Application of Vibrational Spectroscopic Techniques in the Study of the Natural Polysaccharides and Their Cross-Linking Process
Abstract
:1. Introduction
- Polypeptides composed of amino acids units, i.e., collagen, fibrin, fibrinogen, actin, myosin, keratin, elastin, silk, and gelatin;
- Polynucleotides consisting of nucleotides units, such as helical and linear plasmid DNA and RNA;
- Polysaccharides built of monosaccharide units [7].
- Homoglycans (consisting of one type of monomer unit) and heteroglycans (consisting of two or more types of monomer units);
- Linear and branched (with various degrees of branching, such as with few and very long branches regularly or irregularly spaced, with short branches forming clusters, or with branch-on-branch structures—“bush-like”);
- Neutral (noncharged) or charged (cationic or anionic) [12].
2. Fourier-Transform Infrared (FTIR) Spectroscopy
2.1. Research on Cellulose and Its Modifications and Conjugates
2.2. Studies of the Molecular Organization of Other Plant-Derived Polysaccharides
2.3. Polysaccharides Cross-Linking Process in the Context of Cell Scaffold Production and Interactions
2.4. Mechanism of Polymerization of Chitosan and 1,3-β-D-glucan
2.5. Molecular Structure of Other Polysaccharides
3. Raman Spectroscopy (RS)
3.1. Raman Spectroscopy and Microspectroscopy in the Study of Polysaccharide Cross-Linking
3.2. Surface-Oriented Analysis of Carbohydrate Polymers’ Matrices
3.3. Polysaccharide Evaluation in Relation to Cell Activity
4. Other Spectroscopic Techniques Used for Polymer Analysis
5. Chemometric Analysis in the Polysaccharide Investigation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Namazi, H. Polymers in our daily life. BioImpacts 2017, 7, 73–74. [Google Scholar] [CrossRef]
- Gad, S.E. Polymers. In Encyclopedia of Toxicology; Wexler, P., Ed.; Elsevier: Oxford, UK, 2014; pp. 1045–1050. ISBN 978-0-12-386455-0. [Google Scholar]
- Sonam; Chaudhary, H.; Arora, V.; Kholi, K.; Kumar, V. Effect of Physicochemical Properties of Biodegradable Polymers on Nano Drug Delivery. Polym. Rev. 2013, 53, 546–567. [Google Scholar] [CrossRef]
- Balaji, A.B.; Pakalapati, H.; Khalid, M.; Walvekar, R.; Siddiqui, H. Natural and synthetic biocompatible and biodegradable polymers. In Biodegradable and Biocompatible Polymer Composites; Elsevier: Amsterdam, The Netherlands, 2018; pp. 3–32. [Google Scholar]
- Hustad, P.D. Frontiers in Olefin Polymerization: Reinventing the World’s Most Common Synthetic Polymers. Science 2009, 325, 704–707. [Google Scholar] [CrossRef] [PubMed]
- Geyer, R. Production, use, and fate of synthetic polymers. In Plastic Waste and Recycling; Elsevier: Amsterdam, The Netherlands, 2020; pp. 13–32. [Google Scholar]
- Khan, M.J.; Svedberg, A.; Singh, A.A.; Ansari, M.S.; Karim, Z. Use of Nanostructured Polymer in the Delivery of Drugs for Cancer Therapy. In Nanostructured Polymer Composites for Biomedical Applications; Swain, S.K., Jawaid, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 261–276. ISBN 978-0-12-816771-7. [Google Scholar]
- Reddy, M.S.B.; Ponnamma, D.; Choudhary, R.; Sadasivuni, K.K. A Comparative Review of Natural and Synthetic Biopolymer Composite Scaffolds. Polymers 2021, 13, 1105. [Google Scholar] [CrossRef] [PubMed]
- Nandita, E.; Bacalzo, N.P.; Ranque, C.L.; Amicucci, M.J.; Galermo, A.; Lebrilla, C.B. Polysaccharide identification through oligosaccharide fingerprinting. Carbohydr. Polym. 2021, 257, 117570. [Google Scholar] [CrossRef]
