Natural Monoterpenes as Potential Therapeutic Agents against Atherosclerosis
Abstract
:1. Introduction
2. Natural Monoterpenes Modulate Serum Lipid Profile
3. Natural Monoterpenes Protect against Atherosclerosis by Targeting Endothelial Cells
3.1. Attenuation of Endothelial Pro-Inflammatory Activation
3.2. Inhibition of Endothelial Oxidative Stress
3.3. Modulation of Nitric Oxide (NO) Pathway
3.4. Attenuation of Endothelial Apoptosis
4. Natural Monoterpenes Potentially Protect against Atherosclerosis by Targeting Macrophages
4.1. Reduction of Macrophage-Related Inflammation
4.2. Inhibition of Foam Cell Formation
4.3. Induction of Macrophage Autophagy
4.4. Enhancement of M2 Macrophage Polarization
5. Natural Monoterpenes Potentially Protect against Atherosclerosis by Targeting Vascular Smooth Muscle Cells
6. Natural Monoterpenes Potentially Protect against Atherosclerosis by Targeting Dendritic Cells
7. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Herrington, W.; Lacey, B.; Sherliker, P.; Armitage, J.; Lewington, S. Epidemiology of Atherosclerosis and the Potential to Reduce the Global Burden of Atherothrombotic Disease. Circ. Res. 2016, 118, 535–546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barquera, S.; Pedroza-Tobías, A.; Medina, C.; Hernández-Barrera, L.; Bibbins-Domingo, K.; Lozano, R.; Moran, A.E. Global Overview of the Epidemiology of Atherosclerotic Cardiovascular Disease. Arch. Med. Res. 2015, 46, 328–338. [Google Scholar] [CrossRef]
- Libby, P.; Buring, J.E.; Badimon, L.; Hansson, G.K.; Deanfield, J.; Bittencourt, M.S.; Tokgözoğlu, L.; Lewis, E.F. Atherosclerosis. Nat. Rev. Dis. Prim. 2019, 5, 56. [Google Scholar] [CrossRef]
- Tervaert, J.W.C. Cardiovascular disease due to accelerated atherosclerosis in systemic vasculitides. Best Pract. Res. Clin. Rheumatol. 2013, 27, 33–44. [Google Scholar] [CrossRef]
- Schaftenaar, F.; Frodermann, V.; Kuiper, J.; Lutgens, E. Atherosclerosis: The interplay between lipids and immune cells. Curr. Opin. Lipidol. 2016, 27, 209–215. [Google Scholar] [CrossRef]
- Li, B.; Li, W.; Li, X.; Zhou, H. Inflammation: A Novel Therapeutic Target/Direction in Atherosclerosis. Curr. Pharm. Des. 2017, 23, 1216–1227. [Google Scholar] [CrossRef] [PubMed]
- Christ, A.; Bekkering, S.; Latz, E.; Riksen, N.P. Long-term activation of the innate immune system in atherosclerosis. Semin. Immunol. 2016, 28, 384–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Libby, P.; Bornfeldt, K.E.; Tall, A.R. Atherosclerosis: Successes, surprises, and future challenges. Circ. Res. 2016, 118, 531–534. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, M.; Fazio, S. From lipids to inflammation: New approaches to reducing atherosclerotic risk. Circ. Res. 2016, 118, 732–749. [Google Scholar] [CrossRef] [PubMed]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug. Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef]
- Liu, Q.; Li, J.; Hartstone-Rose, A.; Wang, J.; Li, J.; Janicki, J.S.; Fan, D. Chinese Herbal Compounds for the Prevention and Treatment of Atherosclerosis: Experimental Evidence and Mechanisms. Evid.-Based Complement. Altern. Med. 2015, 2015, 752610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ai, X.; Yu, P.; Peng, L.; Luo, L.; Liu, J.; Li, S.; Lai, X.; Luan, F.; Meng, X. Berberine: A Review of its Pharmacokinetics Properties and Therapeutic Potentials in Diverse Vascular Diseases. Front. Pharmacol. 2021, 12, 762654. [Google Scholar] [CrossRef] [PubMed]
- Silva, B.I.M.; Nascimento, E.A.; Silva, C.J.; Silva, T.G.; Aguiar, J.S. Anticancer activity of monoterpenes: A systematic review. Mol. Biol. Rep. 2021, 48, 5775–5785. [Google Scholar] [CrossRef] [PubMed]
- De Cássia da Silveira e Sá, R.; Andrade, L.N.; de Sousa, D.P. A Review on Anti-Inflammatory Activity of Monoterpenes. Molecules 2013, 18, 1227–1254. [Google Scholar] [CrossRef] [PubMed]
- Koziol, A.; Stryjewska, A.; Librowski, T.; Sałat, K.; Gawel, M.; Moniczewski, A.; Lochynski, S. An Overview of the Pharmacological Properties and Potential Applications of Natural Monoterpenes. Mini-Rev. Med. Chem. 2015, 14, 1156–1168. [Google Scholar] [CrossRef]
- Li, N.; Li, L.; Wu, H.; Zhou, H. Antioxidative property and molecular mechanisms underlying genipo-side-mediated therapeutic effects in diabetes mellitus and cardiovascular disease. Oxid. Med. Cell Longev. 2019, 2019, 7480512. [Google Scholar] [PubMed] [Green Version]
- Silva, E.A.; Santos, D.M.; de Carvalho, F.O.; Menezes, I.A.; Barreto, A.S.; Souza, D.S.; Quintans-Junior, L.J.; Santos, M.R. Monoterpenes and their derivatives as agents for cardiovascular disease management: A systematic review and me-ta-analysis. Phytomedicine 2021, 88, 153451. [Google Scholar] [CrossRef]
- Silva, E.A.P.; Carvalho, J.S.; Guimarães, A.G.; Barreto, R.D.S.; Santos, M.R.; Barreto, A.S.; Quintans-Júnior, L.J. The use of terpenes and derivatives as a new perspective for cardiovascular disease treatment: A patent review (2008–2018). Expert Opin. Ther. Pat. 2018, 29, 43–53. [Google Scholar] [CrossRef]
- Nelson, R.H. Hyperlipidemia as a Risk Factor for Cardiovascular Disease. Prim. Care Clin. Off. Pract. 2012, 40, 195–211. [Google Scholar] [CrossRef] [Green Version]
- Ference, B.A.; Ginsberg, H.N.; Graham, I.; Ray, K.K.; Packard, C.J.; Bruckert, E.; Hegele, R.A.; Krauss, R.M.; Raal, F.J.; Schunkert, H.; et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 2017, 38, 2459–2472. [Google Scholar] [CrossRef]
- Wilkinson, M.J.; Laffin, L.J.; Davidson, M.H. Overcoming toxicity and side-effects of lipid-lowering therapies. Best Pract. Res. Clin. Endocrinol. Metab. 2014, 28, 439–452. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.S.; Goldstein, J.L. Sterol regulatory element binding proteins (SREBPs): Controllers of lipid synthesis and cellular uptake. Nutr. Rev. 1998, 56, S1–S3. [Google Scholar] [CrossRef] [PubMed]
- Song, B.-L.; Javitt, N.B.; DeBose-Boyd, R.A. Insig-mediated degradation of HMG CoA reductase stimulated by lanosterol, an intermediate in the synthesis of cholesterol. Cell Metab. 2005, 1, 179–189. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.Y.; Jun, H.J.; Lee, J.H.; Jia, Y.; Kim, K.H.; Lee, S.J. Linalool reduces the expression of 3-hydroxy-3-methylglutaryl CoA reductase via sterol regulatory element binding protein-2- and ubiquitin-dependent mecha-nisms. FEBS Lett. 2011, 585, 3289–3296. [Google Scholar] [CrossRef] [Green Version]
- Loh, K.; Tam, S.; Murray-Segal, L.; Huynh, K.; Meikle, P.J.; Scott, J.W.; van Denderen, B.; Chen, Z.; Steel, R.; LeBlond, N.D.; et al. Inhibition of Adenosine Mono-phosphate-Activated Protein Kinase-3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Signaling Leads to Hypercholes-terolemia and Promotes Hepatic Steatosis and Insulin Resistance. Hepatol. Commun. 2018, 3, 84–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Potunuru, U.R.; Priya, K.V.; Varsha, M.S.; Mehta, N.; Chandel, S.; Manoj, N.; Raman, T.; Ramar, M.; Gromiha, M.M.; Dixit, M. Amarogentin, a secoiridoid glycoside, activates AMP- activated protein kinase (AMPK) to exert beneficial vasculo-metabolic effects. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2019, 1863, 1270–1282. [Google Scholar] [CrossRef] [PubMed]
- Hadrich, F.; Mahmoudi, A.; Bouallagui, Z.; Feki, I.; Isoda, H.; Feve, B.; Sayadi, S. Evaluation of hypocho-lesterolemic effect of oleuropein in cholesterol-fed rats. Chem. Biol. Interact. 2016, 252, 54–60. [Google Scholar] [CrossRef] [Green Version]
- Shen, B.; Zhao, C.; Wang, Y.; Peng, Y.; Cheng, J.; Li, Z.; Wu, L.; Jin, M.; Feng, H. Aucubin inhibited lipid accumulation and oxi-dative stress via Nrf2/HO-1 and AMPK signalling pathways. J. Cell. Mol. Med. 2019, 23, 4063–4075. [Google Scholar] [CrossRef] [Green Version]
- Pownall, H.J.; Rosales, C.; Gillard, B.K.; Gotto, A.M. High-density lipoproteins, reverse cholesterol transport and atherogenesis. Nat. Rev. Cardiol. 2021, 18, 712–723. [Google Scholar] [CrossRef]
- Al Naqeb, G.; Ismail, M.; Yazan, L.S. Effects of thymoquinone rich fraction and thymoquinone on plasma lipoprotein levels and hepatic low density lipoprotein receptor and 3-hydroxy-3-methylglutaryl coenzyme A reductase genes expression. J. Funct. Foods 2009, 1, 298–303. [Google Scholar] [CrossRef]
- Liu, J.; Li, Y.; Sun, C.; Liu, S.; Yan, Y.; Pan, H.; Fan, M.; Xue, L.; Nie, C.; Zhang, H.; et al. Geniposide reduces cholesterol accumulation and increases its excretion by regulating the FXR-mediated liver-gut crosstalk of bile acids. Pharmacol. Res. 2020, 152, 104631. [Google Scholar] [CrossRef] [PubMed]
- Chiang, J.Y. Negative feedback regulation of bile acid metabolism: Impact on liver metabolism and diseases. Hepatology 2015, 62, 1315–1317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsubara, T.; Li, F.; Gonzalez, F.J. FXR signaling in the enterohepatic system. Mol. Cell. Endocrinol. 2013, 368, 17–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaidya, H.; Rajani, M.; Sudarsanam, V.; Padh, H.; Goyal, R. Swertiamarin: A lead from Enico-stemma littorale Blume. for anti-hyperlipidaemic effect. Eur. J. Pharmacol. 2009, 617, 108–112. [Google Scholar] [CrossRef]
- Mahdavifard, S.; Nakhjavani, M. Preventive Effect of Eucalyptol on the Formation of Aorta Lesions in the Diabet-ic-Atherosclerotic Rat. Int. J. Prev. Med. 2021, 12, 45. [Google Scholar] [PubMed]
- Jayachandran, M.; Chandrasekaran, B.; Namasivayam, N. Effect of geraniol, a plant derived monoterpene on lipids and lipid metabolizing enzymes in experimental hyperlipidemic hamsters. Mol. Cell. Biochem. 2014, 398, 39–53. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.-M.; Chao, T.-Y.; Chang, W.-C.; Chang, M.J.; Lee, M.-F. Thymol reduces oxidative stress, aortic intimal thickening, and inflammation-related gene expression in hyperlipidemic rabbits. J. Food Drug Anal. 2016, 24, 556–563. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, S.; Beg, Z.H. Hypolipidemic and antioxidant activities of thymoquinone and limonene in atherogenic suspension fed rats. Food Chem. 2013, 138, 1116–1124. [Google Scholar] [CrossRef]
- Sani, M.A.; Yaghmaei, P.; Hajebrahimi, Z.; Roodbari, N.H. Therapeutic Effect of P-Cymene on Lipid Profile, Liver Enzyme, and Akt/Mtor Pathway in Streptozotocin-Induced Diabetes Mellitus in Wistar Rats. J. Obes. 2022, 2022, 1015669. [Google Scholar] [CrossRef]
- Samarghandian, S.; Borji, A.; Delkhosh, M.B.; Samini, F. Safranal Treatment Improves Hyperglycemia, Hyperlipidemia and Oxidative Stress in Streptozotocin-Induced Diabetic Rats. J. Pharm. Pharm. Sci. 2013, 16, 352–362. [Google Scholar] [CrossRef]
- Zhong, H.; Chen, K.; Feng, M.; Shao, W.; Wu, J.; Chen, K.; Liang, T.; Liu, C. Genipin alleviates high-fat diet-induced hyper-lipidemia and hepatic lipid accumulation in mice via miR-142a-5p/SREBP-1c axis. FEBS J. 2018, 285, 501–517. [Google Scholar] [CrossRef]
- Liu, J.-Y.; Zhang, D.-J. Amelioration by Catalpol of Atherosclerotic Lesions in Hypercholesterolemic Rabbits. Planta Med. 2015, 81, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Yang, B.; Yu, B. Paeoniflorin Protects against Nonalcoholic Fatty Liver Disease Induced by a High-Fat Diet in Mice. Biol. Pharm. Bull. 2015, 38, 1005–1011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sozański, T.; Kucharska, A.Z.; Rapak, A.; Szumny, D.; Trocha, M.; Merwid-Ląd, A.; Dzimira, S.; Piasecki, T.; Piórecki, N.; Magdalan, J.; et al. Iri-doid-loganic acid versus anthocyanins from the Cornus mas fruits (cornelian cherry): Common and different effects on di-et-induced atherosclerosis, PPARs expression and inflammation. Atherosclerosis 2016, 254, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Yamabe, N.; Noh, J.S.; Park, C.H.; Kang, K.S.; Shibahara, N.; Tanaka, T.; Yokozawa, T. Evaluation of loganin, iridoid glycoside from Corni Fructus, on hepatic and renal glucolipotoxicity and inflammation in type 2 diabetic db/db mice. Eur. J. Pharmacol. 2010, 648, 179–187. [Google Scholar] [CrossRef]
