Afxentiou, T.; Davidson, B.R.; Gurusamy, K.S. A network meta-analysis comparing perioperative outcomes of interventions aiming to decrease ischemia reperfusion injury during elective liver resection. Surgery 2016, 159, 1157–1169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez, A.; Taura, P.; Garcia Domingo, M.I.; Herrero, E.; Camps, J.; Forcada, P.; Sabate, S.; Cugat, E. Hepatic cytoprotective effect of ischemic and anesthetic preconditioning before liver resection when using intermittent vascular inflow occlusion: A randomized clinical trial. Surgery 2015, 157, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Minou, A.F.; Dzyadzko, A.M.; Shcherba, A.E.; Rummo, O.O. The influence of pharmacological preconditioning with sevoflurane on incidence of early allograft dysfunction in liver transplant recipients. Anesthesiol. Res. Pract. 2012, 2012, 930487. [Google Scholar] [CrossRef] [PubMed]
- Perez-Protto, S.; Nazemian, R.; Matta, M.; Patel, P.; Wagner, K.J.; Latifi, S.Q.; Lebovitz, D.J.; Reynolds, J.D. The effect of inhalational anaesthesia during deceased donor organ procurement on post-transplantation graft survival. Anaesth. Intensiv. Care 2018, 46, 178–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mangus, R.S.; Kinsella, S.B.; Farar, D.T.; Fridell, J.A.; Woolf, L.T.; Kubal, C.A. Impact of Volatile Anesthetic Agents on Early Clinical Outcomes in Liver Transplantation. Transpl. Proc. 2018, 50, 1372–1377. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Yoo, Y.J.; Lee, J.M.; Park, Y.J.; Ryu, H.G. Sevoflurane Versus Desflurane on the Incidence of Postreperfusion Syndrome During Living Donor Liver Transplantation: A Randomized Controlled Trial. Transplantation 2016, 100, 600–606. [Google Scholar] [CrossRef] [PubMed]
- Beck-Schimmer, B.; Bonvini, J.M.; Schadde, E.; Dutkowski, P.; Oberkofler, C.E.; Lesurtel, M.; DeOliveira, M.L.; Figueira, E.R.; Rocha Filho, J.A.; Auler, J.O., Jr.; et al. Conditioning With Sevoflurane in Liver Transplantation: Results of a Multicenter Randomized Controlled Trial. Transplantation 2015, 99, 1606–1612. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Weng, Y.; Yuan, S.; Liu, W.; Yu, H.; Yu, W. Effect of sevoflurane and propofol on acute kidney injury in pediatric living donor liver transplantation. Ann. Transl. Med. 2019, 7, 340. [Google Scholar] [CrossRef]
- Obal, D.; Preckel, B.; Scharbatke, H.; Mullenheim, J.; Hoterkes, F.; Thamer, V.; Schlack, W. One MAC of sevoflurane provides protection against reperfusion injury in the rat heart in vivo. Br. J. Anaesth. 2001, 87, 905–911. [Google Scholar] [CrossRef] [Green Version]
- Nieuwenhuijs-Moeke, G.J.; Nieuwenhuijs, V.B.; Seelen, M.A.J.; Berger, S.P.; van den Heuvel, M.C.; Burgerhof, J.G.M.; Ottens, P.J.; Ploeg, R.J.; Leuvenink, H.G.D.; Struys, M. Propofol-based anaesthesia versus sevoflurane-based anaesthesia for living donor kidney transplantation: Results of the VAPOR-1 randomized controlled trial. Br. J. Anaesth. 2017, 118, 720–732. [Google Scholar] [CrossRef] [Green Version]
- Chu, M.J.; Hickey, A.J.; Phillips, A.R.; Bartlett, A.S. The impact of hepatic steatosis on hepatic ischemia-reperfusion injury in experimental studies: A systematic review. Biomed. Res. Int. 2013, 2013, 192029. [Google Scholar] [CrossRef] [PubMed]