- Kurita, K. Controlled functionalization of the polysaccharide chitin. Prog. Polym. Sci. 2001, 26, 1921–1971. [Google Scholar] [CrossRef]
- Li, Q.; Wang, S.; Jin, X.; Huang, C.; Xiang, Z. The Application of Polysaccharides and Their Derivatives in Pigment, Barrier, and Functional Paper Coatings. Polymers 2020, 12, 1837. [Google Scholar] [CrossRef]
- Di Donato, P.; Taurisano, V.; Poli, A.; Gomez d’Ayala, G.; Nicolaus, B.; Malinconinco, M.; Santagata, G. Vegetable wastes derived polysaccharides as natural eco-friendly plasticizers of sodium alginate. Carbohydr. Polym. 2020, 229, 115427. [Google Scholar] [CrossRef]
- Hill, S.; Varker, A.S.; Karlage, K.; Myrdal, P.B. Analysis of Drug Content and Weight Uniformity for Half-Tablets of 6 Commonly Split Medications. J. Manag. Care Pharm. 2009, 15, 253–261. [Google Scholar] [CrossRef]
- Panda, P.K.; Verma, A.; Jain, S.K. Etherified polysaccharides in biomedical applications. In Tailor-Made Polysaccharides in Biomedical Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 35–50. ISBN 9780128213445. [Google Scholar]
- Heinze, T.; Liebert, T.; Koschella, A. Esterification of Polysaccharides; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Zeidan, A.A.; Poulsen, V.K.; Janzen, T.; Buldo, P.; Derkx, P.M.F.; Øregaard, G.; Neves, A.R. Polysaccharide production by lactic acid bacteria: From genes to industrial applications. FEMS Microbiol. Rev. 2017, 41, S168–S200. [Google Scholar] [CrossRef]
- Paul, F.; Morin, A.; Monsan, P. Microbial polysaccharides with actual potential industrial applications. Biotechnol. Adv. 1986, 4, 245–259. [Google Scholar] [CrossRef] [PubMed]
- Aravamudhan, A.; Ramos, D.M.; Nada, A.A.; Kumbar, S.G. Natural Polymers. In Natural and Synthetic Biomedical Polymers; Elsevier: Amsterdam, The Netherlands, 2014; pp. 67–89. ISBN 9780123969835. [Google Scholar]
- Wiercigroch, E.; Szafraniec, E.; Czamara, K.; Pacia, M.Z.; Majzner, K.; Kochan, K.; Kaczor, A.; Baranska, M.; Malek, K. Raman and infrared spectroscopy of carbohydrates: A review. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2017, 185, 317–335. [Google Scholar] [CrossRef] [PubMed]
- Przekora, A. The summary of the most important cell-biomaterial interactions that need to be considered during in vitro biocompatibility testing of bone scaffolds for tissue engineering applications. Mater. Sci. Eng. C 2019, 97, 1036–1051. [Google Scholar] [CrossRef]
- Przekora, A.; Ginalska, G. Biological properties of novel chitosan-based composites for medical application as bone substitute. Cent. Eur. J. Biol. 2014, 9, 634–641. [Google Scholar] [CrossRef]
- Xu, J.-L.; Riccioli, C.; Sun, D.-W. An Overview on Nondestructive Spectroscopic Techniques for Lipid and Lipid Oxidation Analysis in Fish and Fish Products. Compr. Rev. Food Sci. Food Saf. 2015, 14, 466–477. [Google Scholar] [CrossRef] [Green Version]
- Ishikawa, D.; Nishii, T.; Mizuno, F.; Sato, H.; Kazarian, S.G.; Ozaki, Y. Potential of a Newly Developed High-Speed Near-Infrared (NIR) Camera (Compovision) in Polymer Industrial Analyses: Monitoring Crystallinity and Crystal Evolution of Polylactic Acid (PLA) and Concentration of PLA in PLA/Poly-(R)-3-Hydroxybutyrate (PHB) Ble. Appl. Spectrosc. 2013, 67, 1441–1446. [Google Scholar] [CrossRef] [PubMed]
