Surfaceome Profiling of Cell Lines and Patient-Derived Xenografts Confirm FGFR4, NCAM1, CD276, and Highlight AGRL2, JAM3, and L1CAM as Surface Targets for Rhabdomyosarcoma
Abstract
:1. Introduction
2. Results
2.1. Isolation and Enrichment of Membrane/Surface Proteins
2.2. Surfaceome Profiling Strategy and Proteomics Results Analysis
2.3. Statistical Analysis of the Filtered Proteins Highlights Five Putative Therapeutic RMS Surface Targets
2.4. Expression of the Top100 Proteins in Normal Tissues
2.5. Specific and High mRNA Expression of the Candidates in Patients’ RMS Samples
2.6. Validation of AGRL2, L1CAM, and JAM3 Expression on RMS Cell Lines
2.7. Expression of L1CAM in RMS Tumors and Inverse Correlation with Survival
3. Discussion
4. Materials and Methods
4.1. Cell Culture
4.2. Cell Surface Proteins Isolation
4.3. In-Gel Digestion and Mass Spectrometry (MS)
4.4. MS Data Processing and Data Mining
4.5. Scoring Strategy for Sorted Membrane/Surface Proteins
4.6. Statistical Analysis
4.7. Transcriptomics Data Analysis
4.8. Scoring Strategy for mRNA Data from RMS Tumors
4.9. Antibodies
4.10. Flow Cytometry Analysis
4.11. Tissue Microarrays
4.12. Survival Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
# | UniProt ID | Entry Name | Protein Name (Alternative Names) | Mean iTop3 in RMS | Mean iTop3 in Ctrls | Log2 (Ratio RMS/Ctrls) | Score |
---|---|---|---|---|---|---|---|
1 | O95490-2 | ADGRL2 | Isoform 2 of Adhesion G protein-coupled receptor L2 OS = Homo sapiens OX = 9606 GN = ADGRL2; Isoform 5 of Adhesion G protein-coupled receptor L2 OS = Homo sapiens OX = 9606 GN = ADGRL2 | 1.10 × 108 | 0.00 | 10.000 | 1 |
2 | O75487 | GPC4 | Glypican-4 OS = Homo sapiens OX = 9606 GN = GPC4 PE = 1 SV = 4; Isoform 2 of Glypican-4 OS = Homo sapiens OX = 9606 GN = GPC4 | 4.72 × 107 | 0.00 | 10.000 | 3 |
3 | Q15375-2 | EPHA7 | Isoform 2 of Ephrin type-A receptor 7 OS = Homo sapiens OX = 9606 GN = EPHA7; Isoform 4 of Ephrin type-A receptor 7 OS = Homo sapiens OX = 9606 GN = EPHA7; Ephrin type-A receptor 7 | 2.97 × 107 | 0.00 | 10.000 | 3 |
4 | P32004-3 | L1CAM | Isoform 3 of Neural cell adhesion molecule L1 OS = Homo sapiens OX = 9606 GN = L1CAM | 8.29 × 107 | 0.00 | 10.000 | 4 |
5 | Q8TEM1 | NUP210 | Nuclear pore membrane glycoprotein 210 OS = Homo sapiens OX = 9606 GN = NUP210 PE = 1 SV = 3 | 7.10 × 107 | 3.47 × 105 | 7.677 | 5 |
6 | Q9P2B2 | PTGFRN | Prostaglandin F2 receptor negative regulator OS = Homo sapiens OX = 9606 GN = PTGFRN PE = 1 SV = 2 | 1.35 × 108 | 2.18 × 106 | 5.958 | 5 |
7 | P13591 | NCAM1 | Neural cell adhesion molecule 1 OS = Homo sapiens OX = 9606 GN = NCAM1 PE = 1 SV = 3 | 7.02 × 108 | 0.00 | 10.000 | 6 |
8 | Q15223 | NECTIN1 | Nectin-1 OS = Homo sapiens OX = 9606 GN = NECTIN1 PE = 1 SV = 3 | 8.31 × 107 | 0.00 | 10.000 | 8.5 |
9 | Q8N3J6-2 | CADM2 | Isoform 2 of Cell adhesion molecule 2 OS = Homo sapiens OX = 9606 GN = CADM2; Isoform 3 of Cell adhesion molecule 2 OS = Homo sapiens OX = 9606 GN = CADM2; Cell adhesion molecule 2 | 5.24 × 107 | 0.00 | 10.000 | 10 |
10 | P22455 | FGFR4 | Fibroblast growth factor receptor 4 OS = Homo sapiens OX = 9606 GN = FGFR4 PE = 1 SV = 2; Isoform 2 of Fibroblast growth factor receptor 4 OS = Homo sapiens OX = 9606 GN = FGFR4 | 3.02 × 108 | 8.76 × 106 | 5.105 | 10.5 |
11 | P52803 | EFNA5 | Ephrin-A5 OS = Homo sapiens OX = 9606 GN = EFNA5 PE = 1 SV = 1 | 1.03 × 107 | 0.00 | 10.000 | 10.5 |
12 | P54826 | GAS1 | Growth arrest-specific protein 1 OS = Homo sapiens OX = 9606 GN = GAS1 PE = 2 SV = 2 | 2.27 × 107 | 0.00 | 10.000 | 10.5 |
13 | P78310 | CXADR | Coxsackievirus and adenovirus receptor OS = Homo sapiens OX = 9606 GN = CXADR PE = 1 SV = 1; Isoform 7 of Coxsackievirus and adenovirus receptor OS = Homo sapiens OX = 9606 GN = CXADR | 4.98 × 107 | 0.00 | 10.000 | 10.5 |
14 | Q9Y5Y0 | FLVCR1 | Feline leukemia virus subgroup C receptor-related protein 1 OS = Homo sapiens OX = 9606 GN = FLVCR1 PE = 1 SV = 1 | 6.64 × 107 | 2.07 × 106 | 5.002 | 10.5 |
15 | Q9BSA4 | TTYH2 | Protein tweety homolog 2 OS = Homo sapiens OX = 9606 GN = TTYH2 PE = 1 SV = 3 | 4.05 × 107 | 0.00 | 10.000 | 11 |
16 | Q9Y666 | SLC12A7 | Solute carrier family 12 member 7 OS = Homo sapiens OX = 9606 GN = SLC12A7 PE = 1 SV = 3 | 7.23 × 107 | 5.88 × 106 | 3.618 | 11 |
17 | Q6ZRP7 | QSOX2 | Sulfhydryl oxidase 2 OS = Homo sapiens OX = 9606 GN = QSOX2 PE = 1 SV = 3 | 1.76 × 108 | 2.66 × 107 | 2.724 | 12 |
18 | Q9P0T7 | TMEM9 | Proton-transporting V-type ATPase complex assembly regulator TMEM9 OS = Homo sapiens OX = 9606 GN = TMEM9 PE = 1 SV = 1 | 1.54 × 108 | 2.44 × 107 | 2.662 | 12 |
19 | Q9Y289 | SLC5A6 | Sodium-dependent multivitamin transporter OS = Homo sapiens OX = 9606 GN = SLC5A6 PE = 2 SV = 2 | 5.08 × 107 | 2.95 × 106 | 4.105 | 12 |
20 | O43155 | FLRT2 | Leucine-rich repeat transmembrane protein FLRT2 OS = Homo sapiens OX = 9606 GN = FLRT2 PE = 1 SV = 1 | 2.07 × 107 | 0.00 | 10.000 | 12.5 |
21 | O75051 | PLXNA2 | Plexin-A2 OS = Homo sapiens OX = 9606 GN = PLXNA2 PE = 1 SV = 4 | 5.39 × 107 | 1.03 × 107 | 2.382 | 13 |
22 | P16144-4 | ITGB4 | Isoform Beta-4D of Integrin beta-4 OS = Homo sapiens OX = 9606 GN = ITGB4; Isoform Beta-4A of Integrin beta-4 OS = Homo sapiens OX = 9606 GN = ITGB4 | 5.63 × 107 | 0.00 | 10.000 | 13 |
23 | P50993 | ATP1A2 | Sodium/potassium-transporting ATPase subunit alpha-2 OS = Homo sapiens OX = 9606 GN = ATP1A2 PE = 1 SV = 1 | 1.16 × 107 | 0.00 | 10.000 | 13 |
24 | Q6N075 | MFSD5 | Molybdate-anion transporter OS = Homo sapiens OX = 9606 GN = MFSD5 PE = 1 SV = 2; Isoform 2 of Molybdate-anion transporter OS = Homo sapiens OX = 9606 GN = MFSD5 | 9.47 × 106 | 0.00 | 10.000 | 13 |
25 | Q8NFZ8 | CADM4 | Cell adhesion molecule 4 OS = Homo sapiens OX = 9606 GN = CADM4 PE = 1 SV = 1 | 1.05 × 107 | 0.00 | 10.000 | 13 |
26 | Q99808 | SLC29A1 | Equilibrative nucleoside transporter 1 OS = Homo sapiens OX = 9606 GN = SLC29A1 PE = 1 SV = 3 | 3.24 × 108 | 6.67 × 107 | 2.281 | 13 |
27 | Q9BX67 | JAM3 | Junctional adhesion molecule C OS = Homo sapiens OX = 9606 GN = JAM3 PE = 1 SV = 1; Isoform 2 of Junctional adhesion molecule C OS = Homo sapiens OX = 9606 GN = JAM3 | 2.60 × 108 | 5.58 × 107 | 2.220 | 13 |
28 | P13637 | ATP1A3 | Sodium/potassium-transporting ATPase subunit alpha-3 OS = Homo sapiens OX = 9606 GN = ATP1A3 PE = 1 SV = 3 | 2.87 × 107 | 0.00 | 10.000 | 13.5 |
