Interaction of Varenicline with Classic Antiseizure Medications in the Mouse Maximal Electroshock-Induced Seizure Model
Abstract
:1. Introduction
2. Results
2.1. Effects of VAR on the Threshold for Tonic-Clonic Seizures in the MES-Induced Seizure Threshold Test
2.2. Influence of VAR on the Anticonvulsant Activity of CBZ, PB, PHT, and VPA in the MES-Induced Seizure Test
2.3. Long-Term Memory in Mice Treated with ASMs and VAR Alone or in Combination
2.4. Muscular Strength in Mice Pretreated with ASMs and VAR Alone or in Combination
2.5. Motor Coordination Performance among Mice Pretreated with ASMs and VAR Alone or in Combination
2.6. Influence of VAR on Total Brain Concentration of CBZ
3. Discussion
4. Materials and Methods
4.1. Animals and Experimental Conditions
4.2. Drugs
4.3. Electrically-Induced Seizures
4.4. MES Seizure Threshold Test
4.5. MES Seizure Test
4.6. Passive Avoidance Task
4.7. Grip Strength Test
4.8. Chimney Test
4.9. Measurement of Total Brain Concentrations of CBZ
4.10. Statistical Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cahill, K.; Lindson-Hawley, N.; Thomas, K.; Fanshawe, T.R.; Lancaster, T.R. Nicotine receptor partial agonists for smoking cessation. Cochrane Database Syst. Rev. 2016, 2016, CD006103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, N.; Smith, B.; Barnes, J.; Verbiest, M.; Parag, V.; Pokhrel, S.; Wharakura, M.; Lees, T.; Gutierrez, H.C.; Jones, B.; et al. Cytisine versus varenicline for smoking cessation in New Zealand indigenous Māori: A randomized controlled trial. Addiction 2021, 116, 2847–2858. [Google Scholar] [CrossRef] [PubMed]
- Courtney, R.J.; McRobbie, H.; Tutka, P.; Weaver, N.A.; Petrie, D.; Mendelsohn, C.P.; Shakeshaft, A.; Talukder, S.; Macdonald, C.; Thomas, D.; et al. Effect of Cytisine vs Varenicline on Smoking Cessation: A Randomized Clinical Trial. JAMA 2021, 326, 56–64. [Google Scholar] [CrossRef]
- Rollema, H.; Chambers, L.; Coe, J.; Glowa, J.; Hurst, R.; Lebel, L.; Lu, Y.; Mansbach, R.; Mather, R.; Rovetti, C.; et al. Pharmacological profile of the α4β2 nicotinic acetylcholine receptor partial agonist varenicline, an effective smoking cessation aid. Neuropharmacology 2007, 52, 985–994. [Google Scholar] [CrossRef]
- Tutka, P. Nicotinic receptor partial agonists as novel compounds for the treatment of smoking cessation. Expert Opin. Investig. Drugs 2008, 17, 1473–1485. [Google Scholar] [CrossRef]
- Tutka, P.; Vinnikov, D.; Courtney, R.J.; Benowitz, N.L. Cytisine for nicotine addiction treatment: A review of pharmacology, therapeutics and an update of clinical trial evidence for smoking cessation. Addiction 2019, 114, 1951–1969. [Google Scholar] [CrossRef]
- Damaj, M.I.; Glassco, W.; Dukat, M.; Martin, B.R. Pharmacological characterization of nicotine-induced seizures in mice. J. Pharmacol. Exp. Ther. 1999, 291, 1284–1291. [Google Scholar] [PubMed]
- Caulfield, M.; Higgins, G. Mediation of nicotine-induced convulsions by central nicotinic receptors of the ‘C6’ type. Neuropharmacology 1983, 22, 347–351. [Google Scholar] [CrossRef]
- Stitzel, J.; Lu, Y.; Jimenez, M.; Tritto, T.; Collins, A.C. Genetic and pharmacological strategies identify a behavioral function of neuronal nicotinic receptors. Behav. Brain Res. 2000, 113, 57–64. [Google Scholar] [CrossRef]
- Erken, H.A.; Erken, G.; Simsek, H.; Korkut, O.; Koc, E.R.; Yavuz, O.; Genç, O. Single dose varenicline may trigger epileptic activity. Neurol. Sci. 2014, 35, 1807–1812. [Google Scholar] [CrossRef]
- Varenicline: The Australian experience so far. Aust. Adv. Drug React. Bull. 2008, 27, 22.