- Kazarian, S.G.; Chan, K.L.A. Applications of ATR-FTIR spectroscopic imaging to biomedical samples. Biochim. Biophys. Acta-Biomembr. 2006, 1758, 858–867. [Google Scholar] [CrossRef] [Green Version]
- Hifumi, H.; Ewing, A.V.; Kazarian, S.G. ATR-FTIR spectroscopic imaging to study the drying and dissolution of pharmaceutical polymer-based films. Int. J. Pharm. 2016, 515, 57–68. [Google Scholar] [CrossRef]
- Lu, H.; Ewing, A.V.; Kazarian, S.G. FTIR Spectroscopy and Spectroscopic Imaging for the Analysis of Polymers and Multicomponent Polymer Systems. In Spectroscopic Techniques for Polymer Characterization; Ozaki, Y., Sato, H., Eds.; Wiley-VCH GmbH: Weinheim, Germany, 2022; pp. 45–74. ISBN 978-3-527-34833-6. [Google Scholar]
- Kazarian, S.G. Perspectives on infrared spectroscopic imaging from cancer diagnostics to process analysis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 251, 119413. [Google Scholar] [CrossRef]
- Doyle, W.M. Principles and Applications of Fourier Transform Infra-red (FTIR) Process Analysis. Process Control Qual. 1992, 2, 11–41. [Google Scholar]
- Chua, L.; Banas, A.; Banas, K. Comparison of ATR–FTIR and O-PTIR Imaging Techniques for the Characterisation of Zinc-Type Degradation Products in a Paint Cross-Section. Molecules 2022, 27, 6301. [Google Scholar] [CrossRef] [PubMed]
- Wübbeler, G.; Marschall, M.; Rühl, E.; Kästner, B.; Elster, C. Compressive nano-FTIR chemical mapping. Meas. Sci. Technol. 2022, 33, 035402. [Google Scholar] [CrossRef]
- Caggiani, M.C.; Occhipinti, R.; Finocchiaro, C.; Fugazzotto, M.; Stroscio, A.; Mazzoleni, P.; Barone, G. Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) as a potential on site tool to test geopolymerization reaction. Talanta 2022, 250, 123721. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.; Gupta, A.K.; Gupta, S.; Gupta, S.K.; Yadav, R.K. Electronic, Vibrational, and Structural Study of Polysaccharide Agar-Agar Biopolymer. Nano Hybrids Compos. 2021, 33, 35–46. [Google Scholar] [CrossRef]
- Robert, P.; Marquis, M.; Barron, C.; Guillon, F.; Saulnier, L. FT-IR investigation of cell wall polysaccharides from cereal grains. Arabinoxylan infrared assignment. J. Agric. Food Chem. 2005, 53, 7014–7018. [Google Scholar] [CrossRef]
- Buhus, G.; Peptu, C.; Popa, M.; Desbrieres, J. Controlled Release of Water Soluble Antibiotics by Carboxymethylcellulose- and Gelatin-Based Hydrogels Crosslinked with Epichlorohydrin. Cellul. Chem. Technol. 2009, 43, 141–151. [Google Scholar]
- Jumaah, F.N.; Mobaraka, N.N.; Ahmad, A.; Ramli, N. Characterization of ɽ -carrageenan and its derivative based green polymer electrolytes. AIP Conf. Proc. 2013, 1571, 768–774. [Google Scholar] [CrossRef] [Green Version]
- Barsberg, S. Prediction of Vibrational Spectra of Polysaccharides—Simulated IR Spectrum of Cellulose Based on Density Functional Theory (DFT). J. Phys. Chem. B 2010, 114, 11703–11708. [Google Scholar] [CrossRef] [PubMed]
- Udoetok, I.A.; Wilson, L.D.; Headley, J. V Self-Assembled and Cross-Linked Animal and Plant-Based Polysaccharides: Chitosan–Cellulose Composites and Their Anion Uptake Properties. ACS Appl. Mater. Interfaces 2016, 8, 33197–33209. [Google Scholar] [CrossRef]
- Wang, H.; Liao, Y.; Wu, A.; Li, B.; Qian, J.; Ding, F. Effect of Sodium Trimetaphosphate on Chitosan-Methylcellulose Composite Films: Physicochemical Properties and Food Packaging Application. Polymers 2019, 11, 368. [Google Scholar] [CrossRef] [Green Version]