- Hao, W.; Zhao, Z.H.; Meng, Q.T.; Tie, M.E.; Lei, S.Q.; Xia, Z.Y. Propofol protects against hepatic ischemia/reperfusion injury via miR-133a-5p regulating the expression of MAPK6. Cell Biol. Int. 2017, 41, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.; Yang, L.; Tao, K.; Liu, Y.; Yang, T.; Chen, G.; Yu, W.; Lv, H.; Wu, F. Isoflurane Preconditioning at Clinically Relevant Doses Induce Protective Effects of Heme Oxygenase-1 on Hepatic Ischemia Reperfusion in Rats. BMC Gastroenterol. 2011, 11, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, M.; Che, L.; Du, M.; Liu, K.; Wang, D. Desflurane protects against liver ischemia/ reperfusion injury via regulating miR-135b-5p. J. Chin. Med. Assoc. 2021, 84, 38–45. [Google Scholar] [CrossRef]
Author | Year | Population | HIRI Mechanism | Main Results | Suggested Mechanisms | Comments |
---|---|---|---|---|---|---|
Rats | ||||||
Imai et al. [21] | 1996 | 16 Sprague Dawley rats (anesthetized with PTB):
| Liver excision and ex vivo portal perfusion at 0.2 kPa for 15–30 or 60 min and reperfusion at 1.2 kPa for 120 min | LDH decreased in VA groups after reperfusion (p < 0.05) | N/A | N/A |
Bedirli et al. [22] | 2008 | 72 Wistar rats (anesthetized with ketamine):
| Partial HPC (left and median lobe) 45 min + 120–240 min reperfusion | ALT, AST, MDA reduced in sevo group compared to I/R and I/R isoflurane group (p < 0.05) Hepatic tissue blood flow increased in sevo group compared to I/R and I/R isoflurane group (p < 0.05) IL-1, TNF-α: no statistical differences | N/A | N/A |
Kong et al. [34] | 2010 | 60 Sprague Dawley rats:
| 50% size liver transplantation model | TNF- α, IL-6, MPO, NGAL concentration 2 h after reperfusion decreased in sevo group compared to chloral hydrate group (p < 0.05) Renal tissue NF-κB activity higher in chloral hydrate group compared to sevo (p < 0.05) No statistical differences for ALT and AST | N/A | NGAL = early predictive biomarker of AKI Sevo conditioning attenuates kidney injury |
Soubhia et al. [23] | 2011 | 30 Wistar rats:
| Liver hypoxia through ventilation at 14% O2–86% N2 during 120 min | Significantly less optical microscopic liver alteration (steatosis, inflammatory infiltration, necrosis) compared to halothane group No statistical differences between halothane and sevo regarding AST and ALT | N/A | N/A |
Zhou et al. [30] | 2013 | 50 Sprague Dawley rats (anesthetized with PTB):
| Partial HPC (left + median lobe) 60 min + 120 min reperfusion | AST, ALT, MPO, MDA reduced in sevo groups (p < 0.05) compared to I/R group SOD increased in sevo groups (p < 0.05) compared to I/R group No statistical differences between groups with different sevo concentrations | No dose-response relationship between sevo preC and its protective effect against HIRI | N/A |
Dal Molin et al. [24] | 2014 | 20 Wistar rats:
| LT model: liver donor rat, cold liver storage for 360 min before reimplantation in recipient rat | AST, ALT and LDH decreased in preservation liquid of sevo group (p < 0.05) No statistical difference in AST, ALT and LDH in serum Serum TBARS concentration decreased in recipient rats in sevo group (p < 0.05) NO in liver tissues increased in sevo group (p < 0.05) | N/A | TBARS = products of lipid oxidation; markers of OS Serum measurements 15 min after reperfusion and in preservation liquid |
Morita et al. [31] | 2015 | 21 Wistar rats (anesthetized with PTB):
