Comparison between Sickle Cell Disease Patients and Healthy Donors: Untargeted Lipidomic Study of Erythrocytes
Abstract
:1. Introduction
1.1. Sickle Cell Disease
1.2. Lipidomics: Lipid Class, Molecular Species, and Lipid Building Block Analysis
1.3. Lipidomics of Erythrocytes in Other Studies
1.4. Lipidomics of Erythrocytes of Patients with Sickle Cell Disease
2. Results and Discussion
2.1. Comparison within Class Lipid Profiles of Diseased and Healthy Red Blood Cells
2.2. Analysis at the Level of Lipid Molecular Species
2.3. Analysis of Lipid Building Blocks
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Samples
3.3. Preparation and Storage
3.4. Preparation of Analytical Samples and Lipid Extraction
3.5. LC/MS Analysis
3.6. Raw Data Processing
4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ware, R.E.; De Montalembert, M.; Tshilolo, L.; Abboud, M.R. Sickle Cell Disease. Lancet 2017, 390, 311–323. [Google Scholar] [CrossRef] [PubMed]
- Rees, D.C.; Williams, T.N.; Gladwin, M.T. Sickle-Cell Disease. Lancet 2010, 376, 2018–2031. [Google Scholar] [CrossRef] [PubMed]
- Eaton, W.A.; Hofrichter, J. Sickle Cell Hemoglobin Polymerization. In Advances in Protein Chemistry; Elsevier: Amsterdam, The Netherlands, 1990; pp. 63–279. [Google Scholar]
- Franceschi, L.; Cappellini, M.; Olivieri, O. Thrombosis and Sickle Cell Disease. Semin. Thromb. Hemost. 2011, 37, 226–236. [Google Scholar] [CrossRef] [Green Version]
- Ballas, S.; Smith, E. Red Blood Cell Changes during the Evolution of the Sickle Cell Painful Crisis. Blood 1992, 79, 2154–2163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinchi, F.; De Franceschi, L.; Ghigo, A.; Townes, T.; Cimino, J.; Silengo, L.; Hirsch, E.; Altruda, F.; Tolosano, E. Hemopexin Therapy Improves Cardiovascular Function by Preventing Heme-Induced Endothelial Toxicity in Mouse Models of Hemolytic Diseases. Circulation 2013, 127, 1317–1329. [Google Scholar] [CrossRef] [Green Version]
- Manwani, D.; Frenette, P.S. Vaso-Occlusion in Sickle Cell Disease: Pathophysiology and Novel Targeted Therapies. Blood 2013, 122, 3892–3898. [Google Scholar] [CrossRef] [Green Version]
- Hebbel, R.P. Adhesion of Sickle Red Cells to Endothelium: Myths and Future Directions. Transfus. Clin. Et Biol. 2008, 15, 14–18. [Google Scholar] [CrossRef]
- Modell, B. Global Epidemiology of Haemoglobin Disorders and Derived Service Indicators. Bull. World Health Organ. 2008, 2008, 480–487. [Google Scholar] [CrossRef]
- Weatherall, D.J.; Clegg, J.B. Inherited Haemoglobin Disorders: An Increasing Global Health Problem. Bull. World Health Organ. 2001, 79, 704–712. [Google Scholar]
- Piel, F.B.; Patil, A.P.; Howes, R.E.; Nyangiri, O.A.; Gething, P.W.; Dewi, M.; Temperley, W.H.; Williams, T.N.; Weatherall, D.J.; Hay, S.I. Global Epidemiology of Sickle Haemoglobin in Neonates: A Contemporary Geostatistical Model-Based Map and Population Estimates. Lancet 2013, 381, 142–151. [Google Scholar] [CrossRef] [Green Version]