- Gieroba, B.; Sroka-Bartnicka, A.; Kazimierczak, P.; Kalisz, G.; Pieta, I.S.; Nowakowski, R.; Pisarek, M.; Przekora, A. Effect of Gelation Temperature on the Molecular Structure and Physicochemical Properties of the Curdlan Matrix: Spectroscopic and Microscopic Analyses. Int. J. Mol. Sci. 2020, 21, 6154. [Google Scholar] [CrossRef] [PubMed]
- Mirzayeva, T.; Čopíková, J.; Kvasnička, F.; Bleha, R.; Synytsya, A. Screening of the chemical composition and identification of hyaluronic acid in food supplements by fractionation and fourier-transform infrared spectroscopy. Polymers 2021, 13, 4002. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Y.; Guo, Z.; Zhang, Q.; Liu, J.; Fei, P.; Huang, B. Preparation of functionalized pectin through acylation with alkyl gallates: Experiments coupled with density functional theory. Int. J. Biol. Macromol. 2022, 202, 278–285. [Google Scholar] [CrossRef]
- Garden, J.L.; Steele, R. Some Theoretical Considerations of Cellulose Cross-Linking. Text. Res. J. 1961, 31, 160–171. [Google Scholar] [CrossRef]
- Ghosh, B.; Bhattacharya, D.; Mukhopadhyay, M. Fabrication of natural polysaccharide based hydrogel with utility to entrap pollutants. J. Phys. Conf. Ser. 2021, 1797, 012060. [Google Scholar] [CrossRef]
- Udoetok, I.A.; Wilson, L.D.; Headley, J.V. “ Pillaring Effects ” in Cross-Linked Cellulose Biopolymers: A Study of Structure and Properties. Int. J. Polym. Sci. 2018, 2018, 6358254 . [Google Scholar] [CrossRef] [Green Version]
- Dagar, V.; Pahwa, R.; Ahuja, M. Preparation and Characterization of Calcium Cross-linked Carboxymethyl Tamarind Kernel Polysaccharide as Release Retardant Polymer in Matrix. Biointerface Res. Appl. Chem. 2022, 13, 111. [Google Scholar] [CrossRef]
- Shabir, F.; Erum, A.; Tulain, U.R.; Hussain, M.A.; Ahmad, M.; Akhter, F. Preparation and characterization of pH sensitive crosslinked Linseed polysaccharides-co-acrylic acid/methacrylic acid hydrogels for controlled delivery of ketoprofen. Des. Monomers Polym. 2017, 20, 485–495. [Google Scholar] [CrossRef] [PubMed]
- Lara-Valencia, V.; Dávila-Soto, H.; Moscoso-Sanchez, F.; Figueroa-Ochoa, E.; Carvajal-Ramos, F.; Fernández-Escamilla, V.; González-Álvarez, A.; Soltero-Martínez, J.F.; Macías-Balleza, E.; García- Enríquez, S. The use of polysaccharides extracted from seed of Persea americana var. Hass on the synthesis of acrylic hydrogels. Quim. Nova 2017, 13, 111. [Google Scholar] [CrossRef]
- Makshakova, O.N.; Zuev, Y.F. Interaction-Induced Structural Transformations in Polysaccharide and Protein-Polysaccharide Gels as Functional Basis for Novel Soft-Matter: A Case of Carrageenans. Gels 2022, 8, 287. [Google Scholar] [CrossRef] [PubMed]
- Štiglic, A.D.; Gürer, F.; Lackner, F.; Bračič, D.; Winter, A.; Gradišnik, L.; Makuc, D.; Kargl, R.; Duarte, I.; Plavec, J.; et al. Organic acid cross-linked 3D printed cellulose nanocomposite bioscaffolds with controlled porosity, mechanical strength, and biocompatibility. iScience 2022, 25, 104263. [Google Scholar] [CrossRef]
- Hinsenkamp, A.; Ézsiás, B.; Pál, É.; Hricisák, L.; Fülöp, Á.; Besztercei, B.; Somkuti, J.; Smeller, L.; Pinke, B.; Kardos, D.; et al. Crosslinked Hyaluronic Acid Gels with Blood-Derived Protein Components for Soft Tissue Regeneration. Tissue Eng. Part A 2021, 27, 806–820. [Google Scholar] [CrossRef]