- Lombardo, G.E.; Lepore, S.M.; Morittu, V.M.; Arcidiacono, B.; Colica, C.; Procopio, A.; Maggisano, V.; Bulotta, S.; Costa, N.; Mignogna, C.; et al. Effects of Oleacein on High-Fat Diet-Dependent Steatosis, Weight Gain, and Insulin Resistance in Mice. Front. Endocrinol. 2018, 9, 116. [Google Scholar] [CrossRef] [Green Version]
- Jin, M.; Feng, H.; Wang, Y.; Yan, S.; Shen, B.; Li, Z.; Qin, H.; Wang, Q.; Li, J.; Liu, G. Gentiopicroside Ameliorates Oxidative Stress and Lipid Accumulation through Nuclear Factor Erythroid 2-Related Factor 2 Activation. Oxidative Med. Cell. Longev. 2020, 2020, 2940746. [Google Scholar] [CrossRef] [PubMed]
- Gimbrone, M.A., Jr.; García-Cardeña, G. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ. Res. 2016, 118, 620–636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayden, M.; Ghosh, S. NF-κB in immunobiology. Cell Res. 2011, 21, 223–244. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.; Lee, K.-S.; Lee, J.E.; Park, H.S.; Kim, K.M.; Moon, J.H.; Choi, S.H.; Park, K.S.; Kim, Y.B.; Jang, H.C. Effect of a new PPAR-gamma agonist, lobeglitazone, on neointimal formation after balloon injury in rats and the development of atherosclerosis. Atherosclerosis 2015, 243, 107–119. [Google Scholar] [CrossRef]
- He, X.; Liu, W.; Shi, M.; Yang, Z.; Zhang, X.; Gong, P. Docosahexaenoic acid attenuates LPS-stimulated inflammatory response by regulating the PPARγ/NF-κB pathways in primary bovine mammary epithelial cells. Res. Vet. Sci. 2017, 112, 7–12. [Google Scholar] [CrossRef]
- Linghu, K.G.; Wu, G.P.; Fu, L.Y.; Yang, H.; Li, H.Z.; Chen, Y.; Yu, H.; Tao, L.; Shen, X.C. 1,8-Cineole Ameliorates LPS-Induced Vascular Endothelium Dysfunction in Mice via PPAR-γ Dependent Regulation of NF-κB. Front. Pharmacol. 2019, 10, 178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Y.; Zhao, H.; Liu, J.; Fang, C.; Miao, R. Effects of Citral on Lipopolysaccharide-Induced Inflam-mation in Human Umbilical Vein Endothelial Cells. Inflammation 2016, 39, 663–671. [Google Scholar] [CrossRef] [PubMed]
- Katsukawa, M.; Nakata, R.; Koeji, S.; Hori, K.; Takahashi, S.; Inoue, H. Citronellol and geraniol, components of rose oil, activate peroxisome proliferator-activated receptor α and γ and suppress cyclooxygenase-2 expression. Biosci. Biotechnol. Biochem. 2011, 75, 1010–1012. [Google Scholar] [CrossRef] [PubMed]
- Hwa, J.S.; Mun, L.; Kim, H.J.; Seo, H.G.; Lee, J.H.; Kwak, J.H.; Lee, D.-U.; Chang, K.C. Genipin Selectively Inhibits TNF-α-activated VCAM-1 But Not ICAM-1 Expression by Upregulation of PPAR-γ in Human Endothelial Cells. Korean J. Physiol. Pharmacol. 2011, 15, 157–162. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Fernández-Hernando, C. Endothelial HMGB1 (High-Mobility Group Box 1) Regulation of LDL (Low-Density Lipoprotein) Transcytosis: A Novel Mechanism of Intracellular HMGB1 in Atherosclerosis. Arter. Thromb. Vasc. Biol. 2020, 41, 217–219. [Google Scholar]
- Kim, N.; Kim, C.; Ryu, S.H.; Lee, W.; Bae, J.-S. Anti-Septic Functions of Cornuside against HMGB1-Mediated Severe Inflammatory Responses. Int. J. Mol. Sci. 2022, 23, 2065. [Google Scholar] [CrossRef]
- Li, J.Z.; Wu, J.H.; Yu, S.Y.; Shao, Q.R.; Dong, X.M. Inhibitory effects of paeoniflorin on lysophosphati-dylcholine-induced inflammatory factor production in human umbilical vein endothelial cells. Int. J. Mol. Med. 2013, 31, 493–497. [Google Scholar] [CrossRef] [Green Version]
- Nishikawa, T.; Edelstein, D.; Brownlee, M. The missing link: A single unifying mechanism for diabetic complications. Kidney Int. 2000, 58, S26–S30. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.F.; Wu, S.Y.; Xu, W.; Jin, H.; Zhu, Z.G.; Li, Z.H.; Tian, Y.X.; Zhang, J.J.; Rao, J.J.; Wu, S.G. Geniposide inhibits high glu-cose-induced cell adhesion through the NF-kappaB signaling pathway in human umbilical vein endothelial cells. Acta Pharmacol. Sin. 2010, 31, 953–962. [Google Scholar] [CrossRef] [Green Version]
- Bi, Y.; Han, X.; Lai, Y.; Fu, Y.; Li, K.; Zhang, W.; Wang, Q.; Jiang, X.; Zhou, Y.; Liang, H.; et al. Systems pharmacological study based on UHPLC-Q-Orbitrap-HRMS, network pharmacology and experimental validation to explore the potential mechanisms of Danggui-Shaoyao-San against atherosclerosis. J. Ethnopharmacol. 2021, 278, 114278. [Google Scholar] [CrossRef]
- Liu, H.T.; He, J.L.; Li, W.M.; Yang, Z.; Wang, Y.X.; Yin, J.; Du, Y.G.; Yu, C. Geniposide inhibits interleukin-6 and interleukin-8 production in lipopolysaccharide-induced human umbilical vein endothelial cells by blocking p38 and ERK1/2 signaling pathways. Inflamm. Res. 2010, 59, 451–461. [Google Scholar] [PubMed]
- Kang, D.G.; Moon, M.K.; Lee, A.S.; Kwon, T.O.; Kim, J.S.; Lee, H.S. Cornuside suppresses cyto-kine-induced proinflammatory and adhesion molecules in the human umbilical vein endothelial cells. Biol. Pharm. Bull. 2007, 30, 1796–1799. [Google Scholar] [PubMed] [Green Version]
- Wang, Y.; Che, J.; Zhao, H.; Tang, J.; Shi, G. Paeoniflorin attenuates oxidized low-density lipoprotein-induced apoptosis and adhesion molecule expression by autophagy enhancement in human umbilical vein endothelial cells. J. Cell. Biochem. 2018, 120, 9291–9299. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhang, M.; Zhu, M.; Gu, J.; Song, J.; Cui, L.; Liu, D.; Ning, Q.; Jia, X.; Feng, L. Paeoniflorin prevents endoplasmic reticulum stress-associated inflammation in lipopolysaccharide -stimulated human umbilical vein endothelial cells via the IRE1α/NF-κB signaling pathway. Food Funct. 2018, 9, 2386–2397. [Google Scholar] [CrossRef]
- Hu, H.; Wang, C.; Jin, Y.; Meng, Q.; Liu, Q.; Liu, Z.; Liu, K.; Liu, X.; Sun, H. Catalpol Inhibits Homocysteine-induced Ox-idation and Inflammation via Inhibiting Nox4/NF-κB and GRP78/PERK Pathways in Human Aorta Endothelial Cells. Inflammation 2019, 42, 64–80. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Sun, Y.; Zhao, K.; Gao, Y.; Cui, J.; Qi, L.; Huang, L. miR-21/PTEN pathway mediates the car-dioprotection of geniposide against oxidized low-density lipoprotein-induced endothelial injury via suppressing oxidative stress and inflammatory response. Int. J. Mol. Med. 2020, 45, 1305–1316. [Google Scholar]
- Liu, X.; Xu, Y.; Cheng, S.; Zhou, X.; Zhou, F.; He, P.; Hu, F.; Zhang, L.; Chen, Y.; Jia, Y. Geniposide Combined With Noto-ginsenoside R1 Attenuates Inflammation and Apoptosis in Atherosclerosis via the AMPK/mTOR/Nrf2 Signaling Pathway. Front. Pharmacol. 2021, 12, 687394. [Google Scholar] [CrossRef]
- Yang, L.; Liu, J.; Li, Y.; Qi, G. Bornyl acetate suppresses ox-LDL-induced attachment of THP-1 monocytes to endothelial cells. Biomed. Pharmacother. 2018, 103, 234–239. [Google Scholar] [CrossRef]
- Zhao, W.; Deng, C.; Han, Q.; Xu, H.; Chen, Y. Carvacrol may alleviate vascular inflammation in diabetic db/db mice. Int. J. Mol. Med. 2020, 46, 977–988. [Google Scholar] [CrossRef]
- Shih, M.F.; Pan, K.H.; Liu, C.C.; Shen, C.R.; Cherng, J.Y. Treatment of β-thujaplicin counteracts di(2-ethylhexyl)phthalate (DEHP)-exposed vascular smooth muscle activation, inflammation and atherosclerosis progression. Regul. Toxicol. Pharmacol. 2018, 92, 333–337. [Google Scholar] [CrossRef]
- Amartey, J.; Gapper, S.; Hussein, N.; Morris, K.; Withycombe, C.E. Nigella sativa Extract and Thy-moquinone Regulate Inflammatory Cytokine and TET-2 Expression in Endothelial Cells. Artery Res. 2019, 25, 157–163. [Google Scholar] [CrossRef]
- Carluccio, M.A.; Siculella, L.; Ancora, M.A.; Massaro, M.; Scoditti, E.; Storelli, C.; Visioli, F.; Distante, A.; De Caterina, R. Olive oil and red wine antioxidant polyphenols inhibit endothelial activation: Antiatherogenic properties of Mediterranean diet phytochemicals. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 622–629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sindona, G.; Caruso, A.; Cozza, A.; Fiorentini, S.; Lorusso, B.; Marini, E.; Nardi, M.; Procopio, A.; Zicari, S. Anti-inflammatory effect of 3,4-DHPEA-EDA [2-(3,4 -hydroxyphenyl) ethyl (3S, 4E)-4-formyl-3-(2-oxoethyl)hex-4-enoate] on primary human vascular endothelial cells. Curr. Med. Chem. 2012, 19, 4006–4013. [Google Scholar] [CrossRef] [PubMed]
- Fakhrudin, N.; Waltenberger, B.; Cabaravdic, M.; Atanasov, A.G.; Malainer, C.; Schachner, D.; Heiss, E.H.; Liu, R.; Noha, S.M.; Grzywacz, A.M.; et al. Identification of plumericin as a potent new inhibitor of the NF-κB pathway with anti-inflammatory activity in vitro and in vivo. Br. J. Pharmacol. 2014, 171, 1676–1686. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Hong, Y.; Zhang, C.; Shen, Y.; Pan, Y.S.; Chen, R.Z.; Zhang, Q.; Chen, Y.H. Picroside II attenuates hyper-homocysteinemia-induced endothelial injury by reducing inflammation, oxidative stress and cell apoptosis. J. Cell. Mol. Med. 2019, 23, 464–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, F.; Xu, X.R.; Li, W.M.; Xia, K.; Wang, L.F.; Yang, X.C. Monotropein alleviates H2O2-induced inflammation, oxidative stress and apoptosis via NF-κB/AP-1 signaling. Mol. Med. Rep. 2020, 22, 4828–4836. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Sun, Y.; Bai, X.; Li, L.; Zhu, G. Albiflorin Alleviates Ox-LDL-Induced Human Umbilical Vein En-dothelial Cell Injury through IRAK1/TAK1 Pathway. Biomed. Res. Int. 2022, 2022, 6584645. [Google Scholar]
- Zhang, C.; Syed, T.W.; Liu, R.; Yu, J. Role of Endoplasmic Reticulum Stress, Autophagy, and Inflammation in Cardiovascular Disease. Front. Cardiovasc. Med. 2017, 4, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.; Liu, J.; Duan, H.; Li, R.; Peng, W.; Wu, C. Activation of Nrf2/HO-1 signaling: An important molecular mechanism of herbal medicine in the treatment of atherosclerosis via the protection of vascular endothelial cells from oxidative stress. J. Adv. Res. 2021, 34, 43–63. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, S.; Su, M.; Sun, L.; Zhang, S.; Wang, D.; Liu, Z.; Yuan, Y.; Liu, Y.; Li, Y. Geraniol improves endothelial function by inhibiting NOX-2 derived oxidative stress in high fat diet fed mice. Biochem. Biophys. Res. Commun. 2016, 474, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Xiao, X.; Guo, D.; Mo, L.; Bu, C.; Ye, W.; Den, Q.; Liu, S.; Yang, X. Protective effects of Paeoniflorin against AOPP-induced oxidative injury in HUVECs by blocking the ROS-HIF-1α/VEGF pathway. Phytomedicine 2017, 34, 115–126. [Google Scholar] [CrossRef]
- Lu, Y.W.; Hao, R.J.; Wei, Y.Y.; Yu, G.R. The protective effect of harpagoside on angiotensin II (Ang II )-induced blood–brain barrier leakage in vitro. Phytother. Res. 2021, 35, 6241–6254. [Google Scholar] [CrossRef]
- El-Agamy, D.S.; A Nader, M. Attenuation of oxidative stress-induced vascular endothelial dysfunction by thymoquinone. Exp. Biol. Med. 2012, 237, 1032–1038. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Liu, H. Perillaldehyde prevents the formations of atherosclerotic plaques through recoupling endothelial nitric oxide synthase. J. Cell. Biochem. 2018, 119, 10204–10215. [Google Scholar] [CrossRef]