| Partial HPC (left + median lobe) 60 min + 180 min reperfusion IPC = 10 min clamping + 10 min reperfusion before I/R | ALT, AST decreased in sevo and IPC group compared to control (p < 0.05); no statistical differences between sevo and IPC Identification of 4 miRNA suppressed by sevo and IPC; miRNA involved in downregulation of the Akt/GSK/Cyclin D pathway (p < 0.05) | Activation of Akt/GSK/cyclin D pathway leading to:
| N/A |
Cavalcante et al. [57] | 2015 | 39 Wistar rats (anesthetized with ketamine + xylazine)
| Partial HPC (left + median lobe) 60 min + 240 min reperfusion | ALT, AST decreased in sevo group (p < 0.05) No statistical differences for IL-6, IL-10, TNF- α Preservation of mitochondrial function in sevo group: preserved S3 state respiration, RCR, ADP/O (p < 0.05) | Preservation of mitochondrial function | N/A |
Mikrou et al. [48] | 2016 | 50 Wistar rats (anesthetized with ketamine + xylazine)
| Partial HPC (right + median lobe) 45 min + 360 min reperfusion | ALT, ALP, AST, plasmatic C3 and ICAM mRNA decreased in I/R sevo preC group compared to I/R group (p < 0.05) | Downregulation of:
| N/A |
Li et al. [55] | 2016 | 28 Sprague Dawley rats:
| Partial HPC (left + median lobe) 45 min + 40 min reperfusion | AST, ALT, HS release, Syn-1 release, microscopic glycocalyx alteration reduced in I/R + sevo group compared to I/R + ketamine group | Protection of endothelial glycocalyx | HS, Syn1 = molecules constituting the glycocalyx |
Xu et al. [35] | 2016 | Sprague Dawley rats (anesthetized with PTB) (>5 per group):
| Partial HPC (left + median lobe) 60 min + 120 min reperfusion | AST, ALT, IL-1, IL-6, TNF-α, NO, MDA, Bax, Bak reduced in propofol and sevo group compared to I/R group (p < 0.05) IL-10, SOD, Bcl-2, Bcl-xl increased in propofol and sevo group (p < 0.05) Reduction of p65 phosphorylation in propofol and sevo group Reduction of p38 phosphorylation in sevo group | Inhibition of p65 phosphorylation; downregulation of NF-κB pathway. Regulation of mitochondrial permeability through upregulation of anti-apoptotic and downregulation of pro-apoptotic molecules | Bax, Bak = pro-apoptotic proteins Bcl-2, Bcl-xl = anti-apoptotic proteins |
Bellanti et al. [20] | 2016 | 30 Wistar rats:
| PM 45 min + 60 min reperfusion | ALT, AST, ROS decreased in propofol group compared to control group (p < 0.05) Better preservation of mitochondrial activity in propofol group (p < 0.05) No effect of sevo (AST, ALT, ROS, mitochondrial activity) compared to tiletamine/zolazepam | Suggested protective effect of propofol through inhibition of HIF-α | Study showing no protective effect of sevo against HIRI |
Jeong et al. [25] | 2017 | 38 rats:
| Partial HPC (left + median lobe) 45 min + 120 min reperfusion IPC = 10 min clamping + 15 min reperfusion + I/R | ALT, AST decreased in IPC groups compared to I/R (p < 0.05) (similar effect for isoflurane or sevo) Bcl-2 mRNA expression increased in IPC groups compared to I/R (p < 0.05) (similar effect for isoflurane or sevo) Caspase 3 level: no statistical difference in control group vs. sevo groups | Bcl-2 upregulation | Bcl-2 = anti-apoptotic protein |
Liu et al. [36] | 2018 | 24 Sprague-Dawley rats (anesthetized with PTB)
| Partial HPC (left + median lobe) for 120 min + 120 min reperfusion | IL-1, IL-6, TNF-alpha, MDA, NO, apoptotic rate reduced in sevo group compared to I/R group (p < 0.01) SOD, IL-10 increased in sevo group compared to I/R group (p < 0.01) | Inhibition of Grp78 expression (involved in apoptotic pathways) | N/A |
Sima et al. [37] | 2019 | 40 Sprague Dawley rats (anesthetized with urethane)