- Drabczyk, A.; Kudłacik-Kramarczyk, S.; Głąb, M.; Kędzierska, M.; Jaromin, A.; Mierzwiński, D.; Tyliszczak, B. Physicochemical Investigations of Chitosan-Based Hydrogels Containing Aloe Vera Designed for Biomedical Use. Materials 2020, 13, 3073. [Google Scholar] [CrossRef]
- Rekulapally, R.; Udayachandrika, K.; Hamlipur, S.; Sasidharan Nair, A.; Pal, B.; Singh, S. Tissue engineering of collagen scaffolds crosslinked with plant based polysaccharides. Prog. Biomater. 2021, 10, 29–41. [Google Scholar] [CrossRef]
- Gieroba, B.; Przekora, A.; Kalisz, G.; Kazimierczak, P.; Song, C.L.; Wojcik, M.; Ginalska, G.; Kazarian, S.G.; Sroka-Bartnicka, A. Collagen maturity and mineralization in mesenchymal stem cells cultured on the hydroxyapatite-based bone scaffold analyzed by ATR-FTIR spectroscopic imaging. Mater. Sci. Eng. C 2021, 119, 111634. [Google Scholar] [CrossRef]
- Przekora, A.; Benko, A.; Blazewicz, M.; Ginalska, G. Hybrid chitosan/β-1,3-glucan matrix of bone scaffold enhances osteoblast adhesion, spreading and proliferation via promotion of serum protein adsorption. Biomed. Mater. 2016, 11, 045001. [Google Scholar] [CrossRef]
- Wojcik, M.; Kazimierczak, P.; Benko, A.; Palka, K.; Vivcharenko, V.; Przekora, A. Superabsorbent curdlan-based foam dressings with typical hydrocolloids properties for highly exuding wound management. Mater. Sci. Eng. C 2021, 124, 112068. [Google Scholar] [CrossRef] [PubMed]
- Wojcik, M.; Kazimierczak, P.; Vivcharenko, V.; Koziol, M.; Przekora, A. Effect of Vitamin C/Hydrocortisone Immobilization within Curdlan-Based Wound Dressings on In Vitro Cellular Response in Context of the Management of Chronic and Burn Wounds. Int. J. Mol. Sci. 2021, 22, 11474. [Google Scholar] [CrossRef] [PubMed]
- Przekora, A.; Palka, K.; Ginalska, G. Biomedical potential of chitosan/HA and chitosan/β-1,3-glucan/HA biomaterials as scaffolds for bone regeneration—A comparative study. Mater. Sci. Eng. C 2016, 58, 891–899. [Google Scholar] [CrossRef] [PubMed]
- Gieroba, B.; Sroka-Bartnicka, A.; Kazimierczak, P.; Kalisz, G.; Lewalska-Graczyk, A.; Vivcharenko, V.; Nowakowski, R.; Pieta, I.S.; Przekora, A. Spectroscopic studies on the temperature-dependent molecular arrangements in hybrid chitosan/1,3-β-D-glucan polymeric matrices. Int. J. Biol. Macromol. 2020, 159, 911–921. [Google Scholar] [CrossRef]
- Gieroba, B.; Sroka-Bartnicka, A.; Kazimierczak, P.; Kalisz, G.; Lewalska-Graczyk, A.; Vivcharenko, V.; Nowakowski, R.; Pieta, I.S.; Przekora, A. Surface Chemical and Morphological Analysis of Chitosan/1,3-β-d-Glucan Polysaccharide Films Cross-Linked at 90 °C. Int. J. Mol. Sci. 2022, 23, 5953. [Google Scholar] [CrossRef] [PubMed]
- Mangolim, C.S.; da Silva, T.T.; Fenelon, V.C.; do Nascimento, A.; Sato, F.; Matioli, G. Use of FT-IR, FT-Raman and thermal analysis to evaluate the gel formation of curdlan produced by Agrobacterium sp. IFO 13140 and determination of its rheological properties with food applicability. Food Chem. 2017, 232, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Gagnon, M.A.; Lafleur, M. From curdlan powder to the triple helix gel structure: An attenuated total reflection-Infrared study of the gelation process. Appl. Spectrosc. 2007, 61, 374–378. [Google Scholar] [CrossRef] [PubMed]
- Tomadoni, B.; Ponce, A.; Pereda, M.; Ansorena, M.R. Vanillin as a natural cross-linking agent in chitosan-based films: Optimizing formulation by response surface methodology. Polym. Test. 2019, 78, 105935. [Google Scholar] [CrossRef]
