Polypyrrole-Stabilized Polypeptide for Eco-Friendly Supercapacitors
Abstract
:1. Introduction
2. Results
2.1. Fabrication and Characterization of FF/PPy and FF–Py Copolymer Films
2.2. Comparisons of Two Types of Active Materials
2.3. Capacitive Performance and Biodegradability of SC in the Liquid Environment In Vitro
2.4. Biodegradability of SCs
2.5. Biocompatibility of SCs
3. Discussion
4. Materials and Methods
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Service, R.F. Materials science. New ‘supercapacitor’ promises to pack more electrical punch. Science 2006, 313, 902. [Google Scholar] [CrossRef]
- Zhao, Y.; Jiang, P.; Xie, S.S. ZnO-template-mediated synthesis of three-dimensional coral-like MnO2 nanostructure for supercapacitors. J. Power Sources 2013, 239, 393–398. [Google Scholar] [CrossRef]
- Li, Z.; Hu, K.; Yang, M.; Zou, Y.; Yang, J.; Yu, M.; Wang, H.; Qu, X.; Tan, P.; Wang, C.; et al. Elastic Cu@PPy sponge for hybrid device with energy conversion and storage. Nano Energy 2019, 58, 852–861. [Google Scholar] [CrossRef]
- Hu, H.; Guan, B.Y.; Lou, X.W.D. Construction of Complex CoS Hollow Structures with Enhanced Electrochemical Properties for Hybrid Supercapacitors. Chem 2016, 1, 102–113. [Google Scholar] [CrossRef] [Green Version]
- Pu, J.; Wang, X.; Xu, R.; Xu, S.; Komvopoulos, K. Highly flexible, foldable, and rollable microsupercapacitors on an ultrathin polyimide substrate with high power density. Microsyst. Nanoeng. 2018, 4, 16. [Google Scholar] [CrossRef] [Green Version]
- De la Fuente Salas, I.M.; Sudhakar, Y.N.; Selvakumar, M. High performance of symmetrical supercapacitor based on multilayer films of graphene oxide/polypyrrole electrodes. Appl. Surf. Sci. 2014, 296, 195–203. [Google Scholar] [CrossRef]
- Li, C.; Wang, Z.; Li, S.; Cheng, J.; Zhang, Y.; Zhou, J.; Yang, D.; Tong, D.G.; Wang, B. Interfacial Engineered Polyaniline/Sulfur-Doped TiO2 Nanotube Arrays for Ultralong Cycle Lifetime Fiber-Shaped, Solid-State Supercapacitors. ACS Appl. Mater. Interfaces 2018, 10, 18390–18399. [Google Scholar] [CrossRef]
- Song, Y.; Wang, H.B.; Cheng, X.L.; Li, G.K.; Chen, X.X.; Chen, H.T.; Miao, L.M.; Zhang, X.S.; Zhang, H.X. High-efficiency self-charging smart bracelet for portable electronics. Nano Energy 2019, 55, 29–36. [Google Scholar] [CrossRef]
- Parida, K.; Bhavanasi, V.; Kumar, V.; Wang, J.X.; Lee, P.S. Fast charging self-powered electric double layer capacitor. J. Power Sources 2017, 342, 70–78. [Google Scholar] [CrossRef]
- Ko, Y.; Kwon, M.; Bae, W.K.; Lee, B.; Lee, S.W.; Cho, J. Flexible supercapacitor electrodes based on real metal-like cellulose papers. Nat. Commun. 2017, 8, 536. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.; Kang, S.K.; Won, S.M.; Gutruf, P.; Jeong, Y.R.; Koo, J.; Lee, S.S.; Rogers, J.A.; Ha, J.S. Fully Biodegradable Microsupercapacitor for Power Storage in Transient Electronics. Adv. Energy Mater. 2017, 7, 1700157. [Google Scholar] [CrossRef]
- Jung, Y.H.; Chang, T.H.; Zhang, H.L.; Yao, C.H.; Zheng, Q.F.; Yang, V.W.; Mi, H.Y.; Kim, M.; Cho, S.J.; Park, D.W.; et al. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat. Commun. 2015, 6, 7170. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Liu, Q.; Zhang, Y.; Li, C.; He, Z.; Choy, W.C.H.; Low, P.J.; Sonar, P.; Kyaw, A.K.K. Biodegradable Materials and Green Processing for Green Electronics. Adv. Mater. (Deerfield Beach Fla.) 2020, 32, e2001591. [Google Scholar] [CrossRef]
