Multi-Omics Profiling in PGM3 and STAT3 Deficiencies: A Tale of Two Patients
Abstract
:1. Introduction
2. Case Presentation
2.1. Clinical Characterizations in STAT3 and PGM3 Deficient Patients
2.2. Metabolomics, Proteomics, and Cytokine Profiling in PGM3 and STAT3 Patients
2.3. Integrated Network Pathway Analysis
2.4. Materials and Methods
2.4.1. Chemicals
2.4.2. Serum Samples
2.4.3. Metabolomics Analysis on Chemical Isotope Labeling Liquid Chromatography-Mass Spectrometry (CIL LC-MS)
2.4.4. Proteomics Analysis on LC-MSE SynaptG2
2.4.5. Cytokines/Chemokine Profiling
3. Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Davis, S.D.; Schaller, J.; Wedgwood, R.J. Job’s Syndrome. Recurrent, “cold”, staphylococcal abscesses. Lancet 1966, 1, 1013–1015. [Google Scholar] [CrossRef] [PubMed]
- Holland, S.M.; DeLeo, F.R.; Elloumi, H.Z.; Hsu, A.P.; Uzel, G.; Brodsky, N.; Freeman, A.F.; Demidowich, A.; Davis, J.; Turner, M.L.; et al. STAT3 mutations in the hyper-IgE syndrome. N. Engl. J. Med. 2007, 357, 1608–1619. [Google Scholar] [CrossRef]
- Minegishi, Y.; Saito, M.; Tsuchiya, S.; Tsuge, I.; Takada, H.; Hara, T.; Kawamura, N.; Ariga, T.; Pasic, S.; Stojkovic, O.; et al. Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. Nature 2007, 448, 1058–1062. [Google Scholar] [CrossRef]
- Lyons, J.J.; Liu, Y.; Ma, C.A.; Yu, X.; O’Connell, M.P.; Lawrence, M.G.; Zhang, Y.; Karpe, K.; Zhao, M.; Siegel, A.M.; et al. ERBIN deficiency links STAT3 and TGF-β pathway defects with atopy in humans. J. Exp. Med. 2017, 214, 669–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, C.A.; Stinson, J.R.; Zhang, Y.; Abbott, J.K.; Weinreich, M.A.; Hauk, P.J.; Reynolds, P.R.; Lyons, J.J.; Nelson, C.G.; Ruffo, E.; et al. Germline hypomorphic CARD11 mutations in severe atopic disease. Nat. Genet. 2017, 49, 1192–1201. [Google Scholar] [CrossRef] [Green Version]
- Renner, E.D.; Puck, J.M.; Holland, S.M.; Schmitt, M.; Weiss, M.; Frosch, M.; Bergmann, M.; Davis, J.; Belohradsky, B.H.; Grimbacher, B. Autosomal recessive hyperimmunoglobulin E syndrome: A distinct disease entity. J. Pediatr. 2004, 144, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Sassi, A.; Lazaroski, S.; Wu, G.; Haslam, S.M.; Fliegauf, M.; Mellouli, F.; Patiroglu, T.; Unal, E.; Ozdemir, M.A.; Jouhadi, Z.; et al. Hypomorphic homozygous mutations in phosphoglucomutase 3 (PGM3) impair immunity and increase serum IgE levels. J. Allergy Clin. Immunol. 2014, 133, 1410–1419. [Google Scholar] [CrossRef] [Green Version]
- Schwerd, T.; Twigg, S.R.F.; Aschenbrenner, D.; Manrique, S.; Miller, K.A.; Taylor, I.B.; Capitani, M.; McGowan, S.J.; Sweeney, E.; Weber, A.; et al. A biallelic mutation in IL6ST encoding the GP130 co-receptor causes immunodeficiency and craniosynostosis. J. Exp. Med. 2017, 214, 2547–2562. [Google Scholar] [CrossRef]
- Zhang, Q.; Su, H.C. Hyperimmunoglobulin E syndromes in pediatrics. Curr. Opin. Pediatr. 2011, 23, 653–658. [Google Scholar] [CrossRef] [Green Version]