- Acharyulu, S.R.; Gomathi, T.; Sudha, P.N. Physico-chemical characterization of cross linked chitosan-polyacrylonitrile polymer blends. Der Pharm. Lett. 2013, 5, 354–363. [Google Scholar]
- Garcia, H.; Barros, A.S.; Gonçalves, C.; Gama, F.M.; Gil, A.M. Characterization of dextrin hydrogels by FTIR spectroscopy and solid state NMR spectroscopy. Eur. Polym. J. 2008, 44, 2318–2329. [Google Scholar] [CrossRef] [Green Version]
- Guadalupe García, M.; Alberto Masuelli, M. Effect of Cross-Linking Agent on Mechanical and Permeation Properties of Criolla Orange Pectin. In Pectins—The New-Old Polysaccharides; IntechOpen: London, UK, 2022. [Google Scholar]
- Uranga, J.; Nguyen, B.T.; Si, T.T.; Guerrero, P.; de la Caba, K. The Effect of Cross-Linking with Citric Acid on the Properties of Agar/Fish Gelatin Films. Polymers 2020, 12, 291. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.C.; Judah, S.N.M.S.M.; Ghazali, S.K.; Munthoub, D.I.; Alias, H.; Mohamad, Z.; Majid, R.A. The Effects of Citric Acid on Thermal and Mechanical Properties of Crosslinked Starch Film. Chem. Eng. Trans. 2021, 83, 199–204. [Google Scholar] [CrossRef]
- Ren, Y.; Bai, Y.; Zhang, Z.; Cai, W.; Del Rio Flores, A. The Preparation and Structure Analysis Methods of Natural Polysaccharides of Plants and Fungi: A Review of Recent Development. Molecules 2019, 24, 3122. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Yin, Q.; Han, T.; Zhao, Y.; Su, J.; Li, M.; Ling, J. Purification and antioxidant effect of novel fungal polysaccharides from the stroma of Cordyceps kyushuensis. Ind. Crops Prod. 2015, 69, 485–491. [Google Scholar] [CrossRef]
- Jurowski, K.; Kochan, K.; Walczak, J.; Barańska, M.; Piekoszewski, W.; Buszewski, B. Analytical Techniques in Lipidomics: State of the Art. Crit. Rev. Anal. Chem. 2017, 47, 418–437. [Google Scholar] [CrossRef] [PubMed]
- Amaral, G.; Bushee, J.; Cordani, U.G.; Kawashita, K.; Reynolds, J.H.; Almeida, F.F.M.D.E.; de Almeida, F.F.M.; Hasui, Y.; de Brito Neves, B.B.; Fuck, R.A.; et al. Summary for Policymakers. In Climate Change 2013—The Physical Science Basis; Intergovernmental Panel on Climate Change, Ed.; Cambridge University Press: Cambridge, UK, 2013; Volume 369, pp. 1–30. ISBN 9789896540821. [Google Scholar]
- Baker, M.J.; Byrne, H.J.; Chalmers, J.; Gardner, P.; Goodacre, R.; Henderson, A.; Kazarian, S.G.; Martin, F.L.; Moger, J.; Stone, N.; et al. Clinical applications of infrared and Raman spectroscopy: State of play and future challenges. Analyst 2018, 143, 1735–1757. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.; Dent, G. Modern Raman Spectroscopy—A Practical Approach, 2nd ed.; Wiley: Hoboken, NJ, USA, 2019; ISBN 9781119440581. [Google Scholar]
- Kizil, R.; Irudayaraj, J.; Seetharaman, K. Characterization of Irradiated Starches by Using FT-Raman and FTIR Spectroscopy. J. Agric. Food Chem. 2002, 50, 3912–3918. [Google Scholar] [CrossRef]
- Rohleder, D.; Kocherscheidt, G.; Gerber, K.; Kiefer, W.; Köhler, W.; Möcks, J.; Petrich, W. Comparison of mid-infrared and Raman spectroscopy in the quantitative analysis of serum. J. Biomed. Opt. 2005, 10, 031108. [Google Scholar] [CrossRef] [Green Version]
- Pathak, S.; Kumar, A.; Tandon, P.; Kiskan, B.; Koz, B.; Yagci, Y. Synthesis, characterization and theoretical interpretation of vibrational spectra of poly(2-methylbut-2-enyl thiophene-3-carboxylate). Eur. Polym. J. 2010, 46, 1525–1536. [Google Scholar] [CrossRef]