- Dahiya, A.S.; Zumeit, A.; Christou, A.; Dahiya, R. High-Performance n-Channel Printed Transistors on Biodegradable Substrate for Transient Electronics. Adv. Electron. Mater. 2022, 8, 2200098. [Google Scholar] [CrossRef]
- Koutsonas, S. Electrical conductivity of degraded polyacrylonitrile powder by microwave irradiation for supercapacitor devices or other mobile applications. Mater. Lett. 2017, 193, 203–205. [Google Scholar] [CrossRef]
- Li, H.; Zhao, C.; Wang, X.; Meng, J.; Zou, Y.; Noreen, S.; Zhao, L.; Liu, Z.; Ouyang, H.; Tan, P.; et al. Fully Bioabsorbable Capacitor as an Energy Storage Unit for Implantable Medical Electronics. Adv. Sci. (Weinh) 2019, 6, 1801625. [Google Scholar] [CrossRef] [Green Version]
- Tian, W.; Li, Y.; Zhou, J.J.; Wang, T.; Zhang, R.H.; Cao, J.C.; Luo, M.F.; Li, N.; Zhang, N.; Gong, H.Y.; et al. Implantable and Biodegradable Micro-Supercapacitor Based on a Superassembled Three-Dimensional Network Zn@PPy Hybrid Electrode. ACS Appl. Mater. Interfaces 2021, 13, 8285–8293. [Google Scholar] [CrossRef]
- Fu, Z.; Hannula, M.; Jauho, A.; Vaisanen, K.L.; Valimaki, M.; Keskinen, J.; Mantysalo, M. Cyclic Bending Reliability and Failure Mechanism of Printed Biodegradable Flexible Supercapacitor on Polymer Substrate. ACS Appl. Mater. Interfaces 2022, 14, 40145–40157. [Google Scholar] [CrossRef]
- Jiang, T.B.; Zhang, W.W.; Wu, K.L.; Wu, M.; Wang, H.M.; Liu, W.; Hou, Q.X. An aqueous, wide-voltage window and biodegradable all-solid-state supercapacitor with an ultrahigh energy density. Ind. Crops Prod. 2022, 187, 115516. [Google Scholar] [CrossRef]
- Rho, J.Y.; Cox, H.; Mansfield, E.D.H.; Ellacott, S.H.; Peltier, R.; Brendel, J.C.; Hartlieb, M.; Waigh, T.A.; Perrier, S. Dual self-assembly of supramolecular peptide nanotubes to provide stabilisation in water. Nat. Commun. 2019, 10, 4708. [Google Scholar] [CrossRef]
- Hu, K.; Jiang, Y.X.; Xiong, W.; Li, H.; Zhang, P.Y.; Yin, F.; Zhang, Q.L.; Geng, H.; Jiang, F.; Li, Z.; et al. Tuning peptide self-assembly by an in-tether chiral center. Sci. Adv. 2018, 4, eaar5907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xing, R.R.; Yuan, C.Q.; Li, S.K.; Song, J.W.; Li, J.B.; Yan, X.H. Charge-Induced Secondary Structure Transformation of Amyloid-Derived Dipeptide Assemblies from beta-Sheet to alpha-Helix. Angew. Chem. Int. Ed. 2018, 57, 1537–1542. [Google Scholar] [CrossRef]
- Chakraborty, P.; Tang, Y.M.; Guterman, T.; Arnon, Z.A.; Yao, Y.F.; Wei, G.H.; Gazit, E. Co-Assembly between Fmoc Diphenylalanine and Diphenylalanine within a 3D Fibrous Viscous Network Confers Atypical Curvature and Branching. Angew. Chem. Int. Ed. 2020, 59, 23731–23739. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.M.; Williams, R.J.; Tang, C.; Coppo, P.; Collins, R.F.; Turner, M.L.; Saiani, A.; Ulijn, R.V. Fmoc-Diphenylalanine self assembles to a hydrogel via a novel architecture based on pi-pi interlocked beta-sheets. Adv. Mater. 2008, 20, 37–41. [Google Scholar] [CrossRef]
- Tikhonova, T.N.; Rovnyagina, N.N.; Arnon, Z.A.; Yakimov, B.P.; Efremov, Y.M.; Cohen-Gerassi, D.; Halperin-Sternfeld, M.; Kosheleva, N.V.; Drachev, V.P.; Svistunov, A.A.; et al. Mechanical Enhancement and Kinetics Regulation of Fmoc-Diphenylalanine Hydrogels by Thioflavin, T. Angew. Chem. Int. Ed. 2021, 60, 25339–25345. [Google Scholar] [CrossRef]