- Lu, J.X.; Guo, C.; Ou, W.S.; Jing, Y.; Niu, H.F.; Song, P.; Li, Q.Z.; Liu, Z.; Xu, J.; Li, P.; et al. Citronellal prevents endothelial dysfunction and ath-erosclerosis in rats. J. Cell. Biochem. 2019, 120, 3790–3800. [Google Scholar] [CrossRef]
- Jayachandran, M.; Chandrasekaran, B.; Namasivayam, N. Geraniol attenuates oxidative stress by Nrf2 activation in diet-induced experimental atherosclerosis. J. Basic Clin. Physiol. Pharmacol. 2015, 26, 335–346. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, D.; Hu, L.; Zheng, X.; Chen, C. Paeoniflorin alleviates NG-nitro-L-arginine methyl ester (L-NAME)-induced gestational hypertension and upregulates silent information regulator 2 related enzyme 1 (SIRT1) to reduce H2O2-induced endothelial cell damage. Bioengineered 2022, 13, 2248–2258. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Guo, Z.P.; Jiao, X.Y.; Zhang, Y.H.; Li, J.Y.; Liu, H.J. Protective effects of peoniflorin against hy-drogen peroxide-induced oxidative stress in human umbilical vein endothelial cells. Can. J. Physiol. Pharmacol. 2011, 89, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Dong, C.; Zhai, L.; Lou, J.; Jin, J.; Cheng, S.; Chen, Z.; Guo, X.; Lin, D.; Ding, J.; et al. Paeoniflorin Suppresses TBHP-Induced Oxidative Stress and Apoptosis in Human Umbilical Vein Endothelial Cells via the Nrf2/HO-1 Signaling Pathway and Im-proves Skin Flap Survival. Front. Pharmacol. 2021, 12, 735530. [Google Scholar] [CrossRef]
- Qiu, Y.; Chao, C.Y.; Jiang, L.; Zhang, J.; Niu, Q.Q.; Guo, Y.Q.; Song, Y.T.; Li, P.; Zhu, M.L.; Yin, Y.L. Citronellal alleviate macro- and micro-vascular damage in high fat diet/streptozotocin-Induced diabetic rats via a S1P/S1P1 dependent signaling pathway. Eur. J. Pharmacol. 2022, 920, 174796. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Jiang, Z.; Wu, G.; Cai, Z.; Du, Q.; Tao, L.; Zhang, Y.; Chen, Y.; Shen, X. Improving protection effects of eucalyptol via carboxymethyl chitosan-coated lipid nanoparticles on hyperglycaemia-induced vascular endothelial injury in rats. J. Drug Target. 2020, 29, 520–530. [Google Scholar] [CrossRef] [PubMed]
- Linghu, K.; Lin, D.; Yang, H.; Xu, Y.; Zhang, Y.; Tao, L.; Chen, Y.; Shen, X. Ameliorating effects of 1,8-cineole on LPS-induced human umbilical vein endothelial cell injury by suppressing NF-κB signaling in vitro. Eur. J. Pharmacol. 2016, 789, 195–201. [Google Scholar] [CrossRef]
- Sun, W.; Gao, Y.; Ding, Y.; Cao, Y.; Chen, J.; Lv, G.; Lu, J.; Yu, B.; Peng, M.; Xu, H.; et al. Catalpol ameliorates advanced glycation end product-induced dysfunction of glomerular endothelial cells via regulating nitric oxide synthesis by inducible nitric oxide synthase and endothelial nitric oxide synthase. IUBMB Life 2019, 71, 1268–1283. [Google Scholar] [CrossRef]
- Safaeian, L.; Sajjadi, S.E.; Montazeri, H.; Ohadi, F.; Javanmard, S. Citral Protects Human Endothelial Cells Against Hydrogen Peroxide-induced Oxidative Stress. Turk. J. Pharm. Sci. 2020, 17, 549–554. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.F.; Wu, S.Y.; Rao, J.J.; Lü, L.; Xu, W.; Pang, J.X.; Liu, Z.Q.; Wu, S.G.; Zhang, J.J. Genipin inhibits endothelial exocytosis via nitric oxide in cultured human umbilical vein endothelial cells. Acta Pharmacol. Sin. 2009, 30, 589–596. [Google Scholar]
- Rahiman, N.; Akaberi, M.; Sahebkar, A.; Emami, S.A.; Tayarani-Najaran, Z. Protective effects of saffron and its active components against oxidative stress and apoptosis in endothelial cells. Microvasc. Res. 2018, 118, 82–89. [Google Scholar] [CrossRef]
- Lee, G.-H.; Lee, H.-Y.; Choi, M.-K.; Choi, A.-H.; Shin, T.-S.; Chae, H.-J. Eucommia ulmoides leaf (EUL) extract enhances NO production in ox-LDL-treated human endothelial cells. Biomed. Pharmacother. 2018, 97, 1164–1172. [Google Scholar] [CrossRef]
- Jazbutyte, V.; Thum, T. MicroRNA-21: From Cancer to Cardiovascular Disease. Curr. Drug Targets 2010, 11, 926–935. [Google Scholar] [CrossRef]
- Yang, Q.; Yang, K.; Li, A. microRNA-21 protects against ischemia-reperfusion and hypoxia-reperfusion-induced cardiocyte apoptosis via the phosphatase and tensin homolog/Akt-dependent mechanism. Mol. Med. Rep. 2014, 9, 2213–2220. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.Y.; Ma, J.; Yu, P.; Tang, G.J.; Li, C.J.; Yu, D.M.; Zhang, Q.M. Reduced beta 2 glycoprotein I prevents high glucose-induced cell death in HUVECs through miR-21/PTEN. Am. J. Transl. Res. 2017, 9, 3935–3949. [Google Scholar] [PubMed]
- Hung, C.H.; Chan, S.H.; Chu, P.M.; Tsai, K.L. Homocysteine facilitates LOX-1 activation and endothelial death through the PKCβ and SIRT1/HSF1 mechanism: Relevance to human hyperhomocysteinaemia. Clin. Sci. 2015, 129, 477–487. [Google Scholar]
- Chen, X.-P.; Xun, K.-L.; Wu, Q.; Zhang, T.-T.; Shi, J.-S.; Du, G.-H. Oxidized low density lipoprotein receptor-1 mediates oxidized low density lipoprotein-induced apoptosis in human umbilical vein endothelial cells: Role of reactive oxygen species. Vasc. Pharmacol. 2007, 47, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.Y.; Ye, Z.X.; Wang, X.F.; Chang, J.; Yang, M.W.; Zhong, H.H.; Hong, F.F.; Yang, S.L. Nitric oxide bioavailability dys-function involves in atherosclerosis. Biomed. Pharmacother. 2018, 97, 423–428. [Google Scholar] [CrossRef] [PubMed]
- Förstermann, U.; Xia, N.; Li, H. Roles of Vascular Oxidative Stress and Nitric Oxide in the Pathogenesis of Athero-sclerosis. Circ. Res. 2017, 120, 713–735. [Google Scholar]
- Duan, H.; Zhang, Q.; Liu, J.; Li, R.; Wang, D.; Peng, W.; Wu, C. Suppression of apoptosis in vascular endothelial cell, the promising way for natural medicines to treat atherosclerosis. Pharmacol. Res. 2021, 168, 105599. [Google Scholar] [CrossRef]
- Datta, A.; Sarmah, D.; Mounica, L.; Kaur, H.; Kesharwani, R.; Verma, G.; Veeresh, P.; Kotian, V.; Kalia, K.; Borah, A.; et al. Cell Death Pathways in Ischemic Stroke and Targeted Pharmacotherapy. Transl. Stroke Res. 2020, 11, 1185–1202. [Google Scholar] [CrossRef]
- Paone, S.; Baxter, A.A.; Hulett, M.D.; Poon, I.K.H. Endothelial cell apoptosis and the role of endothelial cell-derived extracellular vesicles in the progression of atherosclerosis. Cell. Mol. Life Sci. 2019, 76, 1093–1106. [Google Scholar] [CrossRef]
- Hu, L.; Sun, Y.; Hu, J. Catalpol inhibits apoptosis in hydrogen peroxide-induced endothelium by activating the PI3K/Akt signaling pathway and modulating expression of Bcl-2 and Bax. Eur. J. Pharmacol. 2010, 628, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Jian, X.; Liu, Y.; Zhao, Z.; Zhao, L.; Wang, D.; Liu, Q. The role of traditional Chinese medicine in the treatment of atherosclerosis through the regulation of macrophage activity. Biomed. Pharmacother. 2019, 118, 109375. [Google Scholar] [CrossRef]
- Ridker, P.M.; Everett, B.M.; Thuren, T.; MacFadyen, J.G.; Chang, W.H.; Ballantyne, C.; Fonseca, F.; Nicolau, J.; Koenig, W.; Anker, S.D.; et al. Anti-inflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 2017, 377, 1119–1131. [Google Scholar] [CrossRef] [PubMed]
- Bäck, M.; Hansson, G.K. Anti-inflammatory therapies for atherosclerosis. Nat. Rev. Cardiol. 2015, 12, 199–211. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Zhou, F.; Xu, Y.; Liu, X.; Zhang, Y.; Gu, M.; Su, Z.; Zhao, D.; Zhang, L.; Jia, Y. Geniposide regulates the miR-101/MKP-1/p38 pathway and alleviates atherosclerosis inflammatory injury in ApoE-/- mice. Immunobiology 2019, 224, 296–306. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Liu, B.; Liu, J.; Liu, Z.; Liang, D.; Li, F.; Li, D.; Cao, Y.; Zhang, X.; Zhang, N.; et al. Geniposide, from Gardenia jasminoides Ellis, inhibits the inflammatory response in the primary mouse macrophages and mouse models. Int. Immunopharmacol. 2012, 14, 792–798. [Google Scholar] [CrossRef] [PubMed]
- Pu, Z.; Liu, Y.; Li, C.; Xu, M.; Xie, H.; Zhao, J. Using Network Pharmacology for Systematic Under-standing of Geniposide in Ameliorating Inflammatory Responses in Colitis Through Suppression of NLRP3 Inflammasome in Macrophage by AMPK/Sirt1 Dependent Signaling. Am. J. Chin. Med. 2020, 48, 1693–1713. [Google Scholar] [CrossRef] [PubMed]
- Sousa, C.; Neves, B.; Leitão, A.; Mendes, A. Elucidation of the Mechanism Underlying the Anti-Inflammatory Properties of (S)-(+)-Carvone Identifies a Novel Class of Sirtuin-1 Activators in a Murine Macrophage Cell Line. Biomedicines 2021, 9, 777. [Google Scholar] [CrossRef]
- Liu, S.; Shen, H.; Li, J.; Gong, Y.; Bao, H.; Zhang, J.; Hu, L.; Wang, Z.; Gong, J. Loganin inhibits macrophage M1 polarization and modulates sirt1/NF-κB signaling pathway to attenuate ulcerative colitis. Bioengineered 2020, 11, 628–639. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Dong, Z.; Lan, X.; Liao, Z.; Chen, M. Sweroside Alleviated LPS-Induced Inflammation via SIRT1 Mediating NF-κB and FOXO1 Signaling Pathways in RAW264.7 Cells. Molecules 2019, 24, 872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, Y.; Sun, Z.; Guo, X. Citral inhibits lipopolysaccharide-induced acute lung injury by activating PPAR-γ. Eur. J. Pharmacol. 2015, 747, 45–51. [Google Scholar] [CrossRef]
- Hotta, M.; Nakata, R.; Katsukawa, M.; Hori, K.; Takahashi, S.; Inoue, H. Carvacrol, a component of thyme oil, activates PPARalpha and gamma and suppresses COX-2 expression. J. Lipid Res. 2010, 51, 132–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeon, W.-K.; Hong, H.-Y.; Kim, B.-C. Genipin up-regulates heme oxygenase-1 via PI3-kinase-JNK1/2-Nrf2 signaling pathway to enhance the anti-inflammatory capacity in RAW264.7 macrophages. Arch. Biochem. Biophys. 2011, 512, 119–125. [Google Scholar] [CrossRef]
- Park, C.; Lee, H.; Kwon, C.-Y.; Kim, G.-Y.; Jeong, J.-W.; Kim, S.O.; Choi, S.H.; Jeong, S.-J.; Noh, J.S.; Choi, Y.H. Loganin Inhibits Lipopol-ysaccharide-Induced Inflammation and Oxidative Response through the Activation of the Nrf2/HO-1 Signaling Pathway in RAW264.7 Macrophages. Biol. Pharm. Bull. 2021, 44, 875–883. [Google Scholar] [CrossRef]
- Montoya, T.; Castejón, M.L.; Sánchez-Hidalgo, M.; González-Benjumea, A.; Fernández-Bolaños, J.G.; De-La-Lastra, C.A. Oleocanthal Modulates LPS-Induced Murine Peritoneal Macrophages Activation via Regulation of Inflammasome, Nrf-2/HO-1, and MAPKs Signaling Pathways. J. Agric. Food Chem. 2019, 67, 5552–5559. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.-L.; Cheng, X.-N.; Bai, F.; Fang, L.-Y.; Hu, H.-Z.; Sun, D.-Q. Aucubin protects against lipopoly-saccharide-induced acute pulmonary injury through regulating Nrf2 and AMPK pathways. Biomed. Pharmacother. 2018, 106, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-E.; Xu, S.-J.; Lu, Y.-Y.; Chen, S.-X.; Du, X.-H.; Hou, S.-Z.; Huang, H.Y.; Liang, J. Asperuloside suppressing oxi-dative stress and inflammation in DSS-induced chronic colitis and RAW 264.7 macrophages via Nrf2/HO-1 and NF-κB pathways. Chem. Biol. Interact. 2021, 344, 109512. [Google Scholar] [CrossRef] [PubMed]
- Park, C.; Cha, H.-J.; Lee, H.; Kim, G.-Y.; Choi, Y.H. The regulation of the TLR4/NF-κB and Nrf2/HO-1 signaling pathways is involved in the inhibition of lipopolysaccharide-induced inflammation and oxidative reactions by morroniside in RAW 264.7 macrophages. Arch. Biochem. Biophys. 2021, 706, 108926. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhang, J.; Jiang, P.; Yin, Z.; Liu, Y.; Liu, Y.; Wang, X.; Hu, L.; Xu, Y.; Liu, W. Paeoniflorin inhibits the macrophage-related rosacea-like inflammatory reaction through the suppressor of cytokine signaling 3-apoptosis signal-regulating kinase 1-p38 pathway. Medicine 2021, 100, e23986. [Google Scholar] [CrossRef]