- Yang, D.; Ying, Y. Applications of Raman Spectroscopy in Agricultural Products and Food Analysis: A Review. Appl. Spectrosc. Rev. 2011, 46, 539–560. [Google Scholar] [CrossRef]
- Parimaladevi, R.; Sathe, V.; Mahalingam, U. Graphene boosted silver nanoparticles as surface enhanced Raman spectroscopic sensors and photocatalysts for removal of standard and industrial dye contaminants. Sensors Actuators B Chem. 2019, 281, 679–688. [Google Scholar] [CrossRef]
- Rzhevskii, A. The recent advances in raman microscopy and imaging techniques for biosensors. Biosensors 2019, 9, 25. [Google Scholar] [CrossRef] [Green Version]
- Querido, W.; Kandel, S.; Pleshko, N. Applications of vibrational spectroscopy for analysis of connective tissues. Molecules 2021, 26, 922. [Google Scholar] [CrossRef]
- Barbosa, I.B.; Barbosa-Dekker, A.M.; Dekker, R.F.H.; Bezerra, A.G.; de Santana, H.; Orsato, A. Polysaccharide-based substrate for surface-enhanced Raman spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 249, 119255. [Google Scholar] [CrossRef]
- Makarem, M.; Lee, C.M.; Kafle, K.; Huang, S.; Chae, I.; Yang, H.; Kubicki, J.D.; Kim, S.H. Probing Cellulose Structures with Vibrational Spectroscopy; Springer: Dordrecht, The Netherlands, 2019; Volume 26, ISBN 1057001821. [Google Scholar]
- Zając, A.; Hanuza, J.; Wandas, M.; Dymińska, L. Determination of N-acetylation degree in chitosan using Raman spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 134, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Egyed, O. Spectroscopic studies on β-cyclodextrin. Vib. Spectrosc. 1990, 1, 225–227. [Google Scholar] [CrossRef]
- Vasko, P.D.; Blackwell, J.; Koenig, J.L. Infrared and raman spectroscopy of carbohydrates. Part I: Identification of OH and CH-related vibrational modes for D-glucose, maltose, cellobiose, and dextran by deuterium-substitution methods. Carbohydr. Res. 1971, 19, 297–310. [Google Scholar] [CrossRef]
- Osmalek, T.; Froelich, A.; Milanowski, B.; Bialas, M.; Hyla, K.; Szybowicz, M. pH-Dependent Behavior of Novel Gellan Beads Loaded with Naproxen. Curr. Drug Deliv. 2018, 15, 52–63. [Google Scholar] [CrossRef] [PubMed]
- Łabanowska, M.; Wesełucha-Birczyńska, A.; Kurdziel, M.; Sepioło, K. The mechanism of thermal activated radical formation in potato starch studied by electron paramagnetic resonance and Raman spectroscopies. Carbohydr. Polym. 2013, 91, 339–347. [Google Scholar] [CrossRef]
- Outuki, P.M.; de Francisco, L.M.B.; Hoscheid, J.; Bonifácio, K.L.; Barbosa, D.S.; Cardoso, M.L.C. Development of arabic and xanthan gum microparticles loaded with an extract of Eschweilera nana Miers leaves with antioxidant capacity. Colloids Surf. A Physicochem. Eng. Asp. 2016, 499, 103–112. [Google Scholar] [CrossRef]
- Baranska, M.; Schulz, H. Spatial tissue distribution of polyacetylenes in carrot root. Analyst 2005, 130, 855–859. [Google Scholar] [CrossRef]
- Tako, M.; Hanashiro, I. Evidence for a conformational transition in curdlan. Polym. Gels Netw. 1997, 5, 241–250. [Google Scholar] [CrossRef]
- Agarwal, U.P. Analysis of Cellulose and Lignocellulose Materials by Raman Spectroscopy: A Review of the Current Status. Molecules 2019, 24, 1659. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, U.P. 1064 nm FT-Raman spectroscopy for investigations of plant cell walls and other biomass materials. Front. Plant Sci. 2014, 5, 490. [Google Scholar] [CrossRef]