- Aguilar Martinez, P.; Angastiniotis, M.; Eleftheriou, A.; Gulbis, B.; Mañú Pereira, M.D.M.; Petrova-Benedict, R.; Corrons, J.-L.V. Haemoglobinopathies in Europe: Health & Migration Policy Perspectives. Orphanet J. Rare Dis. 2014, 9, 97. [Google Scholar] [CrossRef] [PubMed]
- Rigano, P.; De Franceschi, L.; Sainati, L.; Piga, A.; Piel, F.B.; Cappellini, M.D.; Fidone, C.; Masera, N.; Palazzi, G.; Gianesin, B.; et al. Real-Life Experience with Hydroxyurea in Sickle Cell Disease: A Multicenter Study in a Cohort of Patients with Heterogeneous Descent. Blood Cells Mol. Dis. 2018, 69, 82–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Franceschi, L.; Lux, C.; Piel, F.B.; Gianesin, B.; Bonetti, F.; Casale, M.; Graziadei, G.; Lisi, R.; Pinto, V.; Putti, M.C.; et al. Access to Emergency Departments for Acute Events and Identification of Sickle Cell Disease in Refugees. Blood 2019, 133, 2100–2103. [Google Scholar] [CrossRef]
- Platt, O.S.; Brambilla, D.J.; Rosse, W.F.; Milner, P.F.; Castro, O.; Steinberg, M.H.; Klug, P.P. Mortality In Sickle Cell Disease—Life Expectancy and Risk Factors for Early Death. N. Engl. J. Med. 1994, 330, 1639–1644. [Google Scholar] [CrossRef] [PubMed]
- Watson, A.D. Lipidomics: A Global Approach to Lipid Analysis in Biological Systems. J. Lipid Res. 2006, 47, 2101. [Google Scholar]
- Yang, K.; Han, X. Accurate Quantification of Lipid Species by Electrospray Ionization Mass Spectrometry—Meets a Key Challenge in Lipidomics. Metabolites 2011, 1, 21–40. [Google Scholar] [CrossRef]
- Fernandez, C.; Sandin, M.; Sampaio, J.L.; Almgren, P.; Narkiewicz, K.; Hoffmann, M.; Hedner, T.; Wahlstrand, B.; Simons, K.; Shevchenko, A.; et al. Plasma Lipid Composition and Risk of Developing Cardiovascular Disease. PLoS ONE 2013, 8, e71846. [Google Scholar] [CrossRef] [Green Version]
- Graessler, J.; Schwudke, D.; Schwarz, P.E.H.; Herzog, R.; Shevchenko, A.; Bornstein, S.R. Top-Down Lipidomics Reveals Ether Lipid Deficiency in Blood Plasma of Hypertensive Patients. PLoS ONE 2009, 4, e6261. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Holtzman, D.M.; McKeel, D.W.; Kelley, J.; Morris, J.C. Substantial Sulfatide Deficiency and Ceramide Elevation in Very Early Alzheimer’s Disease: Potential Role in Disease Pathogenesis. J. Neurochem. 2002, 82, 809–818. [Google Scholar] [CrossRef]
- Mills, G.B.; Moolenaar, W.H. The Emerging Role of Lysophosphatidic Acid in Cancer. Nat. Rev. Cancer 2003, 3, 582–591. [Google Scholar] [CrossRef]
- Zhao, Z.; Xiao, Y.; Elson, P.; Tan, H.; Plummer, S.J.; Berk, M.; Aung, P.P.; Lavery, I.C.; Achkar, J.P.; Li, L. Plasma Lysophosphatidylcholine Levels: Potential Biomarkers for Colorectal Cancer. J. Clin. Oncol. 2007, 25, 2696–2701. [Google Scholar] [PubMed]
- Pellegrino, R.M.; Di Veroli, A.; Valeri, A.; Goracci, L.; Cruciani, G. LC/MS Lipid Profiling from Human Serum: A New Method for Global Lipid Extraction. Anal. Bioanal. Chem. 2014, 406, 7937–7948. [Google Scholar] [CrossRef] [PubMed]
- Züllig, T.; Trötzmüller, M.; Köfeler, H.C. Lipidomics from Sample Preparation to Data Analysis: A Primer. Anal. Bioanal. Chem. 2020, 412, 2191–2209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pellegrino, R.M.; Giulietti, M.; Alabed, H.B.R.; Buratta, S.; Urbanelli, L.; Piva, F.; Emiliani, C. LipidOne: User-Friendly Lipidomic Data Analysis Tool for a Deeper Interpretation in a Systems Biology Scenario. Bioinformatics 2022, 38, 1767–1769. [Google Scholar] [CrossRef]