- Chen, N.; Sun, G.; Yuan, X.; Hou, J.; Wu, Q.; Soromou, L.W.; Feng, H. Inhibition of lung inflammatory re-sponses by bornyl acetate is correlated with regulation of myeloperoxidase activity. J. Surg. Res. 2014, 186, 436–445. [Google Scholar] [CrossRef]
- Lee, E.H.; Shin, J.H.; Kim, S.S.; Lee, H.; Yang, S.; Seo, S.R. Laurus nobilis leaf extract controls inflammation by suppressing NLRP3 inflammasome activation. J. Cell. Physiol. 2018, 234, 6854–6864. [Google Scholar] [CrossRef]
- Trinh, H.-T.; Lee, I.-A.; Hyun, Y.-J.; Kim, D.-H. Artemisia princeps Pamp. Essential oil and its constituents eucalyptol and α-terpineol ameliorate bacterial vaginosis and vulvovaginal candidiasis in mice by inhibiting bacterial growth and NF-κB activation. Planta Med. 2011, 77, 1996–2002. [Google Scholar] [CrossRef] [PubMed]
- Yadav, N.; Chandra, H. Suppression of inflammatory and infection responses in lung macrophages by eucalyptus oil and its constituent 1,8-cineole: Role of pattern recognition receptors TREM-1 and NLRP3, the MAP kinase regulator MKP-1, and NFκB. PLoS ONE 2017, 12, e0188232. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.S.; Lee, H.J.; Jeon, Y.D.; Han, Y.H.; Kee, J.Y.; Kim, H.J.; Shin, H.J.; Kang, J.; Lee, B.S.; Kim, S.H.; et al. Alpha-Pinene Exhibits An-ti-Inflammatory Activity Through the Suppression of MAPKs and the NF-κB Pathway in Mouse Peritoneal Macrophages. Am. J. Chin. Med. 2015, 43, 731–742. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.-W.; Chao, S.-H.; Lee, M.-H.; Ou, T.-Y.; Tsai, Y.-C. Inhibitory Effects of Citronellol and Geraniol on Nitric Oxide and Prostaglandin E2Production in Macrophages. Planta Med. 2010, 76, 1666–1671. [Google Scholar] [CrossRef] [PubMed]
- Huo, M.; Cui, X.; Xue, J.; Chi, G.; Gao, R.; Deng, X.; Guan, S.; Wei, J.; Soromou, L.W.; Feng, H.; et al. Anti-inflammatory effects of linalool in RAW 264.7 macrophages and lipopolysaccharide-induced lung injury model. J. Surg. Res. 2013, 180, e47–e54. [Google Scholar] [CrossRef] [PubMed]
- Ka, S.-M.; Lin, J.-C.; Lin, T.-J.; Liu, F.-C.; Chao, L.K.; Ho, C.-L.; Yeh, L.-T.; Sytwu, H.-K.; Hua, K.-F.; Chen, A. Citral alleviates an accelerated and severe lupus nephritis model by inhibiting the activation signal of NLRP3 inflammasome and enhancing Nrf2 activation. Thromb. Haemost. 2015, 17, 331. [Google Scholar] [CrossRef] [Green Version]
- Leu, W.-J.; Chen, J.-C.; Guh, J.-H. Extract From Plectranthus amboinicus Inhibit Maturation and Release of Interleukin 1β Through Inhibition of NF-κB Nuclear Translocation and NLRP3 Inflammasome Activation. Front. Pharmacol. 2019, 10, 573. [Google Scholar] [CrossRef]
- Gholijani, N.; Gharagozloo, M.; Farjadian, S.; Amirghofran, Z. Modulatory effects of thymol and carvacrol on inflammatory transcription factors in lipopolysaccharide-treated macrophages. J. Immunotoxicol. 2015, 13, 157–164. [Google Scholar] [CrossRef]
- Chen, J.; Li, D.-L.; Xie, L.-N.; Ma, Y.-R.; Wu, P.-P.; Li, C.; Liu, W.-F.; Zhang, K.; Zhou, R.-P.; Xu, X.-T.; et al. Synergistic anti-inflammatory effects of silibinin and thymol combination on LPS-induced RAW264.7 cells by inhibition of NF-κB and MAPK activation. Phytomedicine 2020, 78, 153309. [Google Scholar] [CrossRef] [PubMed]
- Uemura, T.; Yashiro, T.; Oda, R.; Shioya, N.; Nakajima, T.; Hachisu, M.; Kobayashi, S.; Nishiyama, C.; Arimura, G.I. Intestinal An-ti-Inflammatory Activity of Perillaldehyde. J. Agric. Food. Chem. 2018, 66, 3443–3448. [Google Scholar] [CrossRef]
- Byeon, S.E.; Lee, Y.G.; Kim, J.-C.; Han, J.G.; Lee, H.Y.; Cho, J.Y. Hinokitiol, a natural tropolone derivative, inhibits TNF-alpha production in LPS-activated macrophages via suppression of NF-kappaB. Planta Med. 2008, 74, 828–833. [Google Scholar] [CrossRef]
- Zhong, W.; Chi, G.; Jiang, L.; Soromou, L.W.; Chen, N.; Huo, M.; Guo, W.; Deng, X.; Feng, H. p-Cymene modulates in vitro and in vivo cytokine production by inhibiting MAPK and NF-κB activation. Inflammation 2013, 36, 529–537. [Google Scholar] [CrossRef] [PubMed]
- Hossen, M.J.; Yang, W.S.; Kim, D.; Aravinthan, A.; Kim, J.-H.; Cho, J.Y. Thymo-quinone: An IRAK1 inhibitor with in vivo and in vitro anti-inflammatory activities. Sci. Rep. 2017, 7, 42995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramalho, T.R.; Filgueiras, L.R.; de Oliveira, M.T.P.; de Araujo Lima, A.L.; Bezerra-Santos, C.R.; Jancar, S.; Piuvezam, M.R. Gamma-Terpinene Modulation of LPS-Stimulated Macrophages is Dependent on the PGE2/IL-10 Axis. Planta Med. 2016, 82, 1341–1345. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.; Wani, A.; Ahsan, A.U.; Ali, M.; Chibber, P.; Singh, S.; Digra, S.K.; Datt, M.; Bharate, S.B.; Vishwakarma, R.A.; et al. Safranal inhibits NLRP3 inflammasome activation by preventing ASC oligomerization. Toxicol. Appl. Pharmacol. 2021, 423, 115582. [Google Scholar] [CrossRef]
- Lertnimitphun, P.; Jiang, Y.; Kim, N.; Fu, W.; Zheng, C.; Tan, H.; Zhou, H.; Zhang, X.; Pei, W.; Lu, Y.; et al. Safranal Alleviates Dextran Sulfate Sodium-Induced Colitis and Suppresses Macrophage-Mediated Inflammation. Front. Pharmacol. 2019, 10, 1281. [Google Scholar] [CrossRef]
- Koo, H.J.; Song, Y.S.; Kim, H.J.; Lee, Y.H.; Hong, S.M.; Kim, S.J.; Kim, B.C.; Jin, C.; Lim, C.J.; Park, E.H. Antiinflammatory effects of genipin, an active principle of gardenia. Eur. J. Pharmacol. 2004, 495, 201–208. [Google Scholar] [CrossRef]
- Zhu, T.; Zhang, L.; Ling, S.; Duan, J.; Qian, F.; Li, Y.; Xu, J.W. Scropolioside B inhibits IL-1β and cytokines expression through NF-κB and inflammasome NLRP3 pathways. Mediat. Inflamm. 2014, 2014, 819053. [Google Scholar] [CrossRef] [Green Version]
- Fu, K.; Piao, T.; Wang, M.; Zhang, J.; Jiang, J.; Wang, X.; Liu, H. Protective effect of catalpol on lipopoly-saccharide-induced acute lung injury in mice. Int. Immunopharmacol. 2014, 23, 400–406. [Google Scholar] [CrossRef]
- Saravanan, S.; Islam, V.H.; Babu, N.P.; Pandikumar, P.; Thirugnanasambantham, K.; Chellappandian, M.; Raj, C.S.D.; Paulraj, M.G.; Ignacimuthu, S. Swer-tiamarin attenuates inflammation mediators via modulating NF-κB/IκB and JAK2/STAT3 transcription factors in adjuvant induced arthritis. Eur. J. Pharm. Sci. 2014, 56, 70–86. [Google Scholar] [CrossRef]
- Zhang, M.; Ma, X.; Xu, H.; Wu, W.; He, X.; Wang, X.; Jiang, M.; Hou, Y.; Bai, G. A natural AKT inhibitor swertiamarin targets AKT-PH domain, inhibits downstream signaling, and alleviates inflammation. FEBS J. 2020, 287, 1816–1829. [Google Scholar] [CrossRef]
- Li, W.; Tao, W.; Chen, J.; Zhai, Y.; Yin, N.; Wang, Z. Paeoniflorin suppresses IL-33 production by macrophages. Immunopharmacol. Immunotoxicol. 2020, 42, 286–293. [Google Scholar] [CrossRef]
- Huang, D.; Li, Z.; Chen, Y.; Fan, Y.; Yu, T. Paeoniflorin reduces the inflammatory response of THP-1 cells by up-regulating microRNA-124: Paeoniflorin reduces the inflammatory response of THP-1 cells through microRNA-124. Genes Genomics 2021, 43, 623–631. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Zhu, Q.; Shao, Y.; Wang, K.; Wu, Y. Paeoniflorin prevents TLR2/4-mediated inflammation in type 2 diabetic nephropathy. Biosci. Trends 2017, 11, 308–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bi, X.; Han, L.; Qu, T.; Mu, Y.; Guan, P.; Qu, X.; Wang, Z.; Huang, X. Anti-Inflammatory Effects, SAR, and Action Mechanism of Monoterpenoids from Radix Paeoniae Alba on LPS-Stimulated RAW 264.7 Cells. Molecules 2017, 22, 715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, Y.H.; Jin, G.Y.; Li, G.Z.; Yan, G.H. Cornuside Suppresses Lipopolysaccharide-Induced Inflammatory Mediators by Inhibiting Nuclear Factor-Kappa B Activation in RAW 264.7 Macrophages. Biol. Pharm. Bull. 2011, 34, 959–966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, N.; Yang, G.; Jang, J.; Kang, H.; Cho, Y.-Y.; Lee, H.; Lee, J. Loganin Alleviates Gout Inflammation by Suppressing NLRP3 Inflammasome Activation and Mitochondrial Damage. Molecules 2021, 26, 1071. [Google Scholar] [CrossRef]
- Cui, Y.; Gao, H.; Han, S.; Yuan, R.; He, J.; Zhuo, Y.; Feng, Y.L.; Tang, M.; Feng, J.; Yang, S. Oleuropein Attenuates Lipopolysac-charide-Induced Acute Kidney Injury In Vitro and In Vivo by Regulating Toll-Like Receptor 4 Dimerization. Front. Pharmacol. 2021, 12, 617314. [Google Scholar] [CrossRef]
- Cirmi, S.; Maugeri, A.; Russo, C.; Musumeci, L.; Navarra, M.; Lombardo, G.E. Oleacein Attenuates Lipopolysaccharide-Induced Inflammation in THP-1-Derived Macrophages by the Inhibition of TLR4/MyD88/NF-κB Pathway. Int. J. Mol. Sci. 2022, 23, 1206. [Google Scholar] [CrossRef]
- Yao, H.; Yan, J.; Yin, L.; Chen, W. Picroside II alleviates DSS-induced ulcerative colitis by suppressing the production of NLRP3 inflammasomes through NF-κB signaling pathway. Immunopharmacol. Immunotoxicol. 2022, 44, 437–446. [Google Scholar] [CrossRef]
- He, M.; Hu, C.; Chen, M.; Gao, Q.; Li, L.; Tian, W. Effects of Gentiopicroside on activation of NLRP3 inflammasome in acute gouty arthritis mice induced by MSU. J. Nat. Med. 2021, 76, 178–187. [Google Scholar] [CrossRef]
- Wang, Q.; Zhou, X.; Yang, L.; Luo, M.; Han, L.; Lu, Y.; Shi, Q.; Wang, Y.; Liang, Q. Gentiopicroside (GENT) protects against sepsis induced by lipopolysaccharide (LPS) through the NF-κB signaling pathway. Ann. Transl. Med. 2019, 7, 731. [Google Scholar] [CrossRef]
- Huang, T.H.W.; Tran, V.H.; Duke, R.K.; Tan, S.; Chrubasik, S.; Roufogalis, B.D.; Duke, C.C. Harpagoside suppresses lipopolysaccharide-induced iNOS and COX-2 expression through inhibition of NF-kappa B activation. J. Ethnopharmacol. 2006, 104, 149–155. [Google Scholar] [CrossRef]
- An, S.J.; Pae, H.O.; Oh, G.S.; Choi, B.M.; Jeong, S.; Jang, S.I.; Oh, H.; Kwon, T.O.; Song, C.E.; Chung, H.T. Inhibition of TNF-alpha, IL-1beta, and IL-6 productions and NF-kappa B activation in lipopolysaccharide-activated RAW 264.7 macrophages by catalposide, an iridoid glycoside isolated from Catalpa ovata G. Don (Bignoniaceae). Int. Immunopharmacol. 2002, 2, 1173–1181. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.-S.; Yun, K.-J.; Chung, K.-S.; Seo, K.-H.; Park, H.-J.; Cho, Y.-W.; Baek, N.-I.; Jang, D.; Lee, K.-T. Monotropein isolated from the roots of Morinda officinalis ameliorates proinflammatory mediators in RAW 264.7 macrophages and dextran sulfate sodium (DSS)-induced colitis via NF-κB inactivation. Food Chem. Toxicol. 2013, 53, 263–271. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Lu, X.; Wei, T.; Dong, Y.; Cai, Z.; Tang, L.; Liu, M. Asperuloside and Asperulosidic Acid Exert an Anti-Inflammatory Effect via Suppression of the NF-κB and MAPK Signaling Pathways in LPS-Induced RAW 264.7 Macro-phages. Int. J. Mol. Sci. 2018, 19, 2027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, G.; Jang, J.H.; Kim, S.W.; Han, S.-H.; Ma, K.-H.; Jang, J.-K.; Kang, H.C.; Cho, Y.-Y.; Lee, H.S.; Lee, J.Y. Sweroside Prevents Non-Alcoholic Steatohepatitis by Suppressing Activation of the NLRP3 Inflammasome. Int. J. Mol. Sci. 2020, 21, 2790. [Google Scholar] [CrossRef]
- Wang, Q.Q.; Han, S.; Li, X.X.; Yuan, R.; Zhuo, Y.; Chen, X.; Zhang, C.; Chen, Y.; Gao, H.; Zhao, L.C.; et al. Nuezhenide Exerts An-ti-Inflammatory Activity through the NF-κB Pathway. Curr. Mol. Pharmacol. 2021, 14, 101–111. [Google Scholar] [CrossRef]