- Hox, V.; O’Connell, M.P.; Lyons, J.J.; Sackstein, P.; Dimaggio, T.; Jones, N.; Nelson, C.; Boehm, M.; Holland, S.M.; Freeman, A.F.; et al. Diminution of signal transducer and activator of transcription 3 signaling inhibits vascular permeability and anaphylaxis. J. Allergy Clin. Immunol. 2016, 138, 187–199. [Google Scholar] [CrossRef]
- Freeman, A.F.; Davis, J.; Anderson, V.L.; Barson, W.; Darnell, D.N.; Puck, J.M.; Holland, S.M. Pneumocystis jiroveci infection in patients with hyper-immunoglobulin E syndrome. Pediatrics 2006, 118, e1271–e1275. [Google Scholar] [CrossRef] [PubMed]
- Kumánovics, A.; Perkins, S.L.; Gilbert, H.; Cessna, M.H.; Augustine, N.H.; Hill, H.R. Diffuse large B cell lymphoma in hyper-IgE syndrome due to STAT3 mutation. J. Clin. Immunol. 2010, 30, 886–893. [Google Scholar] [CrossRef] [PubMed]
- Hart, G.W.; Slawson, C.; Ramirez-Correa, G.; Lagerlof, O. Cross talk between O-GlcNAcylation and phosphorylation: Roles in signaling, transcription, and chronic disease. Annu. Rev. Biochem. 2011, 80, 825–858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Yu, X.; Ichikawa, M.; Lyons, J.J.; Datta, S.; Lamborn, I.T.; Jing, H.; Kim, E.S.; Biancalana, M.; Wolfe, L.A.; et al. Autosomal recessive phosphoglucomutase 3 (PGM3) mutations link glycosylation defects to atopy, immune deficiency, autoimmunity, and neurocognitive impairment. J. Allergy Clin. Immunol. 2014, 133, 1400–1409, 1409.e5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wollenberg, A.; Rawer, H.C.; Schauber, J. Innate immunity in atopic dermatitis. Clin. Rev. Allergy Immunol. 2011, 41, 272–281. [Google Scholar] [CrossRef] [PubMed]
- Jacob, M.; Lopata, A.L.; Dasouki, M.; Abdel Rahman, M.A. Metabolomics towards personalized medicine. Mass Spectrom. Rev. 2017, 38, 221–238. [Google Scholar] [CrossRef]
- Jacob, M.; Gu, X.; Luo, X.; Al-Mousa, H.; Arnaout, R.; Al-Saud, B.; Lopata, A.L.; Li, L.; Dasouki, M.; Rahman, A.M.A. Metabolomics distinguishes DOCK8 deficiency from atopic dermatitis: A Biomarker discovery. Front. Immunol. 2019, 9, 274. [Google Scholar] [CrossRef] [Green Version]
- Jacob, M.; Khalaf, D.B.; Alhissi, S.; Arnout, R.; Alsaud, B.; Al-Mousa, H.; Lopata, A.L.; Alazami, A.M.; Dasouki, M.; Rahman, A.M.A. Quantitative profiling of cytokines and chemokines in DOCK8 deficient and Atopic dermatitis patients. Allergy 2018, 74, 370–379. [Google Scholar] [CrossRef]
- Alaiya, A.; Fox, J.; Bobis, S.; Matic, G.; Shinwari, Z.; Barhoush, E.; Marquez, M.; Nilsson, S.; Holmberg, A.R. Proteomic analysis of soft tissue tumor implants treated with a novel polybisphosphonate. Cancer Genom. Proteom. 2014, 11, 39–49. [Google Scholar]
- Alaiya, A.A.; Aljurf, M.; Shinwari, Z.; Almohareb, F.; Malhan, H.; Alzahrani, H.; Owaidah, T.; Fox, J.; Alsharif, F.; Mohamed, S.Y.; et al. Protein signatures as potential surrogate biomarkers for stratification and prediction of treatment response in chronic myeloid leukemia patients. Int. J. Oncol. 2016, 49, 913–933. [Google Scholar] [CrossRef] [Green Version]