- Xi, Z.-X. Preclinical pharmacology, efficacy, and safety of varenicline in smoking cessation and clinical utility in high risk patients. Drug Healthc. Patient Saf. 2010, 2, 39–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serafini, A.; Crespal, A.; Velizara, R.; Gelisse, P. Varenicline-induced grand mal seizure. Epileptic Disord. 2010, 12, 338. [Google Scholar] [CrossRef] [PubMed]
- Chopra, D.A.; Shah, A.B.; Vadhariya, A.H.; Painter, J.T. The risk of varenicline-induced seizure among those who have attempted to quit smoking using pharmacotherapy. Epilepsy Behav. 2019, 97, 169–173. [Google Scholar] [CrossRef]
- Tutka, P.; Mróz, T.; Bednarski, J.; Styk, A.; Ognik, J.; Mosiewicz, J.; Łuszczki, J. Cytisine inhibits the anticonvulsant activity of phenytoin and lamotrigine in mice. Pharmacol. Rep. 2013, 65, 195–200. [Google Scholar] [CrossRef]
- Tutka, P.; Kondrat-Wróbel, M.W.; Zaluska, K.; Żółkowska, D.; Florek-Łuszczki, M.; Łuszczki, J.J. Cytisine inhibits the protective activity of various classical and novel antiepileptic drugs against 6 Hz-induced psychomotor seizures in mice. Psychopharmacology 2016, 234, 281–291. [Google Scholar] [CrossRef]
- Molero, Y.; Lichtenstein, P.; Zetterqvist, J.; Gumpert, C.H.; Fazel, S. Varenicline and risk of psychiatric conditions, suicidal behaviour, criminal offending, and transport accidents and offences: Population based cohort study. BMJ 2015, 350, h2388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, T.J.; Cohen, M.R.; Furberg, C.D. Strong Safety Signal Seen for New Varenicline Risks. 2008. Available online: https://www.ismp.org/sites/default/files/attachments/2018-01/2007Q4.pdf (accessed on 29 November 2022).
- Anthenelli, R.M.; Benowitz, N.L.; West, R.; St Aubin, L.; McRae, T.; Lawrence, D.; Ascher, J.; Russ, C.; Krishen, A.; Evins, A.E. Neuropsychiatric safety and efficacy of varenicline, bupropion, and nicotine patch in smokers with and without psychiatric disorders (EAGLES): A double-blind, randomised, placebo-controlled clinical trial. Lancet 2016, 387, 2507–2520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Food and Drug Administration. Varenicline (Marketed as Chantix) Information. 2016. Available online: https://www.fda.gov/drugs/postmarket-drug-safety-information-patients-and-providers/varenicline-marketed-chantix-information (accessed on 29 November 2022).
- Tobin, T.J.; Tobin, M.L. Clinical Psychopharmacology Update: Additional Safety Concerns for Using Varenicline (Chantix) for Smoking Cessation Treatment. Issues Ment. Health Nurs. 2015, 36, 840–843. [Google Scholar] [CrossRef]
- Johnson, A.L.; McLeish, A.C.; Shear, P.K.; Privitera, M.; Luberto, C.M. Smokers with and without Epilepsy show Similar Smoking Rate, Dependence Level, Cessation Attempts, and Motives. Transl. Behav. Med. 2021, 11, 1023–1029. [Google Scholar] [CrossRef]
- Picciotto, M.R.; Zoli, M.; Rimondini, R.; Léna, C.; Marubio, L.M.; Pich, E.M.; Fuxe, K.; Changeux, J.-P. Acetylcholine receptors containing the β2 subunit are involved in the reinforcing properties of nicotine. Nature 1998, 391, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Tutka, P.; Zatoński, W. Cytisine for the treatment of nicotine addiction: From a molecule to therapeutic efficacy. Pharmacol. Rep. 2006, 58, 777–798. [Google Scholar] [PubMed]
- De Fusco, M.; Becchetti, A.; Patrignani, A.; Annesi, G.; Gambardella, A.; Quattrone, A.; Ballabio, A.; Wanke, E.; Casari, G. The nicotinic receptor β2 subunit is mutant in nocturnal frontal lobe epilepsy. Nat. Genet. 2000, 26, 275–276. [Google Scholar] [CrossRef]
- Sutor, B.; Zolles, G. Neuronal nicotinic acetylcholine receptors and autosomal dominant nocturnal frontal lobe epilepsy: A critical review. Pflüg. Arch. 2001, 442, 642–651. [Google Scholar] [CrossRef] [PubMed]