- Gaud, C.; Sousa, B.C.; Nguyen, A.; Fedorova, M.; Ni, Z.; O’Donnell, V.B.; Wakelam, M.J.O.; Andrews, S.; Lopez-Clavijo, A.F. BioPAN: A Web-Based Tool to Explore Mammalian Lipidome Metabolic Pathways on LIPID MAPS. F1000Res 2021, 10, 4. [Google Scholar] [CrossRef]
- Pang, Z.; Chong, J.; Zhou, G.; De Lima Morais, D.A.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.-É.; Li, S.; Xia, J. MetaboAnalyst 5.0: Narrowing the Gap between Raw Spectra and Functional Insights. Nucleic Acids Res. 2021, 49, W388–W396. [Google Scholar] [CrossRef]
- Zhou, G.; Pang, Z.; Lu, Y.; Ewald, J.; Xia, J. OmicsNet 2.0: A Web-Based Platform for Multi-Omics Integration and Network Visual Analytics. Nucleic Acids Res. 2022, 50, W527–W533. [Google Scholar] [CrossRef]
- Patel, P.S.; Sharp, S.J.; Jansen, E.; Luben, R.N.; Khaw, K.-T.; Wareham, N.J.; Forouhi, N.G. Fatty Acids Measured in Plasma and Erythrocyte-Membrane Phospholipids and Derived by Food-Frequency Questionnaire and the Risk of New-Onset Type 2 Diabetes: A Pilot Study in the European Prospective Investigation into Cancer and Nutrition (EPIC)–Norfolk Cohort. Am. J. Clin. Nutr. 2010, 92, 1214–1222. [Google Scholar] [CrossRef] [Green Version]
- Keshavan, M.S.; Mallinger, A.G.; Pettegrew, J.W.; Dippold, C. Erythrocyte Membrane Phospholipids in Psychotic Patients. Psychiatry Res. 1993, 49, 89–95. [Google Scholar] [CrossRef]
- Fuhrman, B.J.; Barba, M.; Krogh, V.; Micheli, A.; Pala, V.; Lauria, R.; Chajes, V.; Riboli, E.; Sieri, S.; Berrino, F.; et al. Erythrocyte Membrane Phospholipid Composition as a Biomarker of Dietary Fat. Ann. Nutr. Metab. 2006, 50, 95–102. [Google Scholar] [CrossRef]
- Aoun, M.; Corsetto, P.A.; Nugue, G.; Montorfano, G.; Ciusani, E.; Crouzier, D.; Hogarth, P.; Gregory, A.; Hayflick, S.; Zorzi, G.; et al. Changes in Red Blood Cell Membrane Lipid Composition: A New Perspective into the Pathogenesis of PKAN. Mol. Genet. Metab. 2017, 121, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Lehninger, A.L.; Nelson, D.L.; Cox, M.M. The Composition and Architecture of Membranes. In Lehninger Principles of Biochemistry; WH Freeman: New York, NY, USA, 2014; pp. 398–406. [Google Scholar]
- Leidl, K. Lipidomic Analysis of Circulating Human Blood Cells. Ph.D. Thesis, University of Regensburg, Regensburg, Germany, 2010. [Google Scholar]
- Leidl, K.; Liebisch, G.; Richter, D.; Schmitz, G. Mass Spectrometric Analysis of Lipid Species of Human Circulating Blood Cells. Biochim. Biophys. Acta 2008, 1781, 655–664. [Google Scholar] [CrossRef] [PubMed]
- Loef, M.; Von Hegedus, J.H.; Ghorasaini, M.; Kroon, F.P.B.; Giera, M.; Ioan-Facsinay, A.; Kloppenburg, M. Reproducibility of Targeted Lipidome Analyses (Lipidyzer) in Plasma and Erythrocytes over a 6-Week Period. Metabolites 2020, 11, 26. [Google Scholar] [CrossRef] [PubMed]