| Partial HPC (left + median lobe) 60 min + 360 min reperfusion | ALT, AST, ALP, IL-1, IL-6, TNF-alpha reduced in sevo group compared to I/R group (p < 0.05) Adjunction of AG490 increased ALT, AST, ALP, IL-1, IL-6 and TNF-α levels (p < 0.05) STAT2 and JAK3 expression higher in the sevo group compared to I/R group; effect counteracted by adjunction of AG490 (p < 0.05) | Activation of the JAK2-STAT3 pathway Inhibition of mPTP opening | AG490 = inhibitor of JAK2-STAT3 pathway |
Liao et al. [38] | 2019 | 36 Sprague-Dawley rats (anesthetized with PTB)
| PM 60 min + 120 min reperfusion | ALT, AST, LDH, IL-1, IL-6, TNF-α reduced in sevo and miR-9-5p mimic groups compared to I/R group (p < 0.01) IL-10 increased in sevo and miR-9-5p mimic groups compared to I/R group (p < 0.01) Sevoflurane conditioning suppresses the overexpression of transcription factor p65 triggered by I/R | miR-9-5p overexpression; reduction of p65 by inhibition of its coding gene NF-κB3, subsequent reduction of NF-κB activity | |
Shiraishi et al. [28] | 2019 | 48 Wistar rats (anesthetized with PTB, propofol, fentanyl)
| Partial HPC (median + left lobe) 60 min + 180 min reperfusion | ALT, AST and LDH: reduced in sevoflurane groups compared to I/R (similar for pre- or postC) (p < 0.05) ALT, AST and LDH reduction is less marked with administration of Znpp (p < 0.05) | Increase in HO-1 expression | Znpp = HO-1 inhibitor |
Figueira et al. [29] | 2019 | 20 Wistar rats (anesthetized with ketamine and xylazine)
| Partial HPC (median + left lobe) 45 min + 240 min reperfusion | ALT decreased in sevo group compared to I/R (similar for preC or pre + postC) (p < 0.05) Potassium and HCO3- increased in sevo group compared to I/R (p < 0.05) IL-6 decreased in sevo group compared to I/R; effect more marked for pre- + postC group (p < 0.05) | N/A | N/A |
Yang et al. [26] | 2019 | 40 Wistar rats (anesthetized with PTB)
| PM for 45 min + 120 min reperfusion | AST, ALT, LDH, TNF-α, IL-1, IL-6, ICAM-1, MDA, NO, C3: reduced in VA conditioned groups compared to I/R (effect more marked for sevo group) (p < 0.05) IL-10 and SOD increased in VA conditioned group compared to I/R (effect more marked for sevo group) (p < 0.05) | ICAM1 reduction and subsequent decrease in leucocyte recruitment Decrease in complement activation | N/A |
Xu et al. [47] | 2019 | 51 Wistar rats (anesthetized with PTB)
| Partial HPC (median + left lobe) 30 min + 60 min reperfusion | AST, ALT, TNF-α, pulmonary MDA, pulmonary MPO, MMP-9 mRNA decreased in sevo group (p < 0.05) | Inhibition of MMP-9 secretion | MMP-9 involved in leucocyte recruitment and activation |
Ma et al. [39] | 2021 | 32 Sprague Dawley
| Partial HPC (median + left lobe) 120 min + 120 min reperfusion | LDH, MDA, IL-1, IL-6, TNF-α, apoptotic rate, liver injury, cytosolic Nrf2 expression decreased in I/R + sevo group compared to I/R group (p < 0.01) HO-1 expression, nuclear Nrf2 expression increased in I/R + sevo group compared to I/R group (p < 0.01) Protective effect of sevo was counteracted by ML385 treatment | Activation of Nrf2-HO1 pathway | ML385 = Nrf2 inhibitor |
Liu et al. [44] | 2021 | 30 Wister rats (anesthetized with PTB)
| Partial HPC (median + left lobe) 120 min + 120 min reperfusion | Pathological liver damage, AST, ALT decreased in sevo group compared to I/R MPO, TNF-α, IL-1, IL-6 decreased in sevo group compared to I/R Increased IκBα expression in sevo group; decreased TRAF6, p-IκBα, and p-p65 expression | Inactivation of the TRAF6- NK-κB pathway | |