- Das, A.K.; Gavel, P.K. Low molecular weight self-assembling peptide-based materials for cell culture, antimicrobial, anti-inflammatory, wound healing, anticancer, drug delivery, bioimaging and 3D bioprinting applications. Soft Matter 2020, 16, 10065–10095. [Google Scholar] [CrossRef] [PubMed]
- Yan, R.Q.; Hu, Y.X.; Liu, F.; Wei, S.X.; Fang, D.Q.; Shuhendler, A.J.; Liu, H.; Chen, H.Y.; Ye, D.J. Activatable NIR Fluorescence/MRI Bimodal Probes for In Vivo Imaging by Enzyme-Mediated Fluorogenic Reaction and Self-Assembly. J. Am. Chem. Soc. 2019, 141, 10331–10341. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.Q.; Xue, H.M.; Qin, C.C.; Cui, W. Controllable Assembly of Diphenylalanine Dipeptide Micro/Nano Structure Assemblies and Their Applications. Prog. Chem. 2022, 34, 1882–1895. [Google Scholar] [CrossRef]
- Hu, K.; Zheng, C.; An, M.; Ma, X.; Wang, L. A peptide-based supercapacitor and its performance improvement via TiO2 coating. J. Mater. Chem. A 2018, 6, 8047–8052. [Google Scholar] [CrossRef]
- Korpi, A.; Ma, C.; Liu, K.; Nonappa; Herrmann, A.; Ikkala, O.; Kostiainen, M.A. Self-Assembly of Electrostatic Cocrystals from Supercharged Fusion Peptides and Protein Cages. ACS Macro Lett. 2018, 7, 318–323. [Google Scholar] [CrossRef]
- Machado, C.A.; Bentz, K.C.; Tran, R.; Jenkins, T.A.; Barnes, B.E.; Diodati, L.E.; Savin, D.A. Hierarchical Fractal Assemblies from Poly(ethylene oxide-b-lysine-b-leucine). Biomacromolecules 2019, 20, 2557–2566. [Google Scholar] [CrossRef]
- Klass, S.H.; Smith, M.J.; Fiala, T.A.; Lee, J.P.; Omole, A.O.; Han, B.G.; Downing, K.H.; Kumar, S.; Francis, M.B. Self-Assembling Micelles Based on an Intrinsically Disordered Protein Domain. J. Am. Chem. Soc. 2019, 141, 4291–4299. [Google Scholar] [CrossRef]
- Singh, D.; Jadhav, R.G.; Das, A.K. Electrodeposition of Binder-Free Peptide/Co(OH)2 Nanohybrid Electrodes for Solid-State Symmetric Supercapacitors. Energy Fuels 2021, 35, 16152–16161. [Google Scholar] [CrossRef]
- Du, M.X.; Bu, Y.; Zhou, Y.; Zhao, Y.R.; Wang, S.J.; Xu, H. Peptide-templated synthesis of branched MnO2 nanowires with improved electrochemical performances. RSC Adv. 2017, 7, 12711–12718. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, O.S. Synthesis, characterization, and investigation of capacitance and redox properties of self-assembled Phe-Phe with ferrocene conjugates. Mol. Syst. Des. Eng. 2022, 7, 171–181. [Google Scholar] [CrossRef]
- Beker, P.; Rosenman, G. Bioinspired nanostructural peptide materials for supercapacitor electrodes. J. Mater. Res. 2010, 25, 1661–1666. [Google Scholar] [CrossRef]
- Adler-Abramovich, L.; Aronov, D.; Beker, P.; Yevnin, M.; Stempler, S.; Buzhansky, L.; Rosenman, G.; Gazit, E. Self-assembled arrays of peptide nanotubes by vapour deposition. Nat. Nanotechnol. 2009, 4, 849–854. [Google Scholar] [CrossRef] [PubMed]
- Beker, P.; Koren, I.; Amdursky, N.; Gazit, E.; Rosenman, G. Bioinspired peptide nanotubes as supercapacitor electrodes. J. Mater. Sci. 2010, 45, 6374–6378. [Google Scholar] [CrossRef]
- Singh, D.; Jadhav, R.G.; Das, A.K. Electrodeposited Stable Binder-Free Organic Ni(OH)2 Flexible Nanohybrid Electrodes for High-Performance Supercapacitors. Energy Technol. Ger. 2019, 7, 1900546. [Google Scholar] [CrossRef]