- He, J.; Li, J.; Liu, H.; Yang, Z.; Zhou, F.; Wei, T.; Dong, Y.; Xue, H.; Tang, L.; Liu, M. Scandoside Exerts Anti-Inflammatory Effect Via Suppressing NF-κB and MAPK Signaling Pathways in LPS-Induced RAW 264.7 Macrophages. Int. J. Mol. Sci. 2018, 19, 457. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.S.; Keo, S.; Ko, W.; Kim, K.S.; Ivanova, E.; Yim, J.H.; Kim, Y.C.; Oh, H. Secondary metabolites isolated from Castilleja rubra exert anti-inflammatory effects through NF-κB inactivation on lipopolysaccharide-induced RAW264.7 macrophages. Arch. Pharm. Res. 2014, 37, 947–954. [Google Scholar] [CrossRef]
- Kelley, N.; Jeltema, D.; Duan, Y.; He, Y. The NLRP3 Inflammasome: An Overview of Mechanisms of Activa-tion and Regulation. Int. J. Mol. Sci. 2019, 20, 3328. [Google Scholar] [CrossRef] [Green Version]
- Duewell, P.; Kono, H.; Rayner, K.; Sirois, C.; Vladimer, G.; Bauernfeind, F.; Abela, G.S.; Franchi, L.; Nuñez, G.; Schnurr, M.; et al. NLRP3 in-flammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 2010, 464, 1357–1361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stachon, P.; Heidenreich, A.; Merz, J.; Hilgendorf, I.; Wolf, D.; Willecke, F.; von Garlen, S.; Albrecht, P.; Härdtner, C.; Ehrat, N.; et al. P2X 7 Deficiency Blocks Lesional Inflammasome Activity and Ameliorates Atherosclerosis in Mice. Circulation 2017, 135, 2524–2533. [Google Scholar] [CrossRef] [PubMed]
- van der Heijden, T.; Kritikou, E.; Venema, W.; van Duijn, J.; van Santbrink, P.J.; Slütter, B.; Foks, A.C.; Bot, I.; Kuiper, J. NLRP3 Inflammasome Inhibition by MCC950 Reduces Atherosclerotic Lesion Development in Apolipoprotein E-Deficient Mice-Brief Report. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 1457–1461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, J.W.; Huang, L.-H.; Randolph, G.J. Cytokine Circuits in Cardiovascular Disease. Immunity 2019, 50, 941–954. [Google Scholar] [CrossRef]
- Maguire, E.M.; Pearce, S.W.; Xiao, Q. Foam cell formation: A new target for fighting atherosclerosis and cardiovascular disease. Vasc. Pharmacol. 2018, 112, 54–71. [Google Scholar] [CrossRef]
- Chistiakov, D.A.; Melnichenko, A.A.; Myasoedova, V.A.; Grechko, A.V.; Orekhov, A.N. Mechanisms of foam cell formation in atherosclerosis. J. Mol. Med. 2017, 95, 1153–1165. [Google Scholar] [CrossRef]
- Filipek, A.; Mikołajczyk, T.P.; Guzik, T.J.; Naruszewicz, M. Oleacein and Foam Cell Formation in Human Monocyte-Derived Macrophages: A Potential Strategy against Early and Advanced Atherosclerotic Lesions. Pharmaceuticals 2020, 13, 64. [Google Scholar] [CrossRef] [PubMed]
- Manning-Tobin, J.J.; Moore, K.J.; Seimon, T.A.; Bell, S.A.; Sharuk, M.; Alvarez-Leite, J.I.; De Winther, M.P.J.; Tabas, I.; Freeman, M.W. Loss of SR-A and CD36 Activity Reduces Atherosclerotic Lesion Complexity Without Abrogating Foam Cell Formation in Hyperlipidemic Mice. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.-Q.; Huang, X.-Y.; Hu, C.-Y.; Zhu, Z.-S.; Chen, Y.; Gong, M. Geniposide protects against ox-LDL-induced foam cell formation through inhibition of MAPKs and NF-κB signaling pathways. Pharmazie 2019, 74, 601–605. [Google Scholar]
- Sun, J.; Li, X.; Jiao, K.; Zhai, Z.; Sun, D. Albiflorin inhibits the formation of THP-1-derived foam cells through the LOX-1/NF-κB pathway. Minerva Med. 2019, 110, 107–114. [Google Scholar] [CrossRef]
- Li, L.; Yin, H. Cholesterol Homeostasis and Liver X Receptor (LXR) in Atherosclerosis. Cardiovasc. Hematol. Disord. Targets 2018, 18, 27–33. [Google Scholar] [CrossRef]
- Cho, K.-H. 1,8-cineole protected human lipoproteins from modification by oxidation and glycation and exhibited serum lipid-lowering and anti-inflammatory activity in zebrafish. BMB Rep. 2012, 45, 565–570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jun, H.-J.; Hoang, M.-H.; Yeo, S.-K.; Jia, Y.; Lee, S.-J. Induction of ABCA1 and ABCG1 expression by the liver X receptor modulator cineole in macrophages. Bioorganic Med. Chem. Lett. 2013, 23, 579–583. [Google Scholar] [CrossRef]
- Shen, D.; Zhao, D.; Yang, X.; Zhang, J.; He, H.; Yu, C. Geniposide against atherosclerosis by inhibiting the formation of foam cell and lowering reverse lipid transport via p38/MAPK signaling pathways. Eur. J. Pharmacol. 2019, 864, 172728. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Z.; Liu, B.; Wu, R.; Gong, H.; Su, Z.; Zhang, S. Isoborneol Attenuates Low-Density Lipoprotein Accumulation and Foam Cell Formation in Macrophages. Drug Des. Dev. Ther. 2020, 14, 167–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Xu, F.; Liu, L.; Feng, L.; Wu, X.; Shen, Y.; Sun, Y.; Wu, X.; Xu, Q. (+)-Borneol improves the efficacy of edaravone against DSS-induced colitis by promoting M2 macrophages polarization via JAK2-STAT3 signaling pathway. Int. Immunopharmacol. 2017, 53, 1–10. [Google Scholar] [CrossRef]
- Jin, Z.; Li, J.; Pi, J.; Chu, Q.; Wei, W.; Du, Z.; Qing, L.; Zhao, X.; Wu, W. Geniposide alleviates atherosclerosis by regulating macrophage polarization via the FOS/MAPK signaling pathway. Biomed. Pharmacother. 2020, 125, 110015. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.-L.; Liu, X.-Y.; Cheng, S.-B.; He, P.-K.; Hong, M.-K.; Chen, Y.-Y.; Zhou, F.-H.; Jia, Y.-H. Geniposide Enhances Macrophage Autophagy through Downregulation of TREM2 in Atherosclerosis. Am. J. Chin. Med. 2020, 48, 1821–1840. [Google Scholar] [CrossRef] [PubMed]
- Isali, I.; McClellan, P.; Shankar, E.; Gupta, S.; Jain, M.; Anderson, J.M.; Hijaz, A.; Akkus, O. Genipin guides and sustains the polarization of macrophages to the pro-regenerative M2 subtype via activation of the pSTAT6-PPAR-gamma pathway. Acta Biomater. 2021, 131, 198–210. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Qi, X.; Zhang, W.; Zhang, Y.; Bi, Y.; Meng, Q.; Bian, H.; Li, Y. Catalpol Inhibits Macrophage Polarization and Prevents Postmenopausal Atherosclerosis Through Regulating Estrogen Receptor Alpha. Front. Pharmacol. 2021, 12, 1073. [Google Scholar] [CrossRef] [PubMed]
- Zhai, T.; Sun, Y.; Li, H.; Zhang, J.; Huo, R.; Li, H.; Shen, B.; Li, N. Unique immunomodulatory effect of pae-oniflorin on type I and II macrophages activities. J. Pharmacol. Sci. 2016, 130, 143–150. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Zhi, W.; Liu, F.; Zhao, J.; Yao, Q.; Niu, X. Paeoniflorin inhibits VSMCs proliferation and migration by arresting cell cycle and activating HO-1 through MAPKs and NF-κB pathway. Int. Immunopharmacol. 2018, 54, 103–111. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, C.; Wang, H.; Li, X.; Xu, J.; Yu, K. Loganin alleviates sepsis-induced acute lung injury by regulating macrophage polarization and inhibiting NLRP3 inflammasome activation. Int. Immunopharmacol. 2021, 95, 107529. [Google Scholar] [CrossRef] [PubMed]
- Filipek, A.; Czerwińska, M.E.; Kiss, A.K.; Wrzosek, M.; Naruszewicz, M. Oleacein enhances an-ti-inflammatory activity of human macrophages by increasing CD163 receptor expression. Phytomedicine 2015, 22, 1255–1261. [Google Scholar] [CrossRef] [PubMed]
- Shao, B.-Z.; Han, B.-Z.; Zeng, Y.-X.; Su, D.-F.; Liu, C. The roles of macrophage autophagy in atherosclerosis. Acta Pharmacol. Sin. 2016, 37, 150–156. [Google Scholar] [CrossRef] [Green Version]
- Sergin, I.; Evans, T.D.; Zhang, X.; Bhattacharya, S.; Stokes, C.J.; Song, E.; Ali, S.; Dehestani, B.; Holloway, K.B.; Micevych, P.S.; et al. Exploiting macro-phage autophagy-lysosomal biogenesis as a therapy for atherosclerosis. Nat. Commun. 2017, 8, 15750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, P.; Cai, Z.; Tian, Y.; Li, J.; Li, K.; Li, M.; Bai, Y.; Li, J. Effective-compound combination inhibits the M2-like polarization of macrophages and attenuates the development of pulmonary fibrosis by increasing autophagy through mTOR signaling. Int. Immunopharmacol. 2021, 101, 108360. [Google Scholar] [CrossRef]
- Moore, K.J.; Sheedy, F.J.; Fisher, E.A. Macrophages in atherosclerosis: A dynamic balance. Nat. Rev. Immunol. 2013, 13, 709–721. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Yuan, H.-Q.; Hao, Y.-M.; Ren, Z.; Qu, S.-L.; Liu, L.-S.; Wei, D.-H.; Tang, Z.-H.; Zhang, J.-F.; Jiang, Z.-F. Macrophage polarization in athero-sclerosis. Clin. Chim. Acta 2020, 501, 142–146. [Google Scholar]
- Wang, N.; Liang, H.; Zen, K. Molecular mechanisms that influence the macrophage m1-m2 polarization balance. Front. Immunol. 2014, 5, 614. [Google Scholar]
- Filipek, A.; Czerwińska, M.; Kiss, A.; Polański, J.; Naruszewicz, M. Oleacein may inhibit destabi-lization of carotid plaques from hypertensive patients. Impact on high mobility group protein-1. Phytomedicine 2017, 32, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Tabas, I.; Bornfeldt, K.E. Macrophage Phenotype and Function in Different Stages of Atherosclerosis. Circ. Res. 2016, 118, 653–667. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Jiang, J.; Chen, W.; Li, W.; Chen, Z. Vascular Macrophages in Atherosclerosis. J. Immunol. Res. 2019, 2019, 4354786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bennett, M.; Sinha, S.; Owens, G. Vascular Smooth Muscle Cells in Atherosclerosis. Circ. Res. 2016, 118, 692–702. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Guo, X.; Xia, Y.; Mao, L. An update on the phenotypic switching of vascular smooth muscle cells in the pathogenesis of atherosclerosis. Cell. Mol. Life Sci. 2021, 79, 6. [Google Scholar] [CrossRef]
- Grootaert, M.O.J.; Bennett, M.R. Vascular smooth muscle cells in atherosclerosis: Time for a re-assessment. Cardiovasc. Res. 2021, 117, 2326–2339. [Google Scholar] [CrossRef]
- Muslin, A.J. MAPK signalling in cardiovascular health and disease: Molecular mechanisms and therapeutic targets. Clin. Sci. 2008, 115, 203–218. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Zhong, Y.; Li, X.; Xiao, Y.; Wu, Y.; Xie, P. Biological evaluation of linalool on the function of blood vessels. Mol. Med. Rep. 2021, 24, 874. [Google Scholar] [CrossRef]
- Lee, K.P.; Sudjarwo, G.W.; Jung, S.H.; Lee, D.; Lee, D.-Y.; Lee, G.B.; Baek, S.; Kim, D.-Y.; Lee, H.M.; Kim, B.; et al. Carvacrol inhibits atherosclerotic neointima formation by downregulating reactive oxygen species production in vascular smooth muscle cells. Atherosclerosis 2015, 240, 367–373. [Google Scholar] [CrossRef]
- Clempus, R.E.; Griendling, K. Reactive oxygen species signaling in vascular smooth muscle cells. Cardiovasc. Res. 2006, 71, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Pei, X.; Li, X.; Chen, H.; Han, Y.; Fan, Y. Thymoquinone Inhibits Angiotensin II-Induced Proliferation and Migration of Vascular Smooth Muscle Cells Through the AMPK/PPARγ/PGC-1α Pathway. DNA Cell Biol. 2016, 35, 426–433. [Google Scholar] [CrossRef] [PubMed]
- Zhu, N.; Xiang, Y.; Zhao, X.; Cai, C.; Chen, H.; Jiang, W.; Wang, Y.; Zeng, C. Thymoquinone suppresses plate-let-derived growth factor-BB-induced vascular smooth muscle cell proliferation, migration and neointimal formation. J. Cell. Mol. Med. 2019, 23, 8482–8492. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Wu, J.; Yang, H.; Yan, L.; Wang, S. Paeoniflorin blocks the proliferation of vascular smooth muscle cells induced by platelet-derived growth factor-BB through ROS mediated ERK1/2 and p38 signaling pathways. Mol. Med. Rep. 2018, 17, 1676–1682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, F.; Jiang, R.; Zhu, X.; Zhang, X.; Zhan, Z. Genipin Inhibits TNF-α-Induced Vascular Smooth Muscle Cell Proliferation and Migration via Induction of HO-1. PLoS ONE 2013, 8, e74826. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.S.; Wang, M.J.; Jayakumar, T.; Chou, D.S.; Ko, C.Y.; Hsu, M.J.; Hsieh, C.Y. Antiprolif-erative Activity of Hinokitiol, a Tropolone Derivative, Is Mediated via the Inductions of p-JNK and p-PLCγ1 Signaling in PDGF-BB-Stimulated Vascular Smooth Muscle Cells. Molecules 2015, 20, 8198–8212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heiss, E.H.; Liu, R.; Waltenberger, B.; Khan, S.; Schachner, D.; Kollmann, P.; Zimmermann, K.; Cabaravdic, M.; Uhrin, P.; Stuppner, H.; et al. Plumericin inhibits proliferation of vascular smooth muscle cells by blocking STAT3 signaling via S-glutathionylation. Sci. Rep. 2016, 6, 20771. [Google Scholar] [CrossRef] [Green Version]