- Connor, W.E.; Lin, D.S.; Thomas, G.; Ey, F.; DeLoughery, T.; Zhu, N. Abnormal Phospholipid Molecular Species of Erythrocytes in Sickle Cell Anemia. J. Lipid Res. 1997, 38, 2516–2528. [Google Scholar]
- Sanghani, S.P.; Haldankar, V.A.; Shalia, K.K.; Bichlle, S.K. Comparative Analysis of RBC Membrane Lipids in Thalassemia, and Iron Deficiency Anemia in Relation to Hypochromia and Oxidant Injury. Indian J. Clin. Biochem. 2001, 16, 116–121. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Jensen, M.D. Red Blood Cell Triglycerides—A Unique Pool That Incorporates Plasma-Free Fatty Acids and Relates to Metabolic Health. J. Lipid Res. 2021, 62, 100131. [Google Scholar] [CrossRef]
- Westerman, M.P.; Pierce, L.E.; Jensen, W.N. Erythrocyte and plasma lipids in sickle cell anemia. Blood 1964, 23, 200–205. [Google Scholar]
- Niklowitz, P.; Menke, T.; Wiesel, T.; Mayatepek, E.; Zschocke, J.; Okun, J.G.; Andler, W. Coenzyme Q10 in Plasma and Erythrocytes: Comparison of Antioxidant Levels in Healthy Probands after Oral Supplementation and in Patients Suffering from Sickle Cell Anemia. Clin. Chim. Acta 2002, 326, 155–161. [Google Scholar] [CrossRef]
- Osorio, J.H.; Pourfarzam, M. Levels of Carnitine and Acylcarnitines in Reconstituted Red Blood Cell Samples Washed with Different Concentrations of Saline Solutions. Colomb. Med. 2011, 41, 344–348. [Google Scholar] [CrossRef]
- Vance, J.E. Phospholipid Synthesis and Transport in Mammalian Cells. Traffic 2015, 16, 1–18. [Google Scholar] [CrossRef]
- Lewis, A.C.; Wallington-Beddoe, C.T.; Powell, J.A.; Pitson, S.M. Targeting Sphingolipid Metabolism as an Approach for Combination Therapies in Haematological Malignancies. Cell. Death Discov. 2018, 4, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, O.; Lee, S.; An, W. Impact of Blood or Erythrocyte Membrane Fatty Acids for Disease Risk Prediction: Focusing on Cardiovascular Disease and Chronic Kidney Disease. Nutrients 2018, 10, 1454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, A.; Rudge, S.A.; Zhang, Q.; Wakelam, M.J. Using Lipidomics Analysis to Determine Signalling and Metabolic Changes in Cells. Curr. Opin. Biotechnol. 2017, 43, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Fisher, A.B.; Jain, M. Phospholipases: Degradation of Phospholipids in Membranes and Emulsions; Wiley Online Library: Hoboken, NJ, USA, 2009. [Google Scholar]
- Carrasco, S.; Mérida, I. Diacylglycerol, When Simplicity Becomes Complex. Trends Biochem. Sci. 2007, 32, 27–36. [Google Scholar] [CrossRef]
- Goñi, F.M.; Alonso, A. Structure and Functional Properties of Diacylglycerols in Membranes. Prog. Lipid Res. 1999, 38, 1–48. [Google Scholar] [CrossRef]
- Schneider-Schaulies, S.; Schumacher, F.; Wigger, D.; Schöl, M.; Waghmare, T.; Schlegel, J.; Seibel, J.; Kleuser, B. Sphingolipids: Effectors and Achilles Heals in Viral Infections? Cells 2021, 10, 2175. [Google Scholar] [CrossRef]
- Barbanera, Y.; Arcioni, F.; Lancioni, H.; La Starza, R.; Cardinali, I.; Matteucci, C.; Nofrini, V.; Roetto, A.; Piga, A.; Grammatico, P.; et al. Comprehensive Analysis of Mitochondrial and Nuclear DNA Variations in Patients Affected by Hemoglobinopathies: A Pilot Study. PLoS ONE 2020, 15, e0240632. [Google Scholar] [CrossRef]