29 | P49810-2 | PSEN2 | Isoform 2 of Presenilin-2 OS = Homo sapiens OX = 9606 GN = PSEN2; Isoform 3 of Presenilin-2 OS = Homo sapiens OX = 9606 GN = PSEN2 | 3.57 × 107 | 9.20 × 105 | 5.277 | 13.5 |
30 | Q9H2E6 | SEMA6A | Semaphorin-6A OS = Homo sapiens OX = 9606 GN = SEMA6A PE = 1 SV = 2 | 1.40 × 107 | 0.00 | 10.000 | 13.5 |
31 | O60245 | PCDH7 | Protocadherin-7 OS = Homo sapiens OX = 9606 GN = PCDH7 PE = 1 SV = 2 | 1.87 × 107 | 8.32 × 105 | 4.492 | 14 |
32 | O95858 | TSPAN15 | Tetraspanin-15 OS = Homo sapiens OX = 9606 GN = TSPAN15 PE = 1 SV = 1 | 9.18 × 106 | 0.00 | 10.000 | 14 |
33 | P20645 | M6PR | Cation-dependent mannose-6-phosphate receptor OS = Homo sapiens OX = 9606 GN = M6PR PE = 1 SV = 1 | 1.08 × 109 | 8.52 × 108 | 0.347 | 14 |
34 | Q13491-4 | GPM6B | Isoform 4 of Neuronal membrane glycoprotein M6-b OS = Homo sapiens OX = 9606 GN = GPM6B | 3.04 × 107 | 0.00 | 10.000 | 14 |
35 | Q14542 | SLC29A2 | Equilibrative nucleoside transporter 2 OS = Homo sapiens OX = 9606 GN = SLC29A2 PE = 1 SV = 3 | 1.95 × 107 | 0.00 | 10.000 | 14 |
36 | Q15043-2 | SLC39A14 | Isoform 3 of Metal cation symporter ZIP14 OS = Homo sapiens OX = 9606 GN = SLC39A14 | 2.31 × 108 | 5.48 × 107 | 2.079 | 14 |
37 | Q92823-3 | NRCAM | Isoform 3 of Neuronal cell adhesion molecule OS = Homo sapiens OX = 9606 GN = NRCAM | 3.76 × 107 | 0.00 | 10.000 | 14 |
38 | Q96KG7 | MEGF10 | Multiple epidermal growth factor-like domains protein 10 OS = Homo sapiens OX = 9606 GN = MEGF10 PE = 1 SV = 1 | 1.77 × 107 | 4.02 × 106 | 2.142 | 14 |
39 | Q9H0V9 | LMAN2L | VIP36-like protein OS = Homo sapiens OX = 9606 GN = LMAN2L PE = 1 SV = 1; Isoform 2 of VIP36-like protein OS = Homo sapiens OX = 9606 GN = LMAN2L | 7.37 × 107 | 2.20 × 107 | 1.747 | 14 |
40 | P29972 | AQP1 | Aquaporin-1 OS = Homo sapiens OX = 9606 GN = AQP1 PE = 1 SV = 3 | 1.86 × 107 | 0.00 | 10.000 | 15 |
41 | P53985 | SLC16A1 | Monocarboxylate transporter 1 OS = Homo sapiens OX = 9606 GN = SLC16A1 PE = 1 SV = 3 | 4.93 × 108 | 1.94 × 108 | 1.346 | 15 |
42 | Q12907 | LMAN2 | Vesicular integral-membrane protein VIP36 OS = Homo sapiens OX = 9606 GN = LMAN2 PE = 1 SV = 1 | 6.67 × 108 | 6.11 × 108 | 0.128 | 15 |
43 | Q5T3U5-2 | ABCC10 | Isoform 2 of ATP-binding cassette sub-family C member 10 OS = Homo sapiens OX = 9606 GN = ABCC10; ATP-binding cassette sub-family C member 10 OS = Homo sapiens OX = 9606 GN = ABCC10 PE = 1 SV = 1 | 1.13 × 107 | 0.00 | 10.000 | 15 |
44 | Q7Z3C6 | ATG9A | Autophagy-related protein 9A OS = Homo sapiens OX = 9606 GN = ATG9A PE = 1 SV = 3 | 7.88 × 107 | 1.69 × 107 | 2.222 | 15 |
45 | Q92544 | TM9SF4 | Transmembrane 9 superfamily member 4 OS = Homo sapiens OX = 9606 GN = TM9SF4 PE = 1 SV = 2 | 7.35 × 108 | 3.90 × 108 | 0.913 | 15 |
46 | O94856-4 | NFASC | Isoform 4 of Neurofascin OS = Homo sapiens OX = 9606 GN = NFASC | 5.07 × 107 | 0.00 | 10.000 | 15.5 |
47 | P0C7U0 | ELFN1 | Protein ELFN1 OS = Homo sapiens OX = 9606 GN = ELFN1 PE = 1 SV = 2 | 5.88 × 107 | 0.00 | 10.000 | 15.5 |
48 | P32418-2 | SLC8A1 | Isoform 3 of Sodium/calcium exchanger 1 OS = Homo sapiens OX = 9606 GN = SLC8A1 | 4.50 × 109 | 3.46 × 107 | 7.022 | 15.5 |
49 | P04843 | RPN1 | Dolichyl-diphosphooligosaccharide—protein glycosyltransferase subunit 1 OS = Homo sapiens OX = 9606 GN = RPN1 PE = 1 SV = 1 | 1.43 × 109 | 3.21 × 109 | −1.166 | 16 |
50 | P05023-3 | ATP1A1 | Isoform 3 of Sodium/potassium-transporting ATPase subunit alpha-1 OS = Homo sapiens OX = 9606 GN = ATP1A1 | 1.51 × 109 | 1.81 × 109 | −0.257 | 16 |
51 | P05556 | ITGB1 | Integrin beta-1 OS = Homo sapiens OX = 9606 GN = ITGB1 PE = 1 SV = 2 | 1.69 × 109 | 5.95 × 109 | −1.818 | 16 |
52 | P35613 | BSG | Basigin OS = Homo sapiens OX = 9606 GN = BSG PE = 1 SV = 2 | 1.17 × 109 | 7.28 × 108 | 0.682 | 16 |
53 | P54709 | ATP1B3 | Sodium/potassium-transporting ATPase subunit beta-3 OS = Homo sapiens OX = 9606 GN = ATP1B3 PE = 1 SV = 1 | 1.19 × 109 | 7.59 × 108 | 0.649 | 16 |
54 | P56746 | CLDN15 | Claudin-15 OS = Homo sapiens OX = 9606 GN = CLDN15 PE = 1 SV = 1 | 4.67 × 106 | 0.00 | 10.000 | 16 |
55 | Q99805 | TM9SF2 | Transmembrane 9 superfamily member 2 OS = Homo sapiens OX = 9606 GN = TM9SF2 PE = 1 SV = 1 | 3.08 × 108 | 2.88 × 108 | 0.094 | 16 |
56 | Q9BZM6 | ULBP1 | UL16-binding protein 1 OS = Homo sapiens OX = 9606 GN = ULBP1 PE = 1 SV = 1 | 5.59 × 106 | 0.00 | 10.000 | 16 |
57 | Q9H8M5 | CNNM2 | Metal transporter CNNM2 OS = Homo sapiens OX = 9606 GN = CNNM2 PE = 1 SV = 2 | 4.54 × 106 | 0.00 | 10.000 | 16 |
58 | Q9P273 | TENM3 | Teneurin-3 OS = Homo sapiens OX = 9606 GN = TENM3 PE = 2 SV = 3 | 1.90 × 107 | 5.83 × 106 | 1.705 | 16 |
59 | O15431 | SLC31A1 | High affinity copper uptake protein 1 OS = Homo sapiens OX = 9606 GN = SLC31A1 PE = 1 SV = 1 | 1.31 × 108 | 1.21 × 108 | 0.117 | 17 |
60 | P11117 | ACP2 | Lysosomal acid phosphatase OS = Homo sapiens OX = 9606 GN = ACP2 PE = 1 SV = 3 | 1.26 × 108 | 1.14 × 108 | 0.140 | 17 |
61 | P19256-2 | CD58 | Isoform 2 of Lymphocyte function-associated antigen 3 OS = Homo sapiens OX = 9606 GN = CD58 | 2.86 × 106 | 0.00 | 10.000 | 17 |
62 | P41143 | OPRD1 | Delta-type opioid receptor OS = Homo sapiens OX = 9606 GN = OPRD1 PE = 1 SV = 4 | 1.17 × 107 | 0.00 | 10.000 | 17 |
63 | P51654 | GPC3 | Glypican-3 OS = Homo sapiens OX = 9606 GN = GPC3 PE = 1 SV = 1 | 3.15 × 107 | 0.00 | 10.000 | 17 |
64 | Q13308 | PTK7 | Inactive tyrosine-protein kinase 7 OS = Homo sapiens OX = 9606 GN = PTK7 PE = 1 SV = 2 | 2.36 × 108 | 2.06 × 108 | 0.193 | 17 |
65 | Q14108 | SCARB2 | Lysosome membrane protein 2 OS = Homo sapiens OX = 9606 GN = SCARB2 PE = 1 SV = 2 | 8.23 × 108 | 1.60 × 109 | −0.962 | 17 |
66 | Q15758 | SLC1A5 | Neutral amino acid transporter B(0) OS = Homo sapiens OX = 9606 GN = SLC1A5 PE = 1 SV = 2 | 5.35 × 108 | 4.48 × 108 | 0.254 | 17 |
67 | Q5ZPR3 | CD276 | CD276 antigen OS = Homo sapiens OX = 9606 GN = CD276 PE = 1 SV = 1 | 1.83 × 108 | 1.34 × 108 | 0.449 | 17 |
68 | Q68DH5 | LMBRD2 | G-protein coupled receptor-associated protein LMBRD2 OS = Homo sapiens OX = 9606 GN = LMBRD2 PE = 1 SV = 1 | 4.27 × 107 | 1.40 × 107 | 1.609 | 17 |
69 | Q8NFM7-4 | IL17RD | Isoform 4 of Interleukin-17 receptor D OS = Homo sapiens OX = 9606 GN = IL17RD | 3.41 × 107 | 0.00 | 10.000 | 17 |
70 | Q8WY21-3 | SORCS1 | Isoform 3 of VPS10 domain-containing receptor SorCS1 OS = Homo sapiens OX = 9606 GN = SORCS1; | 3.79 × 107 | 4.25 × 106 | 3.160 | 17 |