- Amirghofran, Z.; Ahmadi, H.; Karimi, M.H.; Kalantar, F.; Gholijani, N.; Malek-Hosseini, Z. In vitro inhibitory effects of thymol and carvacrol on dendritic cell activation and function. Pharm. Biol. 2016, 54, 1125–1132. [Google Scholar]
- Xuan, N.T.; Shumilina, E.; Qadri, S.M.; Götz, F.; Lang, F. Effect of thymoquinone on mouse den-dritic cells. Cell. Physiol. Biochem. 2010, 25, 307–314. [Google Scholar] [CrossRef]
- Zhang, H.; Qi, Y.; Yuan, Y.; Cai, L.; Xu, H.; Zhang, L.; Su, B.; Nie, H. Paeoniflorin Ameliorates Experimental Au-toimmune Encephalomyelitis via Inhibition of Dendritic Cell Function and Th17 Cell Differentiation. Sci. Rep. 2017, 7, 41887. [Google Scholar] [CrossRef]
- Chen, D.; Li, Y.; Wang, X.; Li, K.; Jing, Y.; He, J.; Qiang, Z.; Tong, J.; Sun, K.; Ding, W.; et al. Generation of regulatory dendritic cells after treatment with paeoniflorin. Immunol. Res. 2015, 64, 988–1000. [Google Scholar] [CrossRef]
- Abe, R.; Beckett, J.; Nixon, A.; Rochier, A.; Yamashita, N.; Sumpio, B. Olive Oil Polyphenol Oleuropein Inhibits Smooth Muscle Cell Proliferation. Eur. J. Vasc. Endovasc. Surg. 2011, 41, 814–820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Liao, P.; Wang, B.; Fang, X.; Li, W.; Guan, S. Oral administration of baicalin and geniposide induces regression of atherosclerosis via inhibiting dendritic cells in ApoE-knockout mice. Int. Immunopharmacol. 2014, 20, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, M.; Tabas, I. Dendritic cells in atherosclerosis. Semin. Immunopathol. 2014, 36, 93–102. [Google Scholar] [CrossRef]
- Gil-Pulido, J.; Zernecke, A. Antigen-presenting dendritic cells in atherosclerosis. Eur. J. Pharmacol. 2017, 816, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, J.; Zhang, W.; Xu, Y. A myriad of roles of dendritic cells in atherosclerosis. Clin. Exp. Immunol. 2021, 206, 12–27. [Google Scholar] [CrossRef]
- Elmowafy, M.; Samy, A.; Raslan, M.A.; Salama, A.; Said, R.A.; Abdelaziz, A.E.; Eleraky, W.; el Awdan, S.; Viitala, T. Enhancement of Bioavailability and Pharmacodynamic Effects of Thymoquinone Via Nanostructured Lipid Carrier (NLC) Formulation. AAPS PharmSciTech 2015, 17, 663–672. [Google Scholar] [CrossRef]
- Huguet-Casquero, A.; Xu, Y.; Gainza, E.; Pedraz, J.L.; Beloqui, A. Oral delivery of oleuropein-loaded lipid nanocarriers alleviates inflammation and oxidative stress in acute colitis. Int. J. Pharm. 2020, 586, 119515. [Google Scholar] [CrossRef]
- Vaidya, H.B.; Goyal, R.K.; Cheema, S.K. Acetylated and propionated derivatives of swertiamarin have an-ti-adipogenic effects. J. Pharmacol. Pharmacother. 2014, 5, 232–238. [Google Scholar] [CrossRef]
Monoterpene | Experimental Model | Efficacy | Target/Pathway | Refs. |
---|---|---|---|---|
Linalool | C57BL/6J mice fed with HFD | Lowers TC, TG, and LDL-C, and improves atherogenic index | Suppresses SREBP-2-mediated HMG-CoA reductase expression and induces ubiquitin-dependent proteolysis of the HMG-CoA reductase | [24] |
Amarogentin | C57BL/6J mouse model of diabetes | Attenuates neointimal thickening, and collagen and lipid deposition in the aorta, lowers TC, TG, LDL-C, and VLDL-C, and increases HDL-C | Induces phosphorylation of AMPK | [26] |
Oleuropein | Wistar rats fed with a cholesterol rich diet | Decreases TC and TG, and elevates HDL-C | Suppresses lipid synthesis and promotes fatty acid oxidation mediated by AMPK | [27] |
Aucubin | C57BL/6J mice treated with tyloxapol | Downregulates TC, TG, LDL-C and VLDL-C, and increases HDL-C | Activates AMPK and Nrf2, and promotes the expression of PPARα and PPARγ | [28] |
Thymoquinone | SD rats fed with HFD | Decreases TC and LDL-C levels | Downregulates gene expression of HMG-CoA reductase and upregulates the expression LDLR | [30] |
Geniposide | C57BL/6J mice and ApoE−/− mice fed with HFD | Suppresses atherosclerotic plaque progression, reduces serum TC and TG, and attenuates hepatic lipid deposition | Regulates FXR-mediated liver-gut crosstalk of bile acids | [31] |
Swertiamarin | SD rats fed with a cholesterol rich diet | Lowers TC, TG, LDL-C, VLDL-C, and atherogenic index | Inhibits HMG-CoA reductase activity and enhances the fecal bile acid and total sterols excretion | [34] |
Eucalyptol | Wistar rat model of diabetic-atherosclerosis | Prevents the formation of the atheromatous lesions, reduces TC, TG, and LDL-C, and upregulates HDL-C | Not shown | [35] |
Geraniol | Syrian hamsters fed with an atherogenic diet | Decreases TC, TG, free fatty acids, phospholipids, LDL-C, and VLDL-C, upregulates HDL-C, and lowers atherogenic index | Inhibits HMG-CoA reductase and suppresses lipogenesis | [36] |
Thymol | New Zealand white rabbits fed with HFD | Decreases TC, TG, and LDL-C, and elevates HDL-C | Not shown | [37] |
Limonene | Wistar rats fed with an atherogenic diet | Reduces TG, TC, VLDL-C, LDL-C and non-HDL-C levels, and elevates HDL-C/LDL-C, HDL-C/TC and HDL-C/TG | Reduces HMG-CoA reductase activity | [38] |
p-Cymene | Wistar rat model of diabetes | Improves TC, TG, LDL-C, VLDL-C, and HDL-C | Suppresses AKT/mTOR signaling | [39] |
Safranal | Wistar rat model of diabetes | Decreases total lipids, TC, TG, and LDL-C, and elevates HDL-C | Not shown | [40] |
Genipin | C57BL/6J mice fed with HFD; mouse primary hepatocytes treated with free fatty acids | Antagonizes HFD-induced hyperlipidemia and hepatic lipid accumulation | Regulates miR-142a-5p/SREBP-1c axis | [41] |
Catalpol | New Zealand white rabbits fed with HFD and EA. hy926 cells treated with ox-LDL | Attenuates atherosclerotic lesions, decreases TC, TG, and LDL-C, and increases HDL-C | Promotes Nrf2/HO-1-mediated anti-oxidative stress and inhibits NF-κB-mediated inflammation | [42] |
Paeoniflorin | C57BL/6J mice fed with HFD | Exerts an antagonistic effect on hyperlipidemia and lipid ectopic deposition | Lowers the lipid synthesis pathway, promotes fatty acid oxidation and increases cholesterol output | [43] |
Loganic acid | New Zealand rabbits fed with a cholesterol rich diet | Decreases intima thickness and intima/media ratio in the thoracic aorta, lowers TG and ox-LDL, and increases HDL-C | Promotes the expression of PPARα and PPARγ | [44] |
Loganin | C57BLKS/J type 2 diabetic db/db mice | Reduces TG and LDL-C/VLDL-C, and increases HDL-C | Suppresses gene expressions related to lipid synthesis and adjusts the abnormal expression of PPARα and SREBPs in the nucleus | [45] |
Oleacein | C57BL/6J mice fed with HFD | Reduces TC, TG, and LDL-C | Downregulates the expression of FAS, SREBP-1, and phospho-ERK | [46] |
Gentiopicroside | C57BL/6J mice treated with tyloxapol and HepG2 cells treated with free fatty acid | Reduces TC and TG | Regulates Nrf2-mediated PPARα activation and SREBP-1c inactivation | [47] |
Monoterpene | Experimental Model | Efficacy | Target/Pathway | Refs. |
---|---|---|---|---|
Eucalyptol | HUVECs treated with LPS | Attenuates adhesion molecules and pro-inflammatory cytokines | Regulates PPAR-γ dependent modulation of IκBα/NF- κB signaling | [52] |
Citral | HUVECs treated with LPS | Suppresses the adhesion of neutrophils to HUVECs, and decreases adhesion molecules and pro-inflammatory cytokines | Regulates PPAR-γ dependent modulation of IκBα/NF- κB signaling | [53] |
Citronellol | Bovine arterial endothelial cells treated with LPS | Suppresses LPS-induced COX-2 expression and attenuates vascular endothelial inflammation | Activates PPARγ signaling | [54] |
Genipin | HUVECs treated with TNF-α | Attenuates the adhesion of U937 monocytic cells to HUVECs and ameliorates adhesion molecules | Induces the expression of PPAR-γ | [55] |
Cornuside | HUVECs treated with TNF-α | Attenuates pro-inflammatory mediator and adhesion molecules | Suppresses NF-κB signaling | [63] |
HUVECs treated with LPS or HMGB1 | Inhibits endothelial permeability, decreases pro-inflammatory mediators, and reduces adhesion events | Modulates SIRT1/HMGB1-mediated NF-κB, ERK and p38 MAPK signaling | [57] | |
Paeoniflorin | HUVECs treated with LPS | Suppresses the expression of adhesion molecules and pro-inflammatory cytokines | Decreases the activation of IκBα/NF- κB, p38 MAPK and JNK pathway | [61] |
HUVECs treated with ox-LDL | Attenuates adhesion molecule expression | Enhances autophagy via upregulation of SIRT1 | [64] | |
HUVECs treated with LPC | Suppresses LPC-induced inflammatory factor production | Inhibits the HMGB1-RAGE/TLR-2/TLR-4-NF-κB pathway | [58] | |
HUVECs treated with LPS | Suppresses pro-inflammatory cytokines and chemokine | Inhibits ER stress-dependent IRE1α /NF-κB signaling | [65] | |
Catalpol | Human aortic endothelial cells treated with homocysteine | Inhibits the expression of adhesion molecules and chemokine | Suppresses ER stress and NF-κB signaling | [66] |
Geniposide | HUVECs treated with LPS | Inhibits LPS-induced expression of IL-6 and IL-8, and suppresses U937 monocyte adhesion to HUVECs | Attenuates IκBα/NF-κB, p38 MAPK and ERK signaling | [62] |
HUVECs treated with a high level of glucose | Suppresses the adhesion of monocytes to HUVECs and reduces adhesion molecules | Attenuates ROS/NF-κB signaling | [60] | |
HUVECs treated with ox-LDL | Decreases the production of pro-inflammatory cytokines | Enhances the miR-21/PTEN pathway | [67] | |
ApoE−/− mice fed with HFD and HUVECs treated with H2O2 | Suppresses atherosclerosis and inhibits endothelial inflammation | Modulates AMPK/mTOR/Nrf2 signaling pathway | [68] | |
Bornyl acetate | HUVECs treated with ox-LDL | Suppresses the attachment of THP-1 monocytes to HUVECs, and ameliorates adhesion molecules and pro-inflammatory cytokines | Mitigates the activation of the IκBα/NF-κB signaling pathway | [69] |
Carvacrol | C57BLKS/J type 2 diabetic db/db mice and HUVECs treated with a high level of glucose | Alleviates the histological abnormalities of the abdominal aorta and reduces vascular inflammation | Reduces the activation of the TLR4/NF-κB signaling | [70] |
Hinokitiol | SEVC4-10 endothelial cells treated with culture medium of LPS-stimulated RAW 264.7 cell | Inhibits pro-inflammatory cytokine-induced adhesion molecules | Not shown | [71] |
Thymoquinone | HUVECs treated with LPS | Suppresses pro-inflammatory cytokines and chemokine | Modulates TET2/NLRP3 inflammasome axis | [72] |
Amarogentin | C57BL/6J diabetic mice, and EAhy926 cells or HUVECs treated with TNF-α | Exerts anti-atherosclerotic effects and inhibits endothelial inflammation and the adherence of THP-1 monocytes onto HUVECs | Regulates AMPK/NF-κB pathway | [26] |
Oleuropein | HUVECs treated with LPS, TNF-α or PMA | Suppresses the adhesion of monocytes to HUVECs and reduces the adhesion molecule VCAM-1 | Inhibits the binding of NF-κB, AP-1, and possibly GATA to the promoter of VCAM-1 | [73] |
Oleacein | HUVECs treated with LPS or TNF-α | Suppresses the adhesion of monocytes to HUVECs and reduces adhesion molecules and pro-inflammatory chemokine | Inhibits NF-κB-mediated CCL2 expression | [74] |