- Breitling-Utzmann, C.M.; Unger, A.; Friedl, D.A.; Lederer, M.O. Identification and Quantification of Phosphatidylethanolamine-Derived Glucosylamines and Aminoketoses from Human Erythrocytes--Influence of Glycation Products on Lipid Peroxidation. Arch. Biochem. Biophys. 2001, 391, 245–254. [Google Scholar] [CrossRef]
- Tsugawa, H.; Ikeda, K.; Takahashi, M.; Satoh, A.; Mori, Y.; Uchino, H.; Okahashi, N.; Yamada, Y.; Tada, I.; Bonini, P.; et al. A Lipidome Atlas in MS-DIAL 4. Nat. Biotechnol. 2020, 38, 1159–1163. [Google Scholar] [CrossRef]
- Liebisch, G.; Fahy, E.; Aoki, J.; Dennis, E.A.; Durand, T.; Ejsing, C.S.; Fedorova, M.; Feussner, I.; Griffiths, W.J.; Köfeler, H.; et al. Update on LIPID MAPS Classification, Nomenclature, and Shorthand Notation for MS-Derived Lipid Structures. J. Lipid Res. 2020, 61, 1539–1555. [Google Scholar] [CrossRef]
- Campomanes, P.; Zoni, V.; Vanni, S. Local Accumulation of Diacylglycerol Alters Membrane Properties Nonlinearly Due to Its Transbilayer Activity. Commun. Chem. 2019, 2, 72. [Google Scholar] [CrossRef] [Green Version]
- Hisatsune, C.; Nakamura, K.; Kuroda, Y.; Nakamura, T.; Mikoshiba, K. Amplification of Ca2+ Signaling by Diacylglycerol-Mediated Inositol 1,4,5-Trisphosphate Production. J. Biol. Chem. 2005, 280, 11723–11730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allan, D.; Michell, R.H. Production of 1,2-Diacylglycerol in Human Erythrocyte Membranes Exposed to Low Concentrations of Calcium Ions. Biochim. Et Biophys. Acta (BBA)—Biomembr. 1976, 455, 824–830. [Google Scholar] [CrossRef]
- Bogdanova, A.; Makhro, A.; Wang, J.; Lipp, P.; Kaestner, L. Calcium in Red Blood Cells—A Perilous Balance. Int. J. Mol. Sci. 2013, 14, 9848–9872. [Google Scholar] [CrossRef] [PubMed]
- Hannemann, A.; Rees, D.C.; Brewin, J.N.; Noe, A.; Low, B.; Gibson, J.S. Oxidative Stress and Phosphatidylserine Exposure in Red Cells from Patients with Sickle Cell Anaemia. Br. J. Haematol. 2018, 182, 567–578. [Google Scholar] [CrossRef]
Lipid Class Abbreviation | Explained Class Name | Number of Annotated Molecules | Average ± Exp Er (WT) | Average ± Exp Er (HbS) | p-Value | % Amount |
---|---|---|---|---|---|---|
CAR | Acylcarnitine | 13 | 0.26 (±0.033) | 1.031 (±0.285) | 0.009 | 0.728 |
CE | Cholesteryl ester | 4 | 3.036 (±0.612) | 1.653 (±0.246) | 0.049 | 2.642 |
Cer | Ceramide | 13 | 0.994 (±0.095) | 2.297 (±0.542) | 0.016 | 1.854 |
CoQ10 | Coenzyme Q | 1 | 0.00 (±0) | 0.005 (±0.002) | 0.020 | 0.003 |
DG | Diacylglycerol | 13 | 0.043 (±0.008) | 0.117 (±0.024) | 0.007 | 0.090 |
LPC | Lysophophatidylcholine | 6 | 0.291 (±0.018) | 0.348 (±0.061) | 0.179 | 0.360 |
PA | Phosphatidic acid | 4 | 0.589 (±0.038) | 0.623 (±0.086) | 0.355 | 0.682 |
PC | Phosphatidylcholine | 21 | 22.378 (±1.034) | 30.224 (±3.625) | 0.027 | 29.634 |
EtherPC (PC-O) | Ether-linked phosphatidylcholine | 3 | 0.176 (±0.012) | 0.294 (±0.077) | 0.065 | 0.265 |
PE | Phosphatidylethanolamine | 20 | 4.905 (±0.225) | 7.016 (±0.93) | 0.021 | 6.716 |