71 | Q92542 | NCSTN | Nicastrin OS = Homo sapiens OX = 9606 GN = NCSTN PE = 1 SV = 2; Isoform 2 of Nicastrin OS = Homo sapiens OX = 9606 GN = NCSTN | 5.52 × 108 | 4.31 × 108 | 0.358 | 17 |
72 | Q9Y625 | GPC6 | Glypican-6 OS = Homo sapiens OX = 9606 GN = GPC6 PE = 1 SV = 1 | 6.19 × 107 | 9.59 × 106 | 2.691 | 17 |
73 | O15031 | PLXNB2 | Plexin-B2 OS = Homo sapiens OX = 9606 GN = PLXNB2 PE = 1 SV = 3 | 2.73 × 108 | 5.04 × 108 | −0.886 | 18 |
74 | O15321-2 | TM9SF1 | Isoform 2 of Transmembrane 9 superfamily member 1 OS = Homo sapiens OX = 9606 GN = TM9SF1; Transmembrane 9 superfamily member 1 OS = Homo sapiens OX = 9606 GN = TM9SF1 PE = 2 SV = 2 | 7.34 × 107 | 5.57 × 107 | 0.397 | 18 |
75 | O75954 | TSPAN9 | Tetraspanin-9 OS = Homo sapiens OX = 9606 GN = TSPAN9 PE = 1 SV = 1 | 6.23 × 107 | 4.35 × 107 | 0.518 | 18 |
76 | P05026-2 | ATP1B1 | Isoform 2 of Sodium/potassium-transporting ATPase subunit beta-1 OS = Homo sapiens OX = 9606 GN = ATP1B1; Sodium/potassium-transporting ATPase subunit beta-1 OS = Homo sapiens OX = 9606 GN = ATP1B1 PE = 1 SV = 1 | 2.61 × 108 | 4.10 × 108 | −0.652 | 18 |
77 | P11166 | SLC2A1 | Solute carrier family 2, facilitated glucose transporter member 1 OS = Homo sapiens OX = 9606 GN = SLC2A1 PE = 1 SV = 2 | 3.30 × 108 | 3.01 × 109 | −3.189 | 18 |
78 | P21860-4 | ERBB3 | Isoform 4 of Receptor tyrosine-protein kinase erbB-3 OS = Homo sapiens OX = 9606 GN = ERBB3; Receptor tyrosine-protein kinase erbB-3 OS = Homo sapiens OX = 9606 GN = ERBB3 PE = 1 SV = 1 | 2.72 × 107 | 5.26 × 105 | 5.694 | 18 |
79 | P22897-2 | MRC1 | Isoform 2 of Macrophage mannose receptor 1 OS = Homo sapiens OX = 9606 GN = MRC1; Macrophage mannose receptor 1 OS = Homo sapiens OX = 9606 GN = MRC1 PE = 1 SV = 1 | 1.22 × 107 | 0.00 | 10.000 | 18 |
80 | P23229-4 | ITGA6 | Isoform Alpha-6X2A of Integrin alpha-6 OS = Homo sapiens OX = 9606 GN = ITGA6 | 3.29 × 108 | 3.60 × 108 | −0.130 | 18 |
81 | P29317 | EPHA2 | Ephrin type-A receptor 2 OS = Homo sapiens OX = 9606 GN = EPHA2 PE = 1 SV = 2 | 3.58 × 108 | 6.30 × 108 | −0.817 | 18 |
82 | P30825 | SLC7A1 | High affinity cationic amino acid transporter 1 OS = Homo sapiens OX = 9606 GN = SLC7A1 PE = 1 SV = 1 | 1.97 × 108 | 7.64 × 107 | 1.363 | 18 |
83 | P54753 | EPHB3 | Ephrin type-B receptor 3 OS = Homo sapiens OX = 9606 GN = EPHB3 PE = 1 SV = 2 | 5.16 × 107 | 5.00 × 107 | 0.044 | 18 |
84 | Q8IWA5 | SLC44A2 | Choline transporter-like protein 2 OS = Homo sapiens OX = 9606 GN = SLC44A2 PE = 1 SV = 3; | 2.57 × 108 | 2.33 × 108 | 0.138 | 18 |
85 | Q8NE01 | CNNM3 | Metal transporter CNNM3 OS = Homo sapiens OX = 9606 GN = CNNM3 PE = 1 SV = 1 | 2.31 × 107 | 5.81 × 106 | 1.991 | 18 |
86 | Q96QD8 | SLC38A2 | Sodium-coupled neutral amino acid transporter 2 OS = Homo sapiens OX = 9606 GN = SLC38A2 PE = 1 SV = 2 | 3.85 × 108 | 3.36 × 109 | −3.125 | 18 |
87 | Q99523 | SORT1 | Sortilin OS = Homo sapiens OX = 9606 GN = SORT1 PE = 1 SV = 3 | 3.49 × 108 | 4.82 × 108 | −0.466 | 18 |
88 | Q9C0H2-4 | TTYH3 | Isoform 4 of Protein tweety homolog 3 OS = Homo sapiens OX = 9606 GN = TTYH3 | 2.51 × 108 | 4.19 × 108 | −0.739 | 18 |
89 | Q9HD45 | TM9SF3 | Transmembrane 9 superfamily member 3 OS = Homo sapiens OX = 9606 GN = TM9SF3 PE = 1 SV = 2 | 3.88 × 108 | 4.46 × 108 | −0.201 | 18 |
90 | Q9Y3B3 | TMED7 | Transmembrane emp24 domain-containing protein 7 OS = Homo sapiens OX = 9606 GN = TMED7 PE = 1 SV = 2 | 2.92 × 108 | 3.64 × 108 | −0.318 | 18 |
91 | Q9Y487 | ATP6V0A2 | V-type proton ATPase 116 kDa subunit a2 OS = Homo sapiens OX = 9606 GN = ATP6V0A2 PE = 1 SV = 2 | 6.50 × 107 | 4.24 × 107 | 0.617 | 18 |
92 | Q9Y624 | F11R | Junctional adhesion molecule A OS = Homo sapiens OX = 9606 GN = F11R PE = 1 SV = 1; Isoform 2 of Junctional adhesion molecule A OS = Homo sapiens OX = 9606 GN = F11R | 9.98 × 106 | 0.00 | 10.000 | 18 |
93 | A8MWY0 | ELAPOR2 | Endosome/lysosome-associated apoptosis and autophagy regulator family member 2 OS = Homo sapiens OX = 9606 GN = ELAPOR2 PE = 1 SV = 2 | 6.32 × 106 | 0.00 | 10.000 | 18.5 |
94 | P19022-2 | CDH2 | Isoform 2 of Cadherin-2 OS = Homo sapiens OX = 9606 GN = CDH2; Cadherin-2 OS = Homo sapiens OX = 9606 GN = CDH2 PE = 1 SV = 4 | 1.17 × 108 | 6.33 × 107 | 0.888 | 18.5 |
95 | Q13641 | TPBG | Trophoblast glycoprotein OS = Homo sapiens OX = 9606 GN = TPBG PE = 1 SV = 1 | 2.32 × 108 | 3.40 × 108 | −0.555 | 18.5 |
96 | Q8N158 | GPC2 | Glypican-2 OS = Homo sapiens OX = 9606 GN = GPC2 PE = 2 SV = 1 | 6.34 × 106 | 0.00 | 10.000 | 18.5 |
97 | Q99758 | ABCA3 | Phospholipid-transporting ATPase ABCA3 OS = Homo sapiens OX = 9606 GN = ABCA3 PE = 1 SV = 2 | 2.36 × 107 | 0.00 | 10.000 | 18.5 |
98 | Q9HCN3 | PGAP6 | Post-GPI attachment to proteins factor 6 OS = Homo sapiens OX = 9606 GN = PGAP6 PE = 1 SV = 3 | 7.34 × 106 | 0.00 | 10.000 | 18.5 |
99 | O14672 | ADAM10 | Disintegrin and metalloproteinase domain-containing protein 10 OS = Homo sapiens OX = 9606 GN = ADAM10 PE = 1 SV = 1 | 1.34 × 108 | 3.71 × 108 | −1.474 | 19 |
100 | O15118 | NPC1 | NPC intracellular cholesterol transporter 1 OS = Homo sapiens OX = 9606 GN = NPC1 PE = 1 SV = 2 | 2.08 × 108 | 1.87 × 108 | 0.148 | 19 |
References
- Hawkins, D.S.; Spunt, S.L.; Skapek, S.X.; COG Soft Tissue Sarcoma Committee. Children’s Oncology Group’s 2013 blueprint for research: Soft tissue sarcomas. Pediatr. Blood Cancer 2013, 60, 1001–1008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Hettmer, S.; Wagers, A.J. Muscling in: Uncovering the origins of rhabdomyosarcoma. Nat. Med. 2010, 16, 171–173. [Google Scholar] [CrossRef] [PubMed]
- The WHO Classification of Tumours Editorial Board. WHO Classification of Tumours Soft Tissue and Bone Tumours, 5th ed.; IARC Press: Lyon, France, 2020; pp. 201–215. [Google Scholar]
- Barr, F.G.; Smith, L.M.; Lynch, J.C.; Strzelecki, D.; Parham, D.M.; Qualman, S.J.; Breitfeld, P.P. Examination of gene fusion status in archival samples of alveolar rhabdomyosarcoma entered on the Intergroup Rhabdomyosarcoma Study-III trial: A report from the Children’s Oncology Group. J. Mol. Diagn. 2006, 8, 202–208. [Google Scholar] [CrossRef] [Green Version]