Mice | ||||||
Granja et al. [40] | 2016 | Mice (anesthetized with PTB)
| PM 30 min + 180 min reperfusion | Platelet activation, leucocyte activation, AST and IL-6 reduced in sevo conditioned group; protective effects of sevo not observed in Adora2b−/− mice (p < 0.05) Activation of platelets and interaction of platelets and neutrophils inhibited in vitro | Protective effects mediated through adenosine receptor Adora2b | N/A |
Wu et al. [49] | 2016 | C57BL/6 mice (anesthetized with ketamine)
| PM 30 min + 30 min reperfusion | ALT, AST, LDH, MDA reduced in sevo group compared to I/R (p < 0.05) Overexpression of miR-200c significantly inhibits the protective effects of sevo in HIRI | miR-200c downregulation ZEB-1 (target gene of miR-200c) involved in H2O2-induced apoptosis | N/A |
He et al. [50] | 2021 | 190 C57BL/6 mice separated in different groups combining:
| 60 min portal vein occlusion + up to 24 h reperfusion | Reduced liver injury, apoptotic cells, FOXO4-positive cells if sevo conditioning (p < 0.05) FOXO4 expression increased if transfection of miR-96 antagomir HIRI and cell apoptosis reduced in FOXO4 KO mice | Sevo promotes miR-96 expression which inhibits FOXO4 expression | FOXO4 is a target gene of miR-96 FOX04 is involved in cell apoptosis by upregulating caspase 3 and Bax and downregulating Bcl-2 |
Xiao et al. [41] | 2021 | 48 C57BL/6 J mice (anesthetized with ketamine and xylazine):
| Partial HPC (median + left lobe) 30 min + 360 min reperfusion | ALT, AST, IL-1, MDA, Suzuki score, TNF-α, apoptotic rate reduced in sevo + I/R group compared to I/R group (p < 0.05) SOD, IL-10 increased in sevo + I/R group compared to I/R group (p < 0.05) Sevo preC activates autophagy Injection of 3-MA / HGF inhibitor abolishes the protective effects of sevo; HGF overexpression strengthens the protective effects of sevo | Activation of HGF/MET-mediated autophagy | 3-MA = autophagy inhibitor |
Xu et al. [42] | 2021 | 30 BALB/c mice (anesthetized with PTB):
| Partial HPC (median + left lobe) 30 min + 120 min reperfusion | AST, ALT, LDH, Suzuki score, IL-1, IL-6, TNF-α, MDA reduced in sevo group compared to I/R (p < 0.01) SOD increased in sevo group compared to I/R (p < 0.01) Hepatoprotective effects of sevo enhanced by agomiR-124; counteracted by antagomiR-142 | Upregulation of miR-142; decreased expression of HMGB1; inhibition of TLR4/NF-κB pathway | N/A |
Ji et al. [43] | 2022 | 30 BALB/c mice (anesthetized with PTB):
| Partial HPC (median + left lobe) 45 min + 120 reperfusion | AST, ALT, LDH, MDA, IL-1, IL-6, TNF-α, caspase 3 expression reduced in sevo group compared to I/R (p < 0.01) SOD, IL- 10 increased in sevo group compared to I/R (p < 0.01) Hepatoprotective effects of sevo reversed by agomiR-218-5p injection | Downregulation of miR-218-5p expression leading to overexpression of GAB2 | GAB2 = activator PI3K/AKT/mTOR pathway |
Pigs | ||||||
Ishida et al. [27] | 2002 | 19 pigs (anesthetized with ketamine)
| PM 30 min + 240 min reperfusion | No statistical differences in ALT, AST, LDH, α-GST, lipide peroxides Lactatemia lower in sevo group 120 min after reperfusion | N/A | N/A |
Balzan et al. [32] | 2014 | 18 swine (anesthetized with ketamine, midazolam and fentanyl):