- Hoda, J.-C.; Gu, W.; Friedli, M.; Phillips, H.A.; Bertrand, S.; Antonarakis, S.E.; Goudie, D.; Roberts, R.; Scheffer, I.E.; Marini, C.; et al. Human Nocturnal Frontal Lobe Epilepsy: Pharmocogenomic Profiles of Pathogenic Nicotinic Acetylcholine Receptor β-Subunit Mutations outside the Ion Channel Pore. Mol. Pharmacol. 2008, 74, 379–391. [Google Scholar] [CrossRef] [Green Version]
- McGehee, D.S.; Heath, M.J.S.; Gelber, S.; Devay, P.; Role, L.W. Nicotine Enhancement of Fast Excitatory Synaptic Transmission in CNS by Presynaptic Receptors. Science 1995, 269, 1692–1696. [Google Scholar] [CrossRef]
- Ghasemi, M.; Hadipour-Niktarash, A. Pathologic role of neuronal nicotinic acetylcholine receptors in epileptic disorders: Implication for pharmacological interventions. Rev. Neurosci. 2015, 26, 199–223. [Google Scholar] [CrossRef]
- Eger, E.I., 2nd; Gong, D.; Xing, Y.; Raines, D.E.; Flood, P. Acetylcholine receptors and thresholds for convulsions from flurothyl and 1,2-dichlorohexafluorocyclobutane. Anesth. Analg. 2002, 95, 1611–1615. [Google Scholar] [CrossRef]
- McMahon, L.R. Green tobacco sickness: Mecamylamine, varenicline, and nicotine vaccine as clinical research tools and potential therapeutics. Expert Rev. Clin. Pharmacol. 2019, 2, 189–195. [Google Scholar] [CrossRef]
- Stoyanov, S.; Yanachkova, M. Tabex-therapeutic efficacy and tolerance. Savr Med. 1972, 6, 31–33. [Google Scholar]
- Jo, S.; Bean, B.P. Sidedness of Carbamazepine Accessibility to Voltage-Gated Sodium Channels. Mol. Pharmacol. 2013, 85, 381–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sills, G.J.; Rogawski, M.A. Mechanisms of action of currently used antiseizure drugs. Neuropharmacology 2020, 168, 107966. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, Y.; Sato, M.; Otsuki, S. Interaction of carbamazepine and other drugs with adenosine (A1 and A2) receptors. Psychopharmacology 1986, 90, 332–335. [Google Scholar] [CrossRef]
- Hough, C.J.; Irwin, R.P.; Gao, X.M.; Rogawski, M.; Chuang, D.M. Carbamazepine inhibition of N-methyl-D-aspartate-evoked calcium influx in rat cerebellar granule cells. Experiment 1996, 276, 143–149. [Google Scholar]
- Bordia, T.; Hrachova, M.; Chin, M.; McIntosh, J.M.; Quik, M. Varenicline Is a Potent Partial Agonist at α6β2* Nicotinic Acetylcholine Receptors in Rat and Monkey Striatum. J. Pharmacol. Exp. Ther. 2012, 342, 327–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mihalak, K.B.; Carroll, F.I.; Luetje, C.W. Varenicline Is a Partial Agonist at α4β2 and a Full Agonist at α7 Neuronal Nicotinic Receptors. Mol. Pharmacol. 2006, 70, 801–805. [Google Scholar] [CrossRef] [Green Version]
- Arias, H.R.; Feuerbach, D.; Targowska-Duda, K.; Kaczor, A.A.; Poso, A.; Jozwiak, K. Pharmacological and molecular studies on the interaction of varenicline with different nicotinic acetylcholine receptor subtypes. Potential mechanism underlying partial agonism at human α4β2 and α3β4 subtypes. Biochim. Biophys. Acta (BBA)-Biomembr. 2015, 1848, 731–741. [Google Scholar] [CrossRef] [Green Version]
- Sood, N.; Hota, D.; Sahai, A.K.; Chakrabarti, A. Nicotine Reversal of Anticonvulsant Action of Topiramate in Kainic Acid-Induced Seizure Model in Mice. Nicotine Tob. Res. 2011, 13, 1084–1091. [Google Scholar] [CrossRef]
- Nair, A.B.; Jacob, S. A simple practice guide for dose conversion between animals and human. J. Basic Clin. Pharm. 2016, 7, 27–31. [Google Scholar] [CrossRef] [Green Version]
- Champix (Varenicline) Dosage and Administration. 2023. Available online: https://www.pfizermedicalinformation.ca/en-ca/champix/dosage-and-administration (accessed on 23 January 2023).