Plumericin | HUVECs treated with TNF-α | Attenuates adhesion molecule expression | Regulates IKK/IκB/NF-κB pathway | [75] |
Picroside II | HUVECs treated with homocysteine | Reduces the production of inflammatory mediators | Modulates the SIRT1/LOX-1/NF-κB signaling pathway | [76] |
Monotropein | HUVECs treated with H2O2 | Alleviates the inflammatory response of HUVECs | Attenuates NF-κB/AP-1 signaling | [77] |
Albiflorin | HUVECs treated with ox-LDL | Alleviates the production of pro-inflammatory cytokines | Blocks IRAK1/TAK1 pathway | [78] |
Monoterpene | Experimental Model | Efficacy | Target/Pathway | Refs. |
---|---|---|---|---|
Geraniol | C57BL/6J mice fed with HFD and HUVECs treated with palmitic acid | Protects against HFD-induced endothelial dysfunction | Decreases the expression of NOX-2 to suppress ROS production | [81] |
Syrian hamsters fed with an atherogenic diet | Attenuates endothelial dysfunction and prevents tissue oxidative injury | Increases the expression of Nrf2, inhibits lipid peroxidation and reduces antioxidant enzymes (SOD, CAT, GPx, and GR) | [87] | |
Paeoniflorin | HUVECs treated with H2O2 | Attenuates H2O2-induced endothelial cell damage | Increases the expression of SIRT1 and modulate balance between eNOS/iNOS | [88] |
HUVECs treated with H2O2 | Suppresses H2O2-induced oxidative stress | Scavenges intracellular ROS, and rescues abnormalities of MDA, SOD and GSH-Px | [89] | |
HUVECs treated with TBHP | Suppresses TBHP-induced oxidative damage | Activates Nrf2/HO-1 signaling to reduce ROS level and increase activities of CAT, GPx, and SOD | [90] | |
HUVECs treated with AOPPs | Protects against AOPP-induced oxidative damage | Suppresses ROS generation through the inhibition of RAGE-NOX2/NOX4 | [82] | |
Harpagoside | bEnd.3 endothelial cells treated with Ang II | Inhibits Ang II-induced oxidative stress | Decreases NOX2/NOX4/COX-2/ROS and lipid peroxidation level | [83] |
Thymoquinone | Rabbit aortic rings treated with pyrogallol | Exerts antioxidant capacity, increases NO production, and improves pyrogallol-induced endothelial dysfunction | Reduces lipid peroxidation and enhances activity or content of SOD and GSH | [84] |
Perillaldehyde | Rats and ApoE−/− mice with HFD or plus balloon injury and HUVECs treated with ox-LDL | Suppresses oxidative stress to improve endothelial dysfunction with increased NO generation and inhibits atherosclerosis | Increases endogenous BH4 generation, rescues abnormalities of ROS, MDA and SOD, and elevates consequent eNOS recoupling | [85] |
Citronellal | SD rats fed with HFD plus balloon injury | Suppresses oxidative stress, increases NO production, and prevents endothelial dysfunction and the progression of atherosclerosis | Downregulates the expression of NHE1 and rescues abnormalities of MDA and SOD activity | [86] |
SD rats fed with HFD plus streptozotocin (STZ) administration, and HUVECs treated with a high level of glucose | Alleviates oxidative stress, increases NO production, and improves high glucose-induced endothelial injury | Induction of S1P/S1P1 signaling, increases eNOS expression, recouples eNOS, and rescues abnormalities of NOx, ROS, MDA and SOD and other anti-oxidant enzymes | [91] | |
Geniposide | HUVECs treated with ox-LDL | Inhibits ox-LDL-induced oxidative stress | Modulates the miR-21/PTEN/NOX2 pathway, and rescues abnormalities of ROS, MDA, SOD, GSH-Px, and CAT | [67] |
ApoE−/− mice fed with HFD and HUVECs treated with H2O2 | Suppresses atherosclerosis and inhibits ox-LDL-induced oxidative stress | Modulates AMPK/mTOR/Nrf2 pathway and rescues abnormalities of NOX2, ROS, MDA, GSH, and SOD | [68] | |
Monotropein | HUVECs treated with H2O2 | Ameliorates H2O2-mediated oxidative injury | Attenuates NF-κB/AP-1 signaling and rescues abnormalities of MDA, SOD, and GSH-Px | [77] |
Eucalyptol | HUVECs treated with a high level of glucose | Protects against high glucose-induced vascular endothelial injury | Modulation of Keap1/Nrf2/HO-1 signaling to reduce ROS generation | [92] |
HUVECs treated with LPS | Sustains the balance of endothelial NO and ameliorates LPS-induced HUVEC injury | Suppresses NF-κB signaling to reduce iNOS-derived NO, and recovers eNOS-derived NO to the normal level | [93] | |
Catalpol | New Zealand white rabbits fed with HFD and EA.hy926 cells treated with ox-LDL | Exerts beneficial effects on atherosclerosis progression, oxidative stress and inflammation | Rescues abnormalities of MDA, SOD and GSH-Px, and induces the activation of Nrf2/HO-1 axis in HUVECs | [42] |
Mouse glomerular endothelial cells treated with AGE | Ameliorates AGEs-induced endothelial dysfunction | Inhibits the NF-κB/iNOS pathway and activates the PI3K/AKT/eNOS pathway | [94] | |
Human aortic endothelial cells treated with homocysteine | Inhibits homocysteine-induced oxidative damage | Decreases NOX4/ROS signaling and rescues abnormalities of MDA and GSH | [66] | |
Citral | HUVECs treated with H2O2 | Exerts antioxidant capacity and protects against oxidative damage induced by H2O2 in HUVECs | Reduces hydroperoxide levels and elevates total antioxidant activity | [95] |
Genipin | HUVECs treated with thrombin | Inhibits thrombin-induced VWF release and P-selectin translocation in HUVECs | Activates eNOS phosphorylation, promotes enzyme activation and increases NO production | [96] |
Safranal | Bovine aortic endothelial cells treated with H2O2 | Suppresses H2O2-induced oxidative stress | Decreases ROS production | [97] |
Amarogentin | C57BL/6J diabetic mice and EA.hy926 cells or HUVECs treated with TNF-α | Exerts anti-atherosclerotic effects and inhibits endothelial dysfunction | Regulates AMPK/eNOS pathway | [26] |
Picroside II | HUVECs treated with homocysteine | Attenuates homocysteine-induced oxidative stress | Modulates the SIRT1/LOX-1 pathway, reduces ROS production, and rescues abnormalities of NOX, MDA, SOD, and CAT | [76] |
Aucubin | HUVECs treated with ox-LDL | Improves vascular endothelial dysfunction | Reduces ROS generation and protects against eNOS uncoupling | [98] |
Monoterpene | Experimental Model | Efficacy | Target/Pathway | Refs. |
---|---|---|---|---|
Catalpol | HUVECs treated with H2O2 | Attenuates H2O2-induced apoptosis in HUVECs | Activates PI3K/AKT pathway, decreases Bax and cleaved Caspase-3, and increases Bcl-2 and p-Bad | [109] |
Human aortic endothelial cells treated with homocysteine | Protects against endothelial apoptosis induced by homocysteine | Inhibits ER stress-mediated apoptosis, enhances Bcl-2 and mitochondrial membrane potential, and reduces Bax, cleaved caspase-3, caspase-9 and cytochrome c release | [66] | |
Paeoniflorin | HUVECs treated with ox-LDL | Attenuates ox-LDL-induced apoptosis in HUVECs | Enhances autophagy via upregulation of SIRT1, decreases Bax, and increases Bcl-2 | [64] |
HUVECs treated with TBHP | Suppresses apoptosis in HUVECs mediated by TBHP | Activates Nrf2/HO-1 signaling, decreases Bax, cleaved Caspase-3 and cytochrome c release, and increases Bcl-2 | [90] | |
HUVECs treated with H2O2 | Protects against HUVEC apoptosis induced by H2O2 | Suppresses ERK signaling and Caspase-3 activity | [89] | |
Geniposide | HUVECs treated with ox-LDL | Inhibits apoptosis in HUVECs subjected to ox-LDL | Modulates the miR-21/PTEN pathway, decreases Bax and Caspase-3 activity, and increases Bcl-2 and mitochondrial membrane potential | [67] |
ApoE−/− mice fed with HFD and HUVECs treated with H2O2 | Inhibits the growth of atherosclerosis and ameliorates H2O2-induced apoptosis in HUVECs | Modulates AMPK/mTOR/Nrf2 pathway, decreases Bax and Caspase-3, and increases Bcl-2 | [68] | |
Picroside II | HUVECs treated with homocysteine | Protects against endothelial apoptosis induced by homocysteine | Modulates SIRT1/LOX-1 pathway, and reduces cleaved Caspase-3 as well as Caspase-3 activity | [76] |
Monotropein | HUVECs treated with H2O2 | Attenuates H2O2-induced apoptosis in HUVECs | Attenuates NF-κB/AP-1 signaling, decreases Bax and cleaved Caspase-3, increases Bcl-2 | [77] |
Albiflorin | HUVECs treated with ox-LDL | Alleviates ox-LDL-induced apoptosis in HUVECs | Blocks IRAK1/TAK1 pathway, and decreases Bax and Caspase-3 | [78] |
Harpagoside | bEnd.3 endothelial cells treated with Ang II | Suppresses Ang II-induced apoptosis in HUVECs | Keeps Bax/Bcl-2 balance, decreases cytochrome c release, and inactivates caspase-8, caspase-9, and caspase-3 | [83] |
Safranal | Bovine aortic endothelial cells treated with H2O2 | Suppresses H2O2-induced endothelial apoptosis | Modulates MAPK signaling, decreases Caspase-3 and cytochrome c release, and increases Bcl-2 and survivin | [97] |
Monoterpene | Experimental Model | Efficacy | Target/Pathway | Refs. |
---|---|---|---|---|
Bornyl acetate | RAW 264.7 macrophages treated with LPS | Decreases TNF-α, IL-1β, and IL-6 | Suppresses p38 MAPK/JNK/ERK signaling and IκBα/NF-κB signaling | [128] |
Eucalyptol | Murine peritoneal macrophages, BMDMs, or alveolar macrophages treated with LPS or LPS+ATP | Decreases TNF-α, IL-1α, IL-1β, IL-6, COX-2, iNOS, and NO and increases IL-10 | Suppresses NF-κB, JNK, p38 MAPK, STAT3, and NLRP3 inflammasome activation | [129,130,131] |
α-Pinene | Murine peritoneal macrophages treated with LPS | Decreases IL-6, TNF-α, COX-2, iNOS, PGE2, and NO | Suppresses JNK, ERK, and IKK/NF-κB signaling | [132] |
Geraniol | RAW 264.7 macrophages treated with LPS | Decreases COX-2, iNOS, PGE2, and NO | Suppresses IκBα/NF-κB signaling | [133] |
Linalool | RAW 264.7 macrophages treated with LPS | Decreases TNF-α and IL-6 | Suppresses p38 MAPK/JNK/ERK and IκBα/NF-κB signaling | [134] |
Citral | Murine alveolar macrophages or J774A.1 macrophages treated with LPS or LPS+ATP | Decreases TNF-α, IL-1β, and IL-6 | Regulates PPAR-γ/NF-κB signaling and inhibits NLRP3 inflammasome activation | [119,135] |
Citronellol | RAW 264.7 macrophages treated with LPS | Decreases COX-2, iNOS, PGE2, and NO | Suppresses IκBα/NF-κB signaling | [133] |
Carvacrol | THP-1 cells, J774A.1 cells, or macrophage-like U937 cells treated with LPS or LPS+ATP | Decreases TNF-α, IL-1β, IL-18, and COX-2 | Suppresses NF-κB, JNK, ERK, STAT-3, AP-1, NFATs, and NLRP3 inflammasome and activates PPAR-γ | [120,136,137] |
Thymol | RAW 264.7 macrophages treated with LPS | Decreases TNF-α, IL-6, COX-2, and NO | Suppresses NF-κB, MAPK, STAT-3, AP-1, and NFATs | [137,138] |
Perillaldehyde | RAW 264.7 macrophages treated with LPS | Decreases TNF-α, IL-1β, and IL-6 | Suppresses JNK signaling | [139] |
Hinokitiol | RAW 264.7 macrophages treated with LPS | Decreases TNF-α | Suppresses the phosphorylation of PDK1, AKT/PKB, and ERK and consequently reduces NF-κB activation | [140] |
Carvone | RAW 264.7 macrophages treated with LPS | Anti-inflammatory effect | Suppresses JNK signaling and promotes SIRT1-mediated NF-κB-p65 deacetylation | [116] |
p-Cymene | RAW 264.7 macrophages treated with LPS | Decreases TNF-α, IL-1β, and IL-6 | Suppresses p38 MAPK/JNK/ERK signaling and IκBα/NF-κB signaling | [141] |
Thymoquinone | RAW 264.7 macrophages treated with LPS | Decreases iNOS, COX-2, TNF-α, IL-1β, and IL-6 | Suppresses IRAK1-linked AP-1/NF-κB pathways | [142] |
Gamma-Terpinene | Murine peritoneal macrophages treated with LPS | Decreases IL-1β and IL-6 and enhances IL-10 | Promotes the PGE2/IL-10 axis | [143] |