| I/R = 40 min PM + 40 min reperfusion IPC = 10 min PM + 15 min reperfusion + I/R | AST, ALT, ALP and bilirubinemia: no significant difference between the groups CRP after ischemia lower in sevoflurane group compared to control (p < 0.05) Lower DNA damage in sevoflurane group compared to control (p < 0.05) | N/A | N/A |
Rabbits | ||||||
Yamada et al. [33] | 2018 | 36 white rabbits (anesthetized with ketamine + xylazine)
| Partial HPC (right lobe) 90 min + 180 min reperfusion IPC = 10 min of clamping + 10 min reperfusion + I/R | No statistical difference for ALT, AST between the groups Galactose clearance increased in sevo groups Lactatemia decreased in sevo groups No added benefit of IPC when sevoflurane is used | N/A | N/A |
In vitro | ||||||
Beck-Schimmer et al. [51] | 2018 | In vitro examination of liver biopsy samples taken during an RCT [58], 45 min after reperfusion (propofol anesthesia)
| H/R model: exposure of HSC or hepatocytes to 0.2% O2 + reoxygenation (21% O2) for up to 24 h | Reduction of Bax/Bcl2 mRNA ratio in sevo postC group compared to control (p < 0.0.5) Reduction of ROS in HSC exposed to sevo (p < 0.05) Caspase activation in hepatocytes incubated with supernatants of HSC exposed to H/R Caspase activation significantly reduced in hepatocytes incubated with supernatants of HSC exposed to H/R and sevoflurane | Inhibition of apoptosis Hepatoprotective effects of sevoflurane possibly mediated by HSC | Bcl-2 = anti-apopototic protein Bax = pro-apoptotic protein |
Author | Year | Type of Study | Population | Main Results | Comments |
---|---|---|---|---|---|
Liver Resection | |||||
Beck-Schimmer et al. [59] | 2008 | RCT | Liver resection with inflow occlusion (>30 min); 64 patients (anesthetized with propofol):
| Peak transaminases, complication rate, major complications: significantly reduced Hospital, ICU LOS: no statistical difference | Patients with cirrhosis excluded Stronger protective effects in patients with steatosis iNOS significantly upregulated in the preC group |
Song et al. [61] | 2010 | RCT | Liver resection with inflow occlusion 100 patients:
| Peak transaminases, bilirubin, ALP, hospital LOS: no significant difference | Non-significant increase in peak transaminases in cirrhotic patients |
Slankamenac et al. [62] | 2012 | retrospective | Liver resection with inflow occlusion 227 patients:
| Peak transaminases, hospital LOS, ICU LOS, complication rates: no significant difference | Possible negative selection bias: sevoflurane preferentially used in patients with more severe comorbidities |
Beck-Schimmer et al. [58] | 2012 | RCT | Liver resection 115 patients (anesthetized with propofol):
| Peak AST, complication rates, hospital LOS: significantly reduced with postC and IC compared to control No significant difference between IC and sevo postC | Patients with cirrhosis excluded |
Rodriguez et al. [64] | 2015 | RCT | Liver resection with IC 107 patients (anesthetized with propofol):
| Postoperative transaminases, bilirubin, INR, histological analysis, complication rates, hospital LOS: no significant difference between the groups | Patients with cirrhosis excluded iNOS 1h after reperfusion similar to baseline in all groups |
Simillis et al. [63] | 2016 | Network meta-analysis | Liver resection with inflow occlusion | Serious adverse events: significantly reduced. Hospital LOS: no significant difference | Includes only two RCTs [58,59] |
Eichler et al. [60] | 2017 | Cost analysis of two RCTs | Liver resection with inflow occlusion 129 patients (anesthetized with propofol):