- Williamson, D.; Missiaglia, E.; de Reynies, A.; Pierron, G.; Thuille, B.; Palenzuela, G.; Thway, K.; Orbach, D.; Lae, M.; Freneaux, P.; et al. Fusion gene-negative alveolar rhabdomyosarcoma is clinically and molecularly indistinguishable from embryonal rhabdomyosarcoma. J. Clin. Oncol. 2010, 28, 2151–2158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malempati, S.; Weigel, B.J.; Chi, Y.Y.; Tian, J.; Anderson, J.R.; Parham, D.M.; Teot, L.A.; Rodeberg, D.A.; Yock, T.I.; Shulkin, B.L.; et al. The addition of cixutumumab or temozolomide to intensive multiagent chemotherapy is feasible but does not improve outcome for patients with metastatic rhabdomyosarcoma: A report from the Children’s Oncology Group. Cancer 2019, 125, 290–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shern, J.F.; Selfe, J.; Izquierdo, E.; Patidar, R.; Chou, H.C.; Song, Y.K.; Yohe, M.E.; Sindiri, S.; Wei, J.; Wen, X.; et al. Genomic Classification and Clinical Outcome in Rhabdomyosarcoma: A Report From an International Consortium. J. Clin. Oncol. 2021, 39, 2859–2871. [Google Scholar] [CrossRef]
- Punyko, J.A.; Mertens, A.C.; Gurney, J.G.; Yasui, Y.; Donaldson, S.S.; Rodeberg, D.A.; Raney, R.B.; Stovall, M.; Sklar, C.A.; Robison, L.L.; et al. Long-term medical effects of childhood and adolescent rhabdomyosarcoma: A report from the childhood cancer survivor study. Pediatr. Blood Cancer 2005, 44, 643–653. [Google Scholar] [CrossRef]
- Owosho, A.A.; Brady, P.; Wolden, S.L.; Wexler, L.H.; Antonescu, C.R.; Huryn, J.M.; Estilo, C.L. Long-term effect of chemotherapy-intensity-modulated radiation therapy (chemo-IMRT) on dentofacial development in head and neck rhabdomyosarcoma patients. Pediatr. Hematol. Oncol. 2016, 33, 383–392. [Google Scholar] [CrossRef] [Green Version]
- Zolot, R.S.; Basu, S.; Million, R.P. Antibody-drug conjugates. Nat. Rev. Drug Discov. 2013, 12, 259–260. [Google Scholar] [CrossRef]
- Drago, J.Z.; Modi, S.; Chandarlapaty, S. Unlocking the potential of antibody-drug conjugates for cancer therapy. Nat. Rev. Clin. Oncol. 2021, 18, 327–344. [Google Scholar] [CrossRef] [PubMed]
- Blanco, B.; Dominguez-Alonso, C.; Alvarez-Vallina, L. Bispecific Immunomodulatory Antibodies for Cancer Immunotherapy. Clin. Cancer Res. 2021, 27, 5457–5464. [Google Scholar] [CrossRef] [PubMed]
- Esfandiari, A.; Cassidy, S.; Webster, R.M. Bispecific antibodies in oncology. Nat. Rev. Drug Discov. 2022, 21, 411–412. [Google Scholar] [CrossRef]
- June, C.H.; Sadelain, M. Chimeric Antigen Receptor Therapy. N. Engl. J. Med. 2018, 379, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Larson, R.C.; Maus, M.V. Recent advances and discoveries in the mechanisms and functions of CAR T cells. Nat. Rev. Cancer 2021, 21, 145–161. [Google Scholar] [CrossRef]
- June, C.H.; O’Connor, R.S.; Kawalekar, O.U.; Ghassemi, S.; Milone, M.C. CAR T cell immunotherapy for human cancer. Science 2018, 359, 1361–1365. [Google Scholar] [CrossRef] [Green Version]
- El-Badry, O.M.; Minniti, C.; Kohn, E.C.; Houghton, P.J.; Daughaday, W.H.; Helman, L.J. Insulin-like growth factor II acts as an autocrine growth and motility factor in human rhabdomyosarcoma tumors. Cell Growth Differ. 1990, 1, 325–331. [Google Scholar]
- Wan, X.; Helman, L.J. Levels of PTEN protein modulate Akt phosphorylation on serine 473, but not on threonine 308, in IGF-II-overexpressing rhabdomyosarcomas cells. Oncogene 2003, 22, 8205–8211. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, D.N.; Jones, B.G.; Shapiro, L.H.; Dias, P.; Houghton, P.J. Antisense-mediated reduction in insulin-like growth factor-I receptor expression suppresses the malignant phenotype of a human alveolar rhabdomyosarcoma. J. Clin. Investig. 1994, 94, 1235–1242. [Google Scholar] [CrossRef]
- Gattenloehner, S.; Vincent, A.; Leuschner, I.; Tzartos, S.; Muller-Hermelink, H.K.; Kirchner, T.; Marx, A. The fetal form of the acetylcholine receptor distinguishes rhabdomyosarcomas from other childhood tumors. Am. J. Pathol. 1998, 152, 437–444. [Google Scholar]
- Mechtersheimer, G.; Staudter, M.; Möller, P. Expression of the Natural Killer Cell-associated Antigens CD56 and CD57 in Human Neural and Striated Muscle Cells and in Their Tumors1. Cancer Res. 1991, 51, 1300–1307. [Google Scholar] [PubMed]
- Phimister, E.G.; Culverwell, A.; Patel, K.; Kemshead, J.T. Tissue-specific expression of neural cell adhesion molecule (NCAM) may allow differential diagnosis of neuroblastoma from embryonal rhabdomyosarcoma. Eur. J. Cancer 1994, 30A, 1552–1558. [Google Scholar] [CrossRef] [PubMed]
- Gluer, S.; Schelp, C.; von Schweinitz, D.; Gerardy-Schahn, R. Polysialylated neural cell adhesion molecule in childhood rhabdomyosarcoma. Pediatr. Res. 1998, 43, 145–147. [Google Scholar] [CrossRef] [Green Version]
- Bahrami, A.; Gown, A.M.; Baird, G.S.; Hicks, M.J.; Folpe, A.L. Aberrant expression of epithelial and neuroendocrine markers in alveolar rhabdomyosarcoma: A potentially serious diagnostic pitfall. Mod. Pathol. 2008, 21, 795–806. [Google Scholar] [CrossRef] [Green Version]
- De Giovanni, C.; Landuzzi, L.; Frabetti, F.; Nicoletti, G.; Griffoni, C.; Rossi, I.; Mazzotti, M.; Scotto, L.; Nanni, P.; Lollini, P.-L. Antisense Epidermal Growth Factor Receptor Transfection Impairs the Proliferative Ability of Human Rhabdomyosarcoma Cells. Cancer Res. 1996, 56, 3898–3901. [Google Scholar]
- Andrechek, E.R.; Hardy, W.R.; Girgis-Gabardo, A.A.; Perry, R.L.; Butler, R.; Graham, F.L.; Kahn, R.C.; Rudnicki, M.A.; Muller, W.J. ErbB2 is required for muscle spindle and myoblast cell survival. Mol. Cell. Biol. 2002, 22, 4714–4722. [Google Scholar] [CrossRef] [Green Version]
- Nanni, P.; Nicoletti, G.; De Giovanni, C.; Croci, S.; Astolfi, A.; Landuzzi, L.; Di Carlo, E.; Iezzi, M.; Musiani, P.; Lollini, P.-L. Development of Rhabdomyosarcoma in HER-2/neu Transgenic p53 Mutant Mice1. Cancer Res. 2003, 63, 2728–2732. [Google Scholar] [PubMed]
- Armistead, P.M.; Salganick, J.; Roh, J.S.; Steinert, D.M.; Patel, S.; Munsell, M.; El-Naggar, A.K.; Benjamin, R.S.; Zhang, W.; Trent, J.C. Expression of receptor tyrosine kinases and apoptotic molecules in rhabdomyosarcoma: Correlation with overall survival in 105 patients. Cancer 2007, 110, 2293–2303. [Google Scholar] [CrossRef]
- Ganti, R.; Skapek, S.X.; Zhang, J.; Fuller, C.E.; Wu, J.; Billups, C.A.; Breitfeld, P.P.; Dalton, J.D.; Meyer, W.H.; Khoury, J.D. Expression and genomic status of EGFR and ErbB-2 in alveolar and embryonal rhabdomyosarcoma. Mod. Pathol. 2006, 19, 1213–1220. [Google Scholar] [CrossRef] [Green Version]
- Mayeenuddin, L.H.; Yu, Y.; Kang, Z.; Helman, L.J.; Cao, L. Insulin-like growth factor 1 receptor antibody induces rhabdomyosarcoma cell death via a process involving AKT and Bcl-x(L). Oncogene 2010, 29, 6367–6377. [Google Scholar] [CrossRef] [Green Version]