Safranal | RAW 264.7 macrophages or J774A.1 cells treated with LPS or LPS+ATP | Decreases TNF-α, IL-1β, IL-6, COX-2, iNOS, and NO | Suppresses MAPK/AP-1 and IKK/NF-κB signaling and inhibits NLRP3 inflammasome activation | [144,145] |
Geniposide | ApoE−/− mice fed with HFD, RAW 264.7 macrophages or primary mouse macrophages treated with LPS or LPS+ATP | Attenuates atherosclerosis and decreases TNF-α, IL-1β, and IL-6 | Modulates miR-101/ MKP-1/p38, TLR4-mediated NF-κB and MAPK signaling, and AMPK/SIRT1/NLRP3 inflammasome activation | [113,114,115] |
Genipin | RAW 264.7 macrophages treated with LPS | Decreases NO, iNOS and COX-2 | Suppresses IκBβ/NF-κB and promotes PI3K/JNK/Nrf2/HO-1 signaling | [121,146] |
Catalpol | Murine alveolar macrophages or THP-1 cells treated with LPS | Decreases TNF-α, IL-1β, IL-6, and IL-4 and increases IL-10 | Suppresses NLRP3 inflammasome activation and TLR4-mediated NF-κB and MAPK signaling | [147,148] |
Swertiamarin | RAW 264.7 macrophages treated with LPS | Decreases TNF-α, IL-1β, IL-6, IL-8, iNOS, and COX-2 and increases IL-10 and IL-4 | Suppresses IκBα/NF-κB and JAK2/STAT3 signaling and targets the AKT-PH domain to reduce the phosphorylation of AKT | [149,150] |
Paeoniflorin | RAW 264.7 macrophages or THP-1 cells treated with AGEs or LPS | Decreases TNF-α, IL-1β, IL-6, IL-33, MCP-1, and iNOS | Suppresses miR-124, TLR2/4, NF-κB and p38 MAPK with the regulation of Ca2+ mobilization and modulates the SOCS3-ASK1-p38 pathway | [127,151,152,153] |
MBPF | RAW 264.7 macrophages treated with LPS | Decreases TNF-α, IL-6, iNOS, and NO | Suppresses NF-κB, MAPK and PI3K/AKT | [154] |
Cornuside | RAW 264.7 macrophages treated with LPS | Decreases TNF-α, IL-1β, IL-6, iNOS, COX-2, NO, and PGE2 | Suppresses IκBα/NF-κB and MAPK signaling | [155] |
Loganin | Mice fed with dextran sulfate sodium, RAW 264.7 macrophages, or BMDMs treated with LPS or LPS+MSU | Decreases TNF-α, IL-1β, IL-6, MCP-1, CXCL10, iNOS, COX-2, NO, and PGE2 | Suppresses SIRT1/NF-κB and mitochondrial dysfunction-mediated NLRP3 inflammasome activation and induces Nrf2/HO-1 signaling | [117,122,156] |
Oleuropein | J774A.1 macrophages treated with LPS | Decreases TNF-α, IL-6, iNOS, COX-2, and NO | Modulates CD14/TLR4-MyD88-NF-κB/MAPK pathways | [157] |
Oleacein | THP-1 cells treated with LPS | Decreases TNF-α, IL-1β, IL-6, NO, and PGE2 and increases IL-10 | Suppresses TLR4/MyD88/NF-κB Pathway | [158] |
Oleocanthal | Mouse peritoneal Macrophages treated with LPS | Decreases TNF-α, IL-1β, IL-6, IL-17, IL-18, INF-γ, iNOS, COX-2, NO, and PGE2 | Activates Nrf2/HO-1 and inhibits MAPK and NLRP3 inflammasome activation | [123] |
Picroside II | THP-1 cells treated with LPS+ATP | Decreases IL-1β | Suppresses NF-κB-mediated NLRP3 inflammasome activation | [159] |
Gentiopicroside | RAW 264.7 macrophages or primary mouse macrophages treated with LPS+INF-γ or LPS+MSU | Decreases TNF-α, IL-1β, IL-6, IL-18, CCL-5, CXCL10, and iNOS | Suppresses IKKα/β/NF-κB signaling and NLPR3 inflammasome activation | [160,161] |
Aucubin | RAW 264.7 macrophages and THP1 cells treated with LPS | Decreases TNF-α, IL-1β, iNOS, and COX-2 | Induces the AMPK/Nrf2 pathway | [124] |
Harpagoside | RAW 264.7 macrophages treated with LPS | Decreases iNOS and COX-2 | Suppresses IκBα/NF-κB signaling | [162] |
Scropolioside B | THP-1 cells treated with LPS | Decreases TNF-α, IL-1β, and IL-32 | Suppresses NLRP3 inflammasome activation | [147] |
Catalposide | RAW 264.7 macrophages treated with LPS | Decreases TNF-α, IL-1β, and IL-6 | Suppresses the binding of LPS to CD14 on the surface of cells thereby inhibiting NF-kB signaling | [163] |
Monotropein | RAW 264.7 macrophages treated with LPS | Decreases TNF-α, IL-1β, iNOS, COX-2, NO, and PGE2 | Suppresses IKKβ/NF-κB and MAPK signaling | [164] |
Asperulosidic Acid | RAW 264.7 macrophages treated with LPS | Decreases TNF-α, IL-6, iNOS, COX-2, NO, and PGE2 | Suppresses JNK, ERK, and IκBα/NF-κB signaling | [165] |
Asperuloside | RAW 264.7 macrophages treated with LPS | Decreases TNF-α, IL-6, iNOS, COX-2, NO, and PGE2 | Induces Nrf2/HO-1 and suppresses MAPK and IκBα/NF-κB signaling | [125,165] |
Sweroside | BMDMs or RAW 264.7 macrophages treated with LPS | Decreases TNF-α, IL-1β, IL-6, COX-2, iNOS, PGE2, and NO and increases IL-10 | Increases SIRT1 signaling and suppresses NLRP3 inflammasome activation | [118,166] |
Nuezhenide | RAW 264.7 macrophages treated with LPS | Decreases TNF-α, IL-6, iNOS, COX-2, and NO | Suppresses IKKα/β/NF-κB signaling | [167] |
Morroniside | RAW 264.7 macrophages treated with LPS | Decreases TNF-α, IL-1β, iNOS, COX-2, NO, and PGE2 | Modulates TLR4/NF-κB and Nrf2/HO-1 signaling | [126] |
Scandoside | RAW 264.7 macrophages treated with LPS | Decreases TNF-α, IL-6, iNOS, COX-2, NO, and PGE2 | Suppresses IκBα/NF-κB and MAPK signaling | [168] |
Mussaenoside | RAW 264.7 macrophages treated with LPS | Decreases TNF-α, IL-1β, iNOS, COX-2, NO, and PGE2 | Suppresses NF-κB signaling | [169] |
Monoterpene | Experimental Model | Efficacy | Target/Pathway | Refs. |
---|---|---|---|---|
Isoborneol | RAW 264.7 macrophages treated with ox-LDL | Reduces the absorption of ox-LDL and the accumulation of intracellular lipids | Modulation of cell migration and polarity-related pathways may be involved | [185] |
RAW 264.7 macrophages treated with LPS+INF-γ or IL-4+IL-13 | Promotes M2 macrophage polarization as shown by elevated expression of CD206, Arg-1 and IL-10 | Activates the JAK2-STAT3 signaling pathway | [186] | |
Eucalyptol | THP-1 or RAW 264.7 macrophages treated with ox-LDL | Suppresses foam cell formation and promotes cholesterol efflux | Upregulates the expression of LXRs and their target genes ABCA1 and ABCG1 | [182,183] |
Geniposide | ApoE−/− mice fed with HFD, RAW 264.7 cells treated with LPA | Inhibits atherosclerosis and attenuates foam cell formation by regulating both lipid uptake and efflux | Suppresses p38 MAPK and AKT signaling pathways | [184] |
BMDMs treated with ox-LDL | Inhibits foam cell formation and inflammatory response | Suppresses CD36 expression and NF-κB and MAPK signaling pathways | [179] | |
New Zealand rabbits fed with HFD | Inhibits atherosclerosis, suppresses M1 macrophage polarization, and promotes M2 polarization | Suppresses the FOS/ MAPK signaling pathway | [187] | |
ApoE−/− mice fed with HFD, RAW 264.7 cells treated with ox-LDL | Inhibits the progression of atherosclerosis and reinforces macrophage autophagy | Suppresses the TREM2/mTOR axis | [188] | |
Genipin | BMDMs (M0, M1, M2-type) | M2 polarization induction and maintenance, along with suppressed pro-inflammatory M1/iNOS response | Activates the pSTAT6/PPARγ pathway | [189] |
Catalpol | Postmenopausal atherosclerosis mouse model, J774A-1 macrophages treated with LPS+INF-γ | Prevents postmenopausal atherosclerosis, suppresses M1 macrophage polarization and promotes M2 polarization | Increases the expression of ERα | [190] |
Paeoniflorin | Mouse BMDMs treated with LPS or IL-4 | Suppresses M1 macrophage polarization and promotes M2 polarization | Decreases NF-κB and increases STAT6 signaling | [191] |
Mouse peritoneal macrophages treated with ox-LDL | Attenuates ox-LDL-induced foam cell formation | Suppression of NF-κB, ERK and p38 MAPK may be involved | [192] | |
Albiflorin | THP-1 cells treated with ox-LDL | Blocks foam cell formation | Modulates the LOX-1/NF-κB signaling pathway | [180] |
Loganin | RAW 264.7 macrophages or peritoneal macrophages treated with LPS | Suppresses M1 macrophage polarization and promotes M2 polarization | Suppresses ERK and NF-κB signaling | [193] |
Oleacein | Human monocyte-derived macrophages treated with ox-LDL | Decreases foam cell formation, reduces apoptosis, and shifts the polarization towards M2 macrophage phenotype | Suppresses the expression of CD36, SRA1 and LOX-1 and activates JAK/STAT3 pathway | [177] |
Human monocyte-derived macrophages treated with hemoglobin/haptoglobin complexes | Enhances M2 macrophage phenotype | Increases the expression of CD163 and IL-10 receptors as well as HO-1 | [194] |
Monoterpene | Experimental Model | Efficacy | Target/Pathway | Refs. |
---|---|---|---|---|
Linalool | Rat aortic VSMCs (A7r5) treated with Ang II | Inhibits Ang II-induced VSMC proliferation and migration | Suppresses CHRM3-mediated p38 MAPK/JNK/ERK signaling | [208] |
Carvacrol | Rat aortic VSMCs treated with PDGF-BB | Inhibits VSMC proliferation and migration and attenuates atherosclerotic neointima formation | Suppresses ROS-mediated p38 MAPK/ERK signaling | [209] |
Mouse splenic dendritic cells | Inhibits dendritic cell maturation and adaptive immunity | Suppresses CD40 | [217] | |
Hinokitiol | Rat aortic VSMCs treated with PDGF-BB | Inhibits the PDGF-BB-stimulated proliferation of VSMCs | Suppresses JNK and PLC-γ1 and induces p27kip1 expression | [215] |
Thymoquinone | Rat aortic VSMCs treated with Ang II or PDGF-BB | Inhibits VSMC proliferation, migration, and neointimal formation and promotes VSMC apoptosis | Promotes AMPK/PPARγ/PGC-1α and inhibits p38 MAPK and MMP-2 | [211,212] |
BMDCs treated with LPS | Inhibits maturation, cytokine release and survival of dendritic cells | Suppresses CD11c, CD86, MHCII, CD54, and CD40 and reduces PI3K/AKT and ERK signaling | [218] | |
Genipin | Rat aortic VSMCs treated with TNF-α | Inhibits TNF-α-induced VSMC proliferation and migration | Suppresses ERK and AKT signaling via upregulating HO-1 expression | [214] |
Paeoniflorin | Rat aortic VSMCs treated with ox-LDL or PDGF-BB | Inhibits VSMCs proliferation, migration and inflammation | Activates HO-1 and then inhibits ROS-mediated p38 MAPK, ERK and NF-κB pathways | [192,213] |
BMDCs or monocyte-derived dendritic cells treated with LPS | Inhibits dendritic cell function, impairs Th17 cell differentiation, and generates regulatory dendritic cells | Reduces IKK/NF-κB and JNK-mediated IL-6 and costimulatory molecule expression and induces TGF-β/IDO signaling | [219,220] | |
Oleuropein | Bovine vascular SMCs | Inhibits SMC proliferation with a cell cycle block between the G1 and the S phases | Suppresses ERK signaling | [221] |
Plumericin | Rat aortic VSMCs stimulated with serum | Arrested VSMCs in the G1/G0-phase of the cell cycle | Suppresses STAT3 signaling via S-glutathionylation | [216] |
Thymol | Mouse splenic dendritic cells | Inhibits dendritic cell maturation and adaptive immunity | Suppresses CD86 | [217] |
Geniposide | ApoE−/− mice fed with HFD | Attenuates atherosclerosis and inhibits dendritic cell maturation in bone marrow and infiltration into lesions | Suppresses CD11c, CD80, CD86, and CD83 in bone marrow or in atherosclerotic lesions | [222] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Zhong, C.; Yu, J. Natural Monoterpenes as Potential Therapeutic Agents against Atherosclerosis. Int. J. Mol. Sci. 2023, 24, 2429. https://doi.org/10.3390/ijms24032429
Yang J, Zhong C, Yu J. Natural Monoterpenes as Potential Therapeutic Agents against Atherosclerosis. International Journal of Molecular Sciences. 2023; 24(3):2429. https://doi.org/10.3390/ijms24032429
Chicago/Turabian StyleYang, Jing, Chao Zhong, and Jun Yu. 2023. "Natural Monoterpenes as Potential Therapeutic Agents against Atherosclerosis" International Journal of Molecular Sciences 24, no. 3: 2429. https://doi.org/10.3390/ijms24032429
APA StyleYang, J., Zhong, C., & Yu, J. (2023). Natural Monoterpenes as Potential Therapeutic Agents against Atherosclerosis. International Journal of Molecular Sciences, 24(3), 2429. https://doi.org/10.3390/ijms24032429