- Zhang, J.L.; Wu, X.L.; Gan, Z.X.; Zhu, X.B.; Jin, Y.M. Unidirectionally aligned diphenylalanine nanotube/microtube arrays with excellent supercapacitive performance. Nano Res. 2014, 7, 929–937. [Google Scholar] [CrossRef]
- Zhao, D.W.; Chen, C.J.; Zhang, Q.; Chen, W.S.; Liu, S.X.; Wang, Q.W.; Liu, Y.X.; Li, J.; Yu, H.P. High Performance, Flexible, Solid-State Supercapacitors Based on a Renewable and Biodegradable Mesoporous Cellulose Membrane. Adv. Energy Mater. 2017, 7, 1700739. [Google Scholar] [CrossRef]
- Xiong, W.; Hu, K.; Li, Z.; Jiang, Y.X.; Li, Z.G.; Li, Z.; Wang, X.W. A wearable system based on core-shell structured peptide-Co9S8 supercapacitor and triboelectric nanogenerator. Nano Energy 2019, 66, 104149. [Google Scholar] [CrossRef]
- Colherinhas, G.; Malaspina, T.; Fileti, E.E. Storing Energy in Biodegradable Electrochemical Supercapacitors. ACS Omega 2018, 3, 13869–13875. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Xu, W.W.; Chatterjee, P.; Lv, C.; Popovich, J.; Song, Z.M.; Dai, L.; Kalani, M.Y.S.; Haydel, S.E.; Jiang, H.Q. Food-Materials-Based Edible Supercapacitors. Adv. Mater. Technol. 2016, 1, 1600059. [Google Scholar] [CrossRef]
- Asen, P.; Shahrokhian, S. A High Performance Supercapacitor Based on Graphene/Polypyrrole/Cu2O-Cu(OH)2 Ternary Nanocomposite Coated on Nickel Foam. J. Phys. Chem. C 2017, 121, 6508–6519. [Google Scholar] [CrossRef]
- Ariyanayagamkumarappa, D.K.; Zhitomirsky, I. Electropolymerization of polypyrrole films on stainless steel substrates for electrodes of electrochemical supercapacitors. Synth. Met. 2012, 162, 868–872. [Google Scholar] [CrossRef]
- Rong, Q.; Lei, W.; Huang, J.; Liu, M. Low Temperature Tolerant Organohydrogel Electrolytes for Flexible Solid-State Supercapacitors. Adv. Energy Mater. 2018, 8, 1801967. [Google Scholar] [CrossRef]
- Aguilera, L.; Leyet, Y.; Pena-Garcia, R.; Padron-Hernandez, E.; Passos, R.R.; Pocrifka, L.A. Cabbage-like alpha-Ni(OH)2 with a good long-term cycling stability and high electrochemical performances for supercapacitor applications. Chem. Phys. Lett. 2017, 677, 75–79. [Google Scholar] [CrossRef]
- Zhou, S.J.; Cui, S.Z.; Wei, W.T.; Chen, W.H.; Mi, L.W. Development of high-utilization honeycomb-like alpha-NR(OH)2 for asymmetric supercapacitors with excellent capacitancet. RSC Adv. 2018, 8, 37129–37135. [Google Scholar] [CrossRef] [Green Version]
- Li, H.B.; Yu, M.H.; Wang, F.X.; Liu, P.; Liang, Y.; Xiao, J.; Wang, C.X.; Tong, Y.X.; Yang, G.W. Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials. Nat. Commun. 2013, 4, 1–7. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Hu, K.; Li, Z.; Li, C.; Deng, Y. Polypyrrole-Stabilized Polypeptide for Eco-Friendly Supercapacitors. Int. J. Mol. Sci. 2023, 24, 2497. https://doi.org/10.3390/ijms24032497
Li Z, Hu K, Li Z, Li C, Deng Y. Polypyrrole-Stabilized Polypeptide for Eco-Friendly Supercapacitors. International Journal of Molecular Sciences. 2023; 24(3):2497. https://doi.org/10.3390/ijms24032497
Chicago/Turabian StyleLi, Zhe, Kuan Hu, Zhou Li, Cong Li, and Yulin Deng. 2023. "Polypyrrole-Stabilized Polypeptide for Eco-Friendly Supercapacitors" International Journal of Molecular Sciences 24, no. 3: 2497. https://doi.org/10.3390/ijms24032497
APA StyleLi, Z., Hu, K., Li, Z., Li, C., & Deng, Y. (2023). Polypyrrole-Stabilized Polypeptide for Eco-Friendly Supercapacitors. International Journal of Molecular Sciences, 24(3), 2497. https://doi.org/10.3390/ijms24032497