EtherPE (PE-O) | Alkyl Ether-linked phosphatidylethanolamine | 18 | 4.9 (±0.22) | 6.602 (±0.909) | 0.041 | 6.480 |
EtherPE (PE-P) | Vinyl Ether-linked phosphatidylethanolamine | 10 | 3.144 (±0.183) | 3.937 (±0.448) | 0.059 | 3.989 |
PI | Phosphatidylinositol | 7 | 0.418 (±0.053) | 0.633 (±0.1) | 0.042 | 0.592 |
PS | Phosphatidylserine | 12 | 7.224 (±0.428) | 10.409 (±1.581) | 0.034 | 9.934 |
SM | Sphingomyelin | 28 | 8.896 (±0.386) | 11.036 (±1.167) | 0.048 | 11.229 |
ST | Sterols | 2 | 0.044 (±0.012) | 0.031 (±0.011) | 0.227 | 0.042 |
TG | Triacylglycerol | 66 | 18.965 (±5.395) | 24.987 (±4.574) | 0.219 | 24.761 |
Total | 241 | 76.264 (±5.629) | 101.242 (±9.374) | 0.024 | 100.000 |
Samples ID | Genotype | Mitochondrial HG | Age | ×10−6 RBC/µL | Hb (g/dL) | MCV (fl) | MCH (pg) | MCHC (g/dL) | Transfusion (Days) |
---|---|---|---|---|---|---|---|---|---|
2 | HbS/HbS | T1a1+@152 | 13 | 3.28 | 8.7 | 81.9 | 28.2 | 34.4 | 96 |
4 | HbS/HbS | L3e1b2 | 17 | 3.16 | 9.7 | 89.1 | 32.1 | 36.1 | 42 |
7 | HbS/HbS | L3e4a | 3 | 3.87 | 9.3 | 73.9 | 26.6 | 36 | 120 |
8 | HbS/HbS | H34* | 9 | 2.48 | 8.1 | 93.2 | 34.2 | 36.7 | 43 |
1 | wt/wt | - | 6 | 3.7 | 12.4 | 95.5 | 32.9 | 34.4 | NO transfusion |
5 | wt/wt | - | 6 | 4.6 | 14.1 | 88.2 | 32.5 | 36.8 | NO transfusion |
6 | wt/wt | - | 8 | 4.95 | 12.2 | 74.6 | 25.2 | 33.7 | NO transfusion |
11 | wt/wt | - | 18 | 4.93 | 14.4 | 86.3 | 29.9 | 34.7 | NO transfusion |
12 | wt/wt | - | 5 | 4.78 | 13.5 | 82.6 | 29 | 35.2 | NO transfusion |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alabed, H.B.R.; Gorello, P.; Pellegrino, R.M.; Lancioni, H.; La Starza, R.; Taddei, A.A.; Urbanelli, L.; Buratta, S.; Fernandez, A.G.L.; Matteucci, C.; et al. Comparison between Sickle Cell Disease Patients and Healthy Donors: Untargeted Lipidomic Study of Erythrocytes. Int. J. Mol. Sci. 2023, 24, 2529. https://doi.org/10.3390/ijms24032529
Alabed HBR, Gorello P, Pellegrino RM, Lancioni H, La Starza R, Taddei AA, Urbanelli L, Buratta S, Fernandez AGL, Matteucci C, et al. Comparison between Sickle Cell Disease Patients and Healthy Donors: Untargeted Lipidomic Study of Erythrocytes. International Journal of Molecular Sciences. 2023; 24(3):2529. https://doi.org/10.3390/ijms24032529
Chicago/Turabian StyleAlabed, Husam B. R., Paolo Gorello, Roberto Maria Pellegrino, Hovirag Lancioni, Roberta La Starza, Anna Aurora Taddei, Lorena Urbanelli, Sandra Buratta, Anair Graciela Lema Fernandez, Caterina Matteucci, and et al. 2023. "Comparison between Sickle Cell Disease Patients and Healthy Donors: Untargeted Lipidomic Study of Erythrocytes" International Journal of Molecular Sciences 24, no. 3: 2529. https://doi.org/10.3390/ijms24032529
APA StyleAlabed, H. B. R., Gorello, P., Pellegrino, R. M., Lancioni, H., La Starza, R., Taddei, A. A., Urbanelli, L., Buratta, S., Fernandez, A. G. L., Matteucci, C., Caniglia, M., Arcioni, F., Mecucci, C., & Emiliani, C. (2023). Comparison between Sickle Cell Disease Patients and Healthy Donors: Untargeted Lipidomic Study of Erythrocytes. International Journal of Molecular Sciences, 24(3), 2529. https://doi.org/10.3390/ijms24032529