- Kalebic, T.; Tsokos, M.; Helman, L.J. In Vivo Treatment with Antibody against IGF-1 Receptor Suppresses Growth of Human Rhabdomyosarcoma and Down-Regulates p34cdc2. Cancer Res. 1994, 54, 5531–5534. [Google Scholar] [PubMed]
- Gombos, A.; Metzger-Filho, O.; Dal Lago, L.; Awada-Hussein, A. Clinical development of insulin-like growth factor receptor--1 (IGF-1R) inhibitors: At the crossroad? Investig. New Drugs 2012, 30, 2433–2442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simon-Keller, K.; Barth, S.; Vincent, A.; Marx, A. Targeting the fetal acetylcholine receptor in rhabdomyosarcoma. Expert. Opin. Targets 2013, 17, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Geller, J.I.; Pressey, J.G.; Smith, M.A.; Kudgus, R.A.; Cajaiba, M.; Reid, J.M.; Hall, D.; Barkauskas, D.A.; Voss, S.D.; Cho, S.Y.; et al. ADVL1522: A phase 2 study of lorvotuzumab mertansine (IMGN901) in children with relapsed or refractory wilms tumor, rhabdomyosarcoma, neuroblastoma, pleuropulmonary blastoma, malignant peripheral nerve sheath tumor, or synovial sarcoma-A Children’s Oncology Group study. Cancer 2020, 126, 5303–5310. [Google Scholar] [CrossRef] [PubMed]
- Hegde, M.; Joseph, S.K.; Pashankar, F.; DeRenzo, C.; Sanber, K.; Navai, S.; Byrd, T.T.; Hicks, J.; Xu, M.L.; Gerken, C.; et al. Tumor response and endogenous immune reactivity after administration of HER2 CAR T cells in a child with metastatic rhabdomyosarcoma. Nat. Commun. 2020, 11, 3549. [Google Scholar] [CrossRef]
- Khan, J.; Wei, J.S.; Ringner, M.; Saal, L.H.; Ladanyi, M.; Westermann, F.; Berthold, F.; Schwab, M.; Antonescu, C.R.; Peterson, C.; et al. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat. Med. 2001, 7, 673–679. [Google Scholar] [CrossRef] [PubMed]
- Baird, K.; Davis, S.; Antonescu, C.R.; Harper, U.L.; Walker, R.L.; Chen, Y.; Glatfelter, A.A.; Duray, P.H.; Meltzer, P.S. Gene expression profiling of human sarcomas: Insights into sarcoma biology. Cancer Res. 2005, 65, 9226–9235. [Google Scholar] [CrossRef] [Green Version]
- Davicioni, E.; Finckenstein, F.G.; Shahbazian, V.; Buckley, J.D.; Triche, T.J.; Anderson, M.J. Identification of a PAX-FKHR gene expression signature that defines molecular classes and determines the prognosis of alveolar rhabdomyosarcomas. Cancer Res. 2006, 66, 6936–6946. [Google Scholar] [CrossRef] [Green Version]
- Baskar, S.; Shivaprasad, N.; Zhu, Z.; Dimitrov, D.; Sigrist, M.; Sorensen, P.; Yohe, M.; Shern, J.; Maris, J.; Mackall, C.; et al. Abstract 2488: FGFR4 as a potential therapeutic target for monoclonal antibody based intervention in rhabdomyosarcoma. Cancer Res. 2015, 75, 2488. [Google Scholar] [CrossRef]
- Meyer, M.J.; Jenkins, D.; Batt, D.; Mosher, R.; Isaacs, R.; Hu, T.; Capka, V.; Zhang, X.; Chen, D.; Tang, L.; et al. Abstract 1680: In vitro and in vivo activity of a highly potent and novel FGFR2/FGFR4 dual targeting antibody-drug conjugate. Cancer Res. 2015, 75, 1680. [Google Scholar] [CrossRef]
- Sullivan, P.M.; Kumar, R.; Li, W.; Hoglund, V.; Wang, L.; Zhang, Y.; Shi, M.; Baek, D.; Cheuk, A.; Jensen, M.C.; et al. FGFR4-targeted chimeric antigen receptors (CARs) combined with anti-myeloid poly-pharmacy effectively treats orthotopic rhabdomyosarcoma. Mol. Cancer Ther. 2022, 21, 1608–1621. [Google Scholar] [CrossRef]
- Alijaj, N.; Moutel, S.; Gouveia, Z.L.; Gray, M.; Roveri, M.; Dzhumashev, D.; Weber, F.; Meier, G.; Luciani, P.; Rössler, J.K. Novel FGFR4-Targeting Single-Domain Antibodies for Multiple Targeted Therapies against Rhabdomyosarcoma. Cancers 2020, 12, 3313. [Google Scholar] [CrossRef]
- Oesch, S.; Walter, D.; Wachtel, M.; Pretre, K.; Salazar, M.; Guzman, M.; Velasco, G.; Schafer, B.W. Cannabinoid receptor 1 is a potential drug target for treatment of translocation-positive rhabdomyosarcoma. Mol. Cancer Ther. 2009, 8, 1838–1845. [Google Scholar] [CrossRef]
- Orentas, R.J.; Yang, J.J.; Wen, X.; Wei, J.S.; Mackall, C.L.; Khan, J. Identification of cell surface proteins as potential immunotherapy targets in 12 pediatric cancers. Front. Oncol. 2012, 2, 194. [Google Scholar] [CrossRef] [Green Version]
- Orentas, R.J.; Lee, D.W.; Mackall, C. Immunotherapy targets in pediatric cancer. Front. Oncol. 2012, 2, 3. [Google Scholar] [CrossRef] [Green Version]
- Shern, J.F.; Chen, L.; Chmielecki, J.; Wei, J.S.; Patidar, R.; Rosenberg, M.; Ambrogio, L.; Auclair, D.; Wang, J.; Song, Y.K.; et al. Comprehensive genomic analysis of rhabdomyosarcoma reveals a landscape of alterations affecting a common genetic axis in fusion-positive and fusion-negative tumors. Cancer Discov. 2014, 4, 216–231. [Google Scholar] [CrossRef] [Green Version]
- Stewart, E.; McEvoy, J.; Wang, H.; Chen, X.; Honnell, V.; Ocarz, M.; Gordon, B.; Dapper, J.; Blankenship, K.; Yang, Y.; et al. Identification of Therapeutic Targets in Rhabdomyosarcoma through Integrated Genomic, Epigenomic, and Proteomic Analyses. Cancer Cell 2018, 34, 411.e419–426.e419. [Google Scholar] [CrossRef] [Green Version]
- Brohl, A.S.; Sindiri, S.; Wei, J.S.; Milewski, D.; Chou, H.C.; Song, Y.K.; Wen, X.; Kumar, J.; Reardon, H.V.; Mudunuri, U.S.; et al. Immuno-transcriptomic profiling of extracranial pediatric solid malignancies. Cell Rep. 2021, 37, 110047. [Google Scholar] [CrossRef]
- Vogel, C.; Marcotte, E.M. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat. Rev. Genet. 2012, 13, 227–232. [Google Scholar] [CrossRef] [Green Version]
- Lavoie, R.R.; Gargollo, P.C.; Ahmed, M.E.; Kim, Y.; Baer, E.; Phelps, D.A.; Charlesworth, C.M.; Madden, B.J.; Wang, L.; Houghton, P.J.; et al. Surfaceome Profiling of Rhabdomyosarcoma Reveals B7-H3 as a Mediator of Immune Evasion. Cancers 2021, 13, 4528. [Google Scholar] [CrossRef]
- Lin, P.H.; Selinfreund, R.; Wakshull, E.; Wharton, W. Rapid and efficient purification of plasma membrane from cultured cells: Characterization of epidermal growth factor binding. Biochemistry 1987, 26, 731–736. [Google Scholar] [CrossRef]
- Bausch-Fluck, D.; Goldmann, U.; Muller, S.; van Oostrum, M.; Muller, M.; Schubert, O.T.; Wollscheid, B. The in silico human surfaceome. Proc. Natl. Acad. Sci. USA 2018, 115, E10988–E10997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, e47. [Google Scholar] [CrossRef] [PubMed]