- Swinyard, E.A.; Brown, W.C.; Goodman, L.S. Comparative assays of antiepileptic drugs in mice and rats. J. Pharmacol. Exp. Ther. 1952, 106, 319–330. [Google Scholar]
- Litchfield, J.T., Jr.; Wilcoxon, F. A simplified method of evaluating dose-effect experiments. J. Pharmacol. Exp. Ther. 1949, 96, 99–113. [Google Scholar] [PubMed]
- Venault, P.; Chapouthier, G.; de Carvalho, L.P.; Simiand, J.; Morre, M.; Dodd, R.H.; Rossier, J. Benzodiazepine impairs and β-carboline enhances performance in learning and memory tasks. Nature 1986, 321, 864–866. [Google Scholar] [CrossRef] [PubMed]
- Meyer, O.A.; Tilson, H.A.; Byrd, W.C.; Riley, M.T. A method for the routine assessment of fore- and hindlimb grip strength of rats and mice. Neurobehav. Toxicol. 1979, 1, 233–236. [Google Scholar] [PubMed]
- Maurissen, J.P.; Marable, B.R.; Andrus, A.K.; Stebbins, K.E. Factors affecting grip strength testing. Neurotoxicol. Teratol. 2003, 25, 543–553. [Google Scholar] [CrossRef]
- Boissier, J.R.; Tardy, J.; Diverres, J.C. Une nouvelle methode simple pour explorer l’action «tranquilisante»: Le test de la cheminee. Pharmacology 1960, 3, 81–84. [Google Scholar] [CrossRef]
- Nevitt, S.J.; Marson, A.G.; Weston, J.; Smith, C.T. Carbamazepine versus phenytoin monotherapy for epilepsy: An individual participant data review. Cochrane Database Syst. Rev. 2017, 2, CD001911. [Google Scholar] [CrossRef]
Treatment (mg/kg) | CS50 (mA) | n |
---|---|---|
VAR (0) | 8.10 ± 0.43 | 24 |
VAR (0.25) | 8.32 ± 0.48 | 16 |
VAR (0.5) | 7.45 ± 0.45 | 16 |
VAR (1.0) | 6.52 ± 0.54 * | 24 |
VAR (2.0) | 6.29 ± 0.48 * | 16 |
Treatment (mg/kg) | ED50 (mg/kg) | n |
---|---|---|
CBZ + VAR (0) | 10.92 ± 1.00 | 24 |
CBZ + VAR (0.25) | 15.73 ± 0.85 | 8 |
CBZ + VAR (0.5) | 18.15 ± 1.73 ** | 24 |
PB + VAR (0) | 27.71 ± 1.78 | 16 |
PB + VAR (0.5) | 26.17 ± 2.07 | 16 |
PHT + VAR (0) | 11.27 ± 1.23 | 16 |
PHT + VAR (0.5) | 9.56 ± 1.06 | 16 |
VPA + VAR (0) | 337.2 ± 28.9 | 24 |
VPA + VAR (0.5) | 370.8 ± 21.0 | 24 |
Treatment (mg/kg) | Muscular Strength (N) | Retention Time (s) | Motor Coordination Deficits (%) |
---|---|---|---|
Vehicle + vehicle | 1.039 ± 0.046 | 180 (180; 180) | 0 |
VAR (0.5) + vehicle | 1.082 ± 0.028 | 180 (180; 180) | 12.5 |
VAR (0.5) + CBZ (18.15) | 1.068 ± 0.030 | 180 (180; 180) | 12.5 |
VAR (0.5) + PB (26.17) | 1.046 ± 0.044 | 180 (180; 180) | 12.5 |
VAR (0.5) + PHT (9.56) | 1.054 ± 0.036 | 180 (180; 180) | 12.5 |
VAR (0.5) + VPA (370.8) | 1.029 ± 0.034 | 175.5 (155.7; 180) | 37.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernat, P.; Kołodziejczyk, P.; Łuszczki, J.J.; Zagaja, M.; Tutka, P. Interaction of Varenicline with Classic Antiseizure Medications in the Mouse Maximal Electroshock-Induced Seizure Model. Int. J. Mol. Sci. 2023, 24, 2616. https://doi.org/10.3390/ijms24032616
Bernat P, Kołodziejczyk P, Łuszczki JJ, Zagaja M, Tutka P. Interaction of Varenicline with Classic Antiseizure Medications in the Mouse Maximal Electroshock-Induced Seizure Model. International Journal of Molecular Sciences. 2023; 24(3):2616. https://doi.org/10.3390/ijms24032616
Chicago/Turabian StyleBernat, Piotr, Patrycjusz Kołodziejczyk, Jarogniew J. Łuszczki, Mirosław Zagaja, and Piotr Tutka. 2023. "Interaction of Varenicline with Classic Antiseizure Medications in the Mouse Maximal Electroshock-Induced Seizure Model" International Journal of Molecular Sciences 24, no. 3: 2616. https://doi.org/10.3390/ijms24032616
APA StyleBernat, P., Kołodziejczyk, P., Łuszczki, J. J., Zagaja, M., & Tutka, P. (2023). Interaction of Varenicline with Classic Antiseizure Medications in the Mouse Maximal Electroshock-Induced Seizure Model. International Journal of Molecular Sciences, 24(3), 2616. https://doi.org/10.3390/ijms24032616