| Nonsignificant reduction of costs with sevo preC or postC compared to control | Based on two RCTs [58,59] Cost reduction due to significant reduction of complication rates in the preC or postC group |
Liver transplantation | |||||
Minou et al. [65] | 2012 | RCT | LT; DBD 60 donors:
| Peak transaminases, incidence of EAD: significantly reduced in sevo group | No significant difference in peak transaminases or EAD in subgroup without steatosis Maintenance of anesthesia in the recipient with sevo in both groups |
Beck-Schimmer et al. [69] | 2015 | RCT | LT 98 recipients:
| Peak transaminases, incidence of EAD, complication rates, ICU LOS, hospital LOS: no significant difference | Nonsignificant difference in severity of complications in favor of sevo postC group |
Lee et al. [68] | 2016 | RCT | Adult LDLT 62 recipients:
| Incidence of PRS: significantly reduced in sevo group Postoperative transaminases, bilirubin, hospital and ICU LOS: no significant difference | Estimated blood loss: significantly reduced in sevo group Donor’s anesthetic regimen unknown |
Mangus et al. [67] | 2018 | retrospective | LT 1291 recipients:
| Incidence of EAD, renal dysfunction, hospital LOS, graft and patient survival: no statistical difference | Nonsignificant increase in ALT in isoflurane group Warm and cold ischemia times significantly higher in isoflurane group MELD and D-MELD significantly higher in sevo group Subgroup analysis for high-risk grafts: no significant difference in peak ALT |
Perez-Protto et al. [66] | 2018 | retrospective | DBD donors 213 organ donors (173 LT):
| Early (30 days) and late (5 years) graft survival: no significant difference Secondary analysis comparing sevo preC and no VA group: no significant difference in early and late graft survival | Recipient’s anesthetic regimen unknown |
Li et al. [70] | 2019 | RCT | Pediatric LDLT 120 recipients:
| Incidence of AKI, IL-18, TNF-α, NGAL: significantly reduced in sevo postC group IL-10, markers of oxidative stress: no significant difference | Donor’s anesthetic regimen unknown |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benoit, L.; Dieu, A.; Foguenne, M.; Bonaccorsi-Riani, E. Experimental and Clinical Aspects of Sevoflurane Preconditioning and Postconditioning to Alleviate Hepatic Ischemia-Reperfusion Injury: A Scoping Review. Int. J. Mol. Sci. 2023, 24, 2340. https://doi.org/10.3390/ijms24032340
Benoit L, Dieu A, Foguenne M, Bonaccorsi-Riani E. Experimental and Clinical Aspects of Sevoflurane Preconditioning and Postconditioning to Alleviate Hepatic Ischemia-Reperfusion Injury: A Scoping Review. International Journal of Molecular Sciences. 2023; 24(3):2340. https://doi.org/10.3390/ijms24032340
Chicago/Turabian StyleBenoit, Loïc, Audrey Dieu, Maxime Foguenne, and Eliano Bonaccorsi-Riani. 2023. "Experimental and Clinical Aspects of Sevoflurane Preconditioning and Postconditioning to Alleviate Hepatic Ischemia-Reperfusion Injury: A Scoping Review" International Journal of Molecular Sciences 24, no. 3: 2340. https://doi.org/10.3390/ijms24032340
APA StyleBenoit, L., Dieu, A., Foguenne, M., & Bonaccorsi-Riani, E. (2023). Experimental and Clinical Aspects of Sevoflurane Preconditioning and Postconditioning to Alleviate Hepatic Ischemia-Reperfusion Injury: A Scoping Review. International Journal of Molecular Sciences, 24(3), 2340. https://doi.org/10.3390/ijms24032340