- Kammers, K.; Cole, R.N.; Tiengwe, C.; Ruczinski, I. Detecting Significant Changes in Protein Abundance. EuPA Open Proteom. 2015, 7, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, G.E.; Roussos, P. Dream: Powerful differential expression analysis for repeated measures designs. Bioinformatics 2021, 37, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, T.; Samaras, P.; Frejno, M.; Gessulat, S.; Barnert, M.; Kienegger, H.; Krcmar, H.; Schlegl, J.; Ehrlich, H.C.; Aiche, S.; et al. ProteomicsDB. Nucleic. Acids. Res. 2018, 46, D1271–D1281. [Google Scholar] [CrossRef] [Green Version]
- Samaras, P.; Schmidt, T.; Frejno, M.; Gessulat, S.; Reinecke, M.; Jarzab, A.; Zecha, J.; Mergner, J.; Giansanti, P.; Ehrlich, H.C.; et al. ProteomicsDB: A multi-omics and multi-organism resource for life science research. Nucleic Acids Res. 2020, 48, D1153–D1163. [Google Scholar] [CrossRef]
- Lautenbacher, L.; Samaras, P.; Muller, J.; Grafberger, A.; Shraideh, M.; Rank, J.; Fuchs, S.T.; Schmidt, T.K.; The, M.; Dallago, C.; et al. ProteomicsDB: Toward a FAIR open-source resource for life-science research. Nucleic Acids Res. 2022, 50, D1541–D1552. [Google Scholar] [CrossRef]
- Azorsa, D.O.; Bode, P.K.; Wachtel, M.; Cheuk, A.T.C.; Meltzer, P.S.; Vokuhl, C.; Camenisch, U.; Khov, H.L.; Bode, B.; Schafer, B.W.; et al. Immunohistochemical detection of PAX-FOXO1 fusion proteins in alveolar rhabdomyosarcoma using breakpoint specific monoclonal antibodies. Mod. Pathol. 2021, 34, 748–757. [Google Scholar] [CrossRef]
- Cox, D.R. Regression Models and Life-Tables. J. R. Stat. Soc. Ser. B Methodol. 1972, 34, 187–202. [Google Scholar] [CrossRef]
- Majzner, R.G.; Theruvath, J.L.; Nellan, A.; Heitzeneder, S.; Cui, Y.; Mount, C.W.; Rietberg, S.P.; Linde, M.H.; Xu, P.; Rota, C.; et al. CAR T cells targeting B7-H3, a pan-cancer antigen, demonstrate potent preclinical activity against pediatric solid tumors and brain tumors. Clin. Cancer Res. 2019, 25, 2560–2574. [Google Scholar] [CrossRef]
- Kanayama, T.; Miyachi, M.; Sugimoto, Y.; Yagyu, S.; Kikuchi, K.; Tsuchiya, K.; Iehara, T.; Hosoi, H. Reduced B7-H3 expression by PAX3-FOXO1 knockdown inhibits cellular motility and promotes myogenic differentiation in alveolar rhabdomyosarcoma. Sci. Rep. 2021, 11, 18802. [Google Scholar] [CrossRef]
- Modak, S.; Kramer, K.; Gultekin, S.H.; Guo, H.F.; Cheung, N.K. Monoclonal antibody 8H9 targets a novel cell surface antigen expressed by a wide spectrum of human solid tumors. Cancer Res. 2001, 61, 4048–4054. [Google Scholar]
- Modak, S.; Guo, H.F.; Humm, J.L.; Smith-Jones, P.M.; Larson, S.M.; Cheung, N.K. Radioimmunotargeting of human rhabdomyosarcoma using monoclonal antibody 8H9. Cancer Biother. Radiopharm. 2005, 20, 534–546. [Google Scholar] [CrossRef]
- Kendsersky, N.M.; Lindsay, J.; Kolb, E.A.; Smith, M.A.; Teicher, B.A.; Erickson, S.W.; Earley, E.J.; Mosse, Y.P.; Martinez, D.; Pogoriler, J.; et al. The B7-H3-Targeting Antibody-Drug Conjugate m276-SL-PBD Is Potently Effective Against Pediatric Cancer Preclinical Solid Tumor Models. Clin. Cancer Res. 2021, 27, 2938–2946. [Google Scholar] [CrossRef]
- Meli, M.L.; Carrel, F.; Waibel, R.; Amstutz, H.; Crompton, N.; Jaussi, R.; Moch, H.; Schubiger, P.A.; Novak-Hofer, I. Anti-neuroblastoma antibody chCE7 binds to an isoform of L1-CAM present in renal carcinoma cells. Int. J. Cancer 1999, 83, 401–408. [Google Scholar] [CrossRef]
- Kunkele, A.; Johnson, A.J.; Rolczynski, L.S.; Chang, C.A.; Hoglund, V.; Kelly-Spratt, K.S.; Jensen, M.C. Functional Tuning of CARs Reveals Signaling Threshold above Which CD8+ CTL Antitumor Potency Is Attenuated due to Cell Fas-FasL-Dependent AICD. Cancer Immunol. Res. 2015, 3, 368–379. [Google Scholar] [CrossRef] [Green Version]
- Kunkele, A.; Taraseviciute, A.; Finn, L.S.; Johnson, A.J.; Berger, C.; Finney, O.; Chang, C.A.; Rolczynski, L.S.; Brown, C.; Mgebroff, S.; et al. Preclinical Assessment of CD171-Directed CAR T-cell Adoptive Therapy for Childhood Neuroblastoma: CE7 Epitope Target Safety and Product Manufacturing Feasibility. Clin. Cancer Res. 2017, 23, 466–477. [Google Scholar] [CrossRef] [Green Version]
- Hong, H.; Stastny, M.; Brown, C.; Chang, W.C.; Ostberg, J.R.; Forman, S.J.; Jensen, M.C. Diverse solid tumors expressing a restricted epitope of L1-CAM can be targeted by chimeric antigen receptor redirected T lymphocytes. J. Immunother. 2014, 37, 93–104. [Google Scholar] [CrossRef]
- Daponte, A.; Kostopoulou, E.; Kollia, P.; Papamichali, R.; Vanakara, P.; Hadjichristodoulou, C.; Nakou, M.; Samara, S.; Koukoulis, G.; Messinis, I.E. L1 (CAM) (CD171) in ovarian serous neoplasms. Eur. J. Gynaecol. Oncol. 2008, 29, 26–30. [Google Scholar]
- Fankhauser, C.D.; Bode, P.K.; Hermanns, T.; Sander, S.; Beyer, J.; Sulser, T.; Altevogt, P.; Moch, H.; Tischler, V. L1-CAM is commonly expressed in testicular germ cell tumours. J. Clin. Pathol. 2016, 69, 460–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.R.; Digiusto, D.L.; Slovak, M.; Wright, C.; Naranjo, A.; Wagner, J.; Meechoovet, H.B.; Bautista, C.; Chang, W.C.; Ostberg, J.R.; et al. Adoptive transfer of chimeric antigen receptor re-directed cytolytic T lymphocyte clones in patients with neuroblastoma. Mol. Ther. 2007, 15, 825–833. [Google Scholar] [CrossRef] [PubMed]
- Inaguma, S.; Wang, Z.; Lasota, J.P.; Miettinen, M.M. Expression of neural cell adhesion molecule L1 (CD171) in neuroectodermal and other tumors: An immunohistochemical study of 5155 tumors and critical evaluation of CD171 prognostic value in gastrointestinal stromal tumors. Oncotarget 2016, 7, 55276–55289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, G.R.; Varley, J.M.; Heighway, J. Genomic structure and expression profile of LPHH1, a 7TM gene variably expressed in breast cancer cell lines. Biochim. Biophys. Acta 2000, 1491, 75–92. [Google Scholar] [CrossRef]
- Bondarev, A.D.; Attwood, M.M.; Jonsson, J.; Chubarev, V.N.; Tarasov, V.V.; Schioth, H.B. Opportunities and challenges for drug discovery in modulating Adhesion G protein-coupled receptor (GPCR) functions. Expert Opin. Drug Discov. 2020, 15, 1291–1307. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, Y.; Liu, Z.; Zhang, C.; Cao, H.; Ye, Y.; Wang, S.; Zhang, Y.; Xiao, S.; Yang, P.; et al. Transcriptome profiling of a multiple recurrent muscle-invasive urothelial carcinoma of the bladder by deep sequencing. PLoS ONE 2014, 9, e91466. [Google Scholar] [CrossRef]