- Colak, D.; Alaiya, A.A.; Kaya, N.; Muiya, N.P.; AlHarazi, O.; Shinwari, Z.; Andres, E.; Dzimiri, N. Integrated Left Ventricular Global Transcriptome and Proteome Profiling in Human End-Stage Dilated Cardiomyopathy. PloS ONE 2016, 11, e0162669. [Google Scholar] [CrossRef] [PubMed]
- Jacob, M.; Masood, A.; Shinwari, Z.; Abdel Jabbar, M.; Al-Mousa, H.; Arnaout, R.; AlSaud, B.; Dasouki, M.; Alaiya, A.A.; Abdel Rahman, A.M. Proteomics Profiling to Distinguish DOCK8 Deficiency From Atopic Dermatitis. Front. Allergy 2021, 2, 774902. [Google Scholar] [CrossRef] [PubMed]
- Greig, K.T.; Antonchuk, J.; Metcalf, D.; Morgan, P.O.; Krebs, D.L.; Zhang, J.G.; Hacking, D.F.; Bode, L.; Robb, L.; Kranz, C.; et al. Agm1/Pgm3-mediated sugar nucleotide synthesis is essential for hematopoiesis and development. Mol. Cell. Biol. 2007, 27, 5849–5859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jong, C.J.; Azuma, J.; Schaffer, S. Mechanism underlying the antioxidant activity of taurine: Prevention of mitochondrial oxidant production. Amino Acids 2012, 42, 2223–2232. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Ali, S.; Duan, X.; Liu, S.; Du, J.; Liu, C.; Dai, H.; Zhou, M.; Zhou, L.; Yang, L.; et al. JMJD1B Demethylates H4R3me2s and H3K9me2 to Facilitate Gene Expression for Development of Hematopoietic Stem and Progenitor Cells. Cell Rep. 2018, 23, 389–403. [Google Scholar] [CrossRef] [Green Version]
- Franzke, A.; Piao, W.; Lauber, J.; Gatzlaff, P.; Konecke, C.; Hansen, W.; Schmitt-Thomsen, A.; Hertenstein, B.; Buer, J.; Ganser, A. G-CSF as immune regulator in T cells expressing the G-CSF receptor: Implications for transplantation and autoimmune diseases. Blood 2003, 102, 734–739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, K.R.; Wong, H.L.; Witko-Sarsat, V.; Wicks, I.P. G-CSF—A double edge sword in neutrophil mediated immunity. Semin. Immunol. 2021, 54, 101516. [Google Scholar] [CrossRef]
- Nguyen-Jackson, H.; Panopoulos, A.D.; Zhang, H.; Li, H.S.; Watowich, S.S. STAT3 controls the neutrophil migratory response to CXCR2 ligands by direct activation of G-CSF-induced CXCR2 expression and via modulation of CXCR2 signal transduction. Blood 2010, 115, 3354–3363. [Google Scholar] [CrossRef] [Green Version]
- Sasada, T.; Azuma, K.; Ohtake, J.; Fujimoto, Y. Immune Responses to Epidermal Growth Factor Receptor (EGFR) and Their Application for Cancer Treatment. Front. Pharmacol. 2016, 7, 405. [Google Scholar] [CrossRef] [Green Version]
- Freeman, A.F.; Holland, S.M. Clinical manifestations, etiology, and pathogenesis of the hyper-IgE syndromes. Pediatr. Res. 2009, 65, 32–37. [Google Scholar] [CrossRef] [Green Version]
- O’Shea, J.J.; Murray, P.J. Cytokine signaling modules in inflammatory responses. Immunity 2008, 28, 477–487. [Google Scholar] [CrossRef] [PubMed]
- Ron-Harel, N.; Ghergurovich, J.M.; Notarangelo, G.; LaFleur, M.W.; Tsubosaka, Y.; Sharpe, A.H.; Rabinowitz, J.D.; Haigis, M.C. T Cell Activation Depends on Extracellular Alanine. Cell Rep. 2019, 28, 3011–3021.e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiarla, C.; Giovannini, I.; Siegel, J.H. Characterization of alpha-amino-n-butyric acid correlations in sepsis. Transl. Res. J. Lab. Clin. Med. 2011, 158, 328–333. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Astone, M.; Alam, S.K.; Zhu, Z.; Pei, W.; Frank, D.A.; Burgess, S.M.; Hoeppner, L.H. Suppressing STAT3 activity protects the endothelial barrier from VEGF-mediated vascular permeability. Biorxiv. Prepr. Serv. Biol. 2020, 11, dmm049029. [Google Scholar] [CrossRef] [PubMed]