- Pellissier, F.; Gerber, A.; Bauer, C.; Ballivet, M.; Ossipow, V. The adhesion molecule Necl-3/SynCAM-2 localizes to myelinated axons, binds to oligodendrocytes and promotes cell adhesion. BMC Neurosci. 2007, 8, 90. [Google Scholar] [CrossRef] [Green Version]
- Rathjen, T.; Yan, X.; Kononenko, N.L.; Ku, M.C.; Song, K.; Ferrarese, L.; Tarallo, V.; Puchkov, D.; Kochlamazashvili, G.; Brachs, S.; et al. Regulation of body weight and energy homeostasis by neuronal cell adhesion molecule 1. Nat. Neurosci. 2017, 20, 1096–1103. [Google Scholar] [CrossRef] [Green Version]
- Liu, N.; Yang, C.; Bai, W.; Wang, Z.; Wang, X.; Johnson, M.; Wang, W.; Zhang, P.; Yang, H.; Liu, H.; et al. CADM2 inhibits human glioma proliferation, migration and invasion. Oncol. Rep. 2019, 41, 2273–2280. [Google Scholar] [CrossRef]
- Chang, G.; Xu, S.; Dhir, R.; Chandran, U.; O’Keefe, D.S.; Greenberg, N.M.; Gingrich, J.R. Hypoexpression and epigenetic regulation of candidate tumor suppressor gene CADM-2 in human prostate cancer. Clin. Cancer Res. 2010, 16, 5390–5401. [Google Scholar] [CrossRef] [Green Version]
- He, W.; Li, X.; Xu, S.; Ai, J.; Gong, Y.; Gregg, J.L.; Guan, R.; Qiu, W.; Xin, D.; Gingrich, J.R.; et al. Aberrant methylation and loss of CADM2 tumor suppressor expression is associated with human renal cell carcinoma tumor progression. Biochem. Biophys. Res. Commun. 2013, 435, 526–532. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Zhao, J.; Yin, J.; Fu, W.; Chen, G. Cell adhesion molecule 2 (CADM2) promotes brain metastasis by inducing epithelial-mesenchymal transition (EMT) in human non-small cell lung cancer. Ann. Transl. Med. 2020, 8, 465. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Zhang, Y.; Zhang, H.; Zhan, C.; Li, X.; Ba, T.; Qiu, Z.; Fang, E.; Lv, G.; Zou, C.; et al. CADM2, as a new target of miR-10b, promotes tumor metastasis through FAK/AKT pathway in hepatocellular carcinoma. J. Exp. Clin. Cancer Res. 2018, 37, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, W.S.; Clarke, L.E.; Wang, G.X.; Stafford, B.K.; Sher, A.; Chakraborty, C.; Joung, J.; Foo, L.C.; Thompson, A.; Chen, C.; et al. Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature 2013, 504, 394–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seale, P.; Ishibashi, J.; Holterman, C.; Rudnicki, M.A. Muscle satellite cell-specific genes identified by genetic profiling of MyoD-deficient myogenic cell. Dev. Biol. 2004, 275, 287–300. [Google Scholar] [CrossRef]
- Saha, M.; Mitsuhashi, S.; Jones, M.D.; Manko, K.; Reddy, H.M.; Bruels, C.C.; Cho, K.A.; Pacak, C.A.; Draper, I.; Kang, P.B. Consequences of MEGF10 deficiency on myoblast function and Notch1 interactions. Hum. Mol. Genet. 2017, 26, 2984–3000. [Google Scholar] [CrossRef] [Green Version]
- Ganassi, M.; Muntoni, F.; Zammit, P.S. Defining and identifying satellite cell-opathies within muscular dystrophies and myopathies. Exp. Cell Res. 2022, 411, 112906. [Google Scholar] [CrossRef]
- Lak, N.S.M.; Voormanns, T.L.; Zappeij-Kannegieter, L.; van Zogchel, L.M.J.; Fiocco, M.; van Noesel, M.M.; Merks, J.H.M.; van der Schoot, C.E.; Tytgat, G.A.M.; Stutterheim, J. Improving Risk Stratification for Pediatric Patients with Rhabdomyosarcoma by Molecular Detection of Disseminated Disease. Clin. Cancer Res. 2021, 27, 5576–5585. [Google Scholar] [CrossRef]
- Holterman, C.E.; Le Grand, F.; Kuang, S.; Seale, P.; Rudnicki, M.A. Megf10 regulates the progression of the satellite cell myogenic program. J. Cell. Biol. 2007, 179, 911–922. [Google Scholar] [CrossRef]
- Williamson, D.; Selfe, J.; Gordon, T.; Lu, Y.J.; Pritchard-Jones, K.; Murai, K.; Jones, P.; Workman, P.; Shipley, J. Role for amplification and expression of glypican-5 in rhabdomyosarcoma. Cancer Res. 2007, 67, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Shi, W.; Capurro, M.; Filmus, J. Glypican-5 stimulates rhabdomyosarcoma cell proliferation by activating Hedgehog signaling. J. Cell Biol. 2011, 192, 691–704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, N.; Spetz, M.R.; Ho, M. The Role of Glypicans in Cancer Progression and Therapy. J. Histochem. Cytochem. 2020, 68, 841–862. [Google Scholar] [CrossRef]
- Liang, T.W.; Chiu, H.H.; Gurney, A.; Sidle, A.; Tumas, D.B.; Schow, P.; Foster, J.; Klassen, T.; Dennis, K.; DeMarco, R.A.; et al. Vascular endothelial-junctional adhesion molecule (VE-JAM)/JAM 2 interacts with T, NK, and dendritic cells through JAM 3. J. Immunol. 2002, 168, 1618–1626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arrate, M.P.; Rodriguez, J.M.; Tran, T.M.; Brock, T.A.; Cunningham, S.A. Cloning of human junctional adhesion molecule 3 (JAM3) and its identification as the JAM2 counter-receptor. J. Biol. Chem. 2001, 276, 45826–45832. [Google Scholar] [CrossRef] [Green Version]
- Powell, G.T.; Wright, G.J. Jamb and jamc are essential for vertebrate myocyte fusion. PLoS Biol. 2011, 9, e1001216. [Google Scholar] [CrossRef]
- Hromowyk, K.J.; Talbot, J.C.; Martin, B.L.; Janssen, P.M.L.; Amacher, S.L. Cell fusion is differentially regulated in zebrafish post-embryonic slow and fast muscle. Dev. Biol. 2020, 462, 85–100. [Google Scholar] [CrossRef] [PubMed]
- Lauko, A.; Mu, Z.; Gutmann, D.H.; Naik, U.P.; Lathia, J.D. Junctional Adhesion Molecules in Cancer: A Paradigm for the Diverse Functions of Cell-Cell Interactions in Tumor Progression. Cancer Res. 2020, 80, 4878–4885. [Google Scholar] [CrossRef] [PubMed]
- Hosonaga, M.; Arima, Y.; Sampetrean, O.; Komura, D.; Koya, I.; Sasaki, T.; Sato, E.; Okano, H.; Kudoh, J.; Ishikawa, S.; et al. HER2 Heterogeneity Is Associated with Poor Survival in HER2-Positive Breast Cancer. Int. J. Mol. Sci. 2018, 19, 2158. [Google Scholar] [CrossRef] [Green Version]
- Manzella, G.; Schreck, L.D.; Breunis, W.B.; Molenaar, J.; Merks, H.; Barr, F.G.; Sun, W.; Rommele, M.; Zhang, L.; Tchinda, J.; et al. Phenotypic profiling with a living biobank of primary rhabdomyosarcoma unravels disease heterogeneity and AKT sensitivity. Nat. Commun. 2020, 11, 4629. [Google Scholar] [CrossRef]
- Danielli, S.G.; Porpiglia, E.; De Micheli, A.J.; Navarro, N.; Zellinger, M.J.; Bechtold, I.; Kisele, S.; Volken, L.; Marques, J.G.; Kasper, S.; et al. Single-cell mapping of tumor heterogeneity in pediatric rhabdomyosarcoma reveals developmental signatures with therapeutic relevance. BioRxiv 2022. [Google Scholar] [CrossRef]