- Freeman, A.F.; Avila, E.M.; Shaw, P.A.; Davis, J.; Hsu, A.P.; Welch, P.; Matta, J.R.; Hadigan, C.; Pettigrew, R.I.; Holland, S.M.; et al. Coronary artery abnormalities in Hyper-IgE syndrome. J. Clin. Immunol. 2011, 31, 338–345. [Google Scholar] [CrossRef] [Green Version]
- Chandesris, M.O.; Azarine, A.; Ong, K.T.; Taleb, S.; Boutouyrie, P.; Mousseaux, E.; Romain, M.; Bozec, E.; Laurent, S.; Boddaert, N.; et al. Frequent and widespread vascular abnormalities in human signal transducer and activator of transcription 3 deficiency. Circ. Cardiovasc. Genet. 2012, 5, 25–34. [Google Scholar] [CrossRef]
- de Jong, P.R.; Schadenberg, A.W.; van den Broek, T.; Beekman, J.M.; van Wijk, F.; Coffer, P.J.; Prakken, B.J.; Jansen, N.J. STAT3 regulates monocyte TNF-alpha production in systemic inflammation caused by cardiac surgery with cardiopulmonary bypass. PloS ONE 2012, 7, e35070. [Google Scholar] [CrossRef]
Diagnosis | Patient Code | Mutation | Age | Sex | IgE Levels (KU/L) | RBC 1012/L | WBC 109/L | Lymphocytes 109/L | Neutrophils 109/L | Eosinophils 109/L | CD4/CD8 Ratio |
---|---|---|---|---|---|---|---|---|---|---|---|
(Y) | |||||||||||
PGM3 | P1 | p.A109T | 16 | M | 492 | 5.15 | 2.71 | 2.97 | 3.05 | 0.201 | 0.9 |
P2 | p.A109T | 2 | M | 2095 | 4.58 | 5.7 | 3.72 | 1.33 | 0.064 | 2.3 | |
Average ± SEM | 9 ± 7 | 2/0(M/F) | 1293.5 ± 801.5 | 4.865 ± 0.26 | 4.205 ± 1.49 | 3.3 ± 0.53 | 2.19 ± 1.21 | 0.1325 ± 0.06 | 1.6 ± 0.7 | ||
STAT3 | P1 | R382Q | 28 | M | 24,330 | 4.76 | 3.64 | 3.81 | 3.59 | 0.047 | --- |
P2 | 139276: c.2140A > G, p.T714A | 24 | F | 35,650 | 4.7 | 7.5 | 3.13 | 4.17 | 0.083 | 1.1 | |
Average ± SEM | 26 ± 2 | 1/1(M/F) | 29,990 ± 5660 | 4.73 ± 0.02 | 5.57 ± 1.93 | 3.47 ± 0.49 | 3.88 ± 0.41 | 0.065 ± 0.018 | 1.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jacob, M.; Masood, A.; Abdel Rahman, A.M. Multi-Omics Profiling in PGM3 and STAT3 Deficiencies: A Tale of Two Patients. Int. J. Mol. Sci. 2023, 24, 2406. https://doi.org/10.3390/ijms24032406
Jacob M, Masood A, Abdel Rahman AM. Multi-Omics Profiling in PGM3 and STAT3 Deficiencies: A Tale of Two Patients. International Journal of Molecular Sciences. 2023; 24(3):2406. https://doi.org/10.3390/ijms24032406
Chicago/Turabian StyleJacob, Minnie, Afshan Masood, and Anas M. Abdel Rahman. 2023. "Multi-Omics Profiling in PGM3 and STAT3 Deficiencies: A Tale of Two Patients" International Journal of Molecular Sciences 24, no. 3: 2406. https://doi.org/10.3390/ijms24032406
APA StyleJacob, M., Masood, A., & Abdel Rahman, A. M. (2023). Multi-Omics Profiling in PGM3 and STAT3 Deficiencies: A Tale of Two Patients. International Journal of Molecular Sciences, 24(3), 2406. https://doi.org/10.3390/ijms24032406