- Gunasekera, K.; Wuthrich, D.; Braga-Lagache, S.; Heller, M.; Ochsenreiter, T. Proteome remodelling during development from blood to insect-form Trypanosoma brucei quantified by SILAC and mass spectrometry. BMC Genom. 2012, 13, 556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cox, J.; Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008, 26, 1367–1372. [Google Scholar] [CrossRef] [PubMed]
- UniProt, C. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res. 2019, 47, D506–D515. [Google Scholar] [CrossRef] [Green Version]
- Huber, W.; von Heydebreck, A.; Sultmann, H.; Poustka, A.; Vingron, M. Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 2002, 18 (Suppl. S1), S96–S104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silver, J.D.; Ritchie, M.E.; Smyth, G.K. Microarray background correction: Maximum likelihood estimation for the normal-exponential convolution. Biostatistics 2009, 10, 352–363. [Google Scholar] [CrossRef]
- Lee, J.K.; Bangayan, N.J.; Chai, T.; Smith, B.A.; Pariva, T.E.; Yun, S.; Vashisht, A.; Zhang, Q.; Park, J.W.; Corey, E.; et al. Systemic surfaceome profiling identifies target antigens for immune-based therapy in subtypes of advanced prostate cancer. Proc. Natl. Acad. Sci. USA 2018, 115, E4473–E4482. [Google Scholar] [CrossRef] [Green Version]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef] [Green Version]
- Sonnhammer, E.L.; von Heijne, G.; Krogh, A. A hidden Markov model for predicting transmembrane helices in protein sequences. Proc. Int. Conf. Intell. Syst. Mol. Biol. 1998, 6, 175–182. [Google Scholar]
- Uldry, A.C.; Maciel-Dominguez, A.; Jornod, M.; Buchs, N.; Braga-Lagache, S.; Brodard, J.; Jankovic, J.; Bonadies, N.; Heller, M. Effect of Sample Transportation on the Proteome of Human Circulating Blood Extracellular Vesicles. Int. J. Mol. Sci. 2022, 23, 4515. [Google Scholar] [CrossRef]
- Goedhart, J.; Luijsterburg, M.S. VolcaNoseR is a web app for creating, exploring, labeling and sharing volcano plots. Sci. Rep. 2020, 10, 20560. [Google Scholar] [CrossRef]
- Davicioni, E.; Anderson, M.J.; Finckenstein, F.G.; Lynch, J.C.; Qualman, S.J.; Shimada, H.; Schofield, D.E.; Buckley, J.D.; Meyer, W.H.; Sorensen, P.H.; et al. Molecular classification of rhabdomyosarcoma—Genotypic and phenotypic determinants of diagnosis: A report from the Children’s Oncology Group. Am. J. Pathol. 2009, 174, 550–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanczky, A.; Gyorffy, B. Web-Based Survival Analysis Tool Tailored for Medical Research (KMplot): Development and Implementation. J. Med. Internet Res. 2021, 23, e27633. [Google Scholar] [CrossRef] [PubMed]
- Deutsch, E.W.; Bandeira, N.; Sharma, V.; Perez-Riverol, Y.; Carver, J.J.; Kundu, D.J.; Garcia-Seisdedos, D.; Jarnuczak, A.F.; Hewapathirana, S.; Pullman, B.S.; et al. The ProteomeXchange consortium in 2020: Enabling ‘big data’ approaches in proteomics. Nucleic Acids Res. 2020, 48, D1145–D1152. [Google Scholar] [CrossRef] [PubMed]
Score for Number of Cell Lines | Score for iTop3 Mean in All the Cell Lines | ||
Number of Cell Lines | Score | iTop3 Range | Score |
14 | 0 | >2,500,000,000 | 0 |
13 | 0.5 | 2,500,000,000–1,000,000,000 | 1 |
12 | 1.5 | 1,000,000,000–500,000,000 | 2 |
11 | 3 | 500,000,000–250,000,000 | 3 |
10 | 5 | 250,000,000–100,000,000 | 4 |
9 | 7.5 | 100,000,000–50,000,000 | 5 |
8 | 10 | 50,000,000–25,000,000 | 6 |
7 | 15 | 25,000,000–10,000,000 | 7 |
≤6 | 30 | 10,000,000–5,000,000 | 8 |
Score for Detection in the Controls | Score for Log2(FoldChange) | ||
In 0/2 Ctrl cell lines | 0 | If Log2(FC) = 10 | 0 |
In 1/2 Ctrl cell lines | 2.5 | If 6 ≤ Log2(FC) < 10 | 0.5 |
In 2/2 Ctrl cell lines | 5 | If 5 ≤ Log2(FC) < 6 | 1 |
Bonus for Expression in PDXs | If 4 ≤ Log2(FC) < 5 | 1.5 | |
In 3/3 PDXs | 0 | If 3 ≤ Log2(FC) < 4 | 2 |
In 2/3 PDXs | 0.5 | If 2 ≤ Log2(FC) < 3 | 2.5 |
In 1/3 PDXs | 1 | If 1 ≤ Log2(FC) < 2 | 3 |
In No PDXs | 1.5 | If Log2(FC) < 1 | 3.5 |
Bonus for RMS Specific Expression and High Abundance in All the Cell Lines | |||
If Mean iTop3 expression > 107 | −3 | ||
Log2(FC) = 10 * | |||
CL ≥ 13 |
Score for Expression in Normal Tissues | Score for Expression in RMS Tumors | ||
FPKM | Score | FPKM | Score |
<5 | 0.0 | >500 | 0.0 |
5–10 | 0.5 | 250–500 | 0.5 |
10–50 | 1.5 | 100–250 | 1.5 |
50–100 | 3.0 | 50–100 | 3.0 |
100–250 | 5.0 | 25–50 | 5.0 |
250–500 | 7.5 | 10–25 | 7.5 |
>500 | 10.0 | 5–10 | 10.0 |
<5 | 15.0 | ||
Score for Expression in the Controls * | Score for Log2(FC) | ||
In 0 Ctrls | 0.00 | If Log2(FC) ≥ 5 | 0 |
In 1 Ctrls | 0.25 | If 4 ≤ Log2(FC) < 5 | 1 |
In 2 Ctrls | 0.50 | If 3 ≤ Log2(FC) < 4 | 2 |
In 3 Ctrls | 0.75 | If 2 ≤ Log2(FC) < 3 | 3 |
In 4 Ctrls | 1.00 | If 1.5 ≤ Log2(FC) < 2 | 4 |
In 5 Ctrls | 1.25 | If 1 ≤ Log2(FC) < 1.5 | 5 |
If Log2(FC) < 1 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Timpanaro, A.; Piccand, C.; Uldry, A.-C.; Bode, P.K.; Dzhumashev, D.; Sala, R.; Heller, M.; Rössler, J.; Bernasconi, M. Surfaceome Profiling of Cell Lines and Patient-Derived Xenografts Confirm FGFR4, NCAM1, CD276, and Highlight AGRL2, JAM3, and L1CAM as Surface Targets for Rhabdomyosarcoma. Int. J. Mol. Sci. 2023, 24, 2601. https://doi.org/10.3390/ijms24032601
Timpanaro A, Piccand C, Uldry A-C, Bode PK, Dzhumashev D, Sala R, Heller M, Rössler J, Bernasconi M. Surfaceome Profiling of Cell Lines and Patient-Derived Xenografts Confirm FGFR4, NCAM1, CD276, and Highlight AGRL2, JAM3, and L1CAM as Surface Targets for Rhabdomyosarcoma. International Journal of Molecular Sciences. 2023; 24(3):2601. https://doi.org/10.3390/ijms24032601
Chicago/Turabian StyleTimpanaro, Andrea, Caroline Piccand, Anne-Christine Uldry, Peter Karl Bode, Dzhangar Dzhumashev, Rita Sala, Manfred Heller, Jochen Rössler, and Michele Bernasconi. 2023. "Surfaceome Profiling of Cell Lines and Patient-Derived Xenografts Confirm FGFR4, NCAM1, CD276, and Highlight AGRL2, JAM3, and L1CAM as Surface Targets for Rhabdomyosarcoma" International Journal of Molecular Sciences 24, no. 3: 2601. https://doi.org/10.3390/ijms24032601
APA StyleTimpanaro, A., Piccand, C., Uldry, A. -C., Bode, P. K., Dzhumashev, D., Sala, R., Heller, M., Rössler, J., & Bernasconi, M. (2023). Surfaceome Profiling of Cell Lines and Patient-Derived Xenografts Confirm FGFR4, NCAM1, CD276, and Highlight AGRL2, JAM3, and L1CAM as Surface Targets for Rhabdomyosarcoma. International Journal of Molecular Sciences, 24(3), 2601. https://doi.org/10.3390/ijms24032601