- Atalla, R.H.; Dimick, B.E. Raman-spectral evidence for differences between the conformations of cellulose I and cellulose II. Carbohydr. Res. 1975, 39, C1–C3. [Google Scholar] [CrossRef]
- Schenzel, K.; Fischer, S.; Brendler, E. New Method for Determining the Degree of Cellulose I Crystallinity by Means of FT Raman Spectroscopy. Cellulose 2005, 12, 223–231. [Google Scholar] [CrossRef]
- Nobrega, M.M.; Olivato, J.B.; Müller, C.M.O.; Yamashita, F. Biodegradable starch-based films containing saturated fatty acids: Thermal, infrared and raman spectroscopic characterization. Polímeros 2012, 22, 475–480. [Google Scholar] [CrossRef]
- Schuster, K.; Ehmoser, H.; Gapes, J.; Lendl, B. On-line FT-Raman spectroscopic monitoring of starch gelatinisation and enzyme catalysed starch hydrolysis. Vib. Spectrosc. 2000, 22, 181–190. [Google Scholar] [CrossRef]
- Grabowska, B.; Sitarz, M.; Olejnik, E.; Kaczmarska, K.; Tyliszczak, B. FT-IR and FT-Raman studies of cross-linking processes with Ca2+ ions, glutaraldehyde and microwave radiation for polymer composition of poly(acrylic acid)/sodium salt of carboxymethyl starch—In moulding sands, Part II. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 151, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; Sharma, M.; Ji, D.; Xu, M.; Agyei, D. Structural Features, Modification, and Functionalities of Beta-Glucan. Fibers 2019, 8, 1. [Google Scholar] [CrossRef] [Green Version]
- Rossi, B.; Venuti, V.; D’Amico, F.; Gessini, A.; Castiglione, F.; Mele, A.; Punta, C.; Melone, L.; Crupi, V.; Majolino, D.; et al. Water and Polymer Dynamics in a Model Polysaccharide Hydrogel: The Role of Hydrophobic/Hydrophilic Balance. Phys. Chem. Chem. Phys. 2014, 17, 963–971. [Google Scholar] [CrossRef]
- Crupi, V.; Fontana, A.; Giarola, M.; Majolino, D.; Mariotto, G.; Mele, A.; Melone, L.; Punta, C.; Rossi, B.; Trotta, F.; et al. Connection between the vibrational dynamics and the cross-linking properties in cyclodextrins-based polymers. J. Raman Spectrosc. 2013, 44, 1457–1462. [Google Scholar] [CrossRef]
- Castiglione, F.; Crupi, V.; Majolino, D.; Mele, A.; Rossi, B.; Trotta, F.; Venuti, V. Effect of cross-linking properties on the vibrational dynamics of cyclodextrins-based polymers: An experimental-numerical study. J. Phys. Chem. B 2012, 116, 7952–7958. [Google Scholar] [CrossRef]
- Akay, M. Introduction to Polymer Science and Technology. Mustafa Akay & Ventus Publishing ApS, 2012; ISBN 978-87-403-0087-1. [Google Scholar]
- Desmond, P.; Best, J.P.; Morgenroth, E.; Derlon, N. Linking composition of extracellular polymeric substances (EPS) to the physical structure and hydraulic resistance of membrane biofilms. Water Res. 2018, 132, 211–221. [Google Scholar] [CrossRef]
- Li, J.; Mooney, D.J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 2016, 1, 16071. [Google Scholar] [CrossRef] [PubMed]
- Ivleva, N.P.; Wagner, M.; Szkola, A.; Horn, H.; Niessner, R.; Haisch, C. Label-free in situ SERS imaging of biofilms. J. Phys. Chem. B 2010, 114, 10184–10194. [Google Scholar] [CrossRef] [PubMed]
- Muir, V.G.; Burdick, J.A. Chemically Modified Biopolymers for the Formation of Biomedical Hydrogels. Chem. Rev. 2021, 121, 10908–10949. [Google Scholar] [CrossRef] [PubMed]
- Keleştemur, S.; Avci, E.; Çulha, M. Raman and surface-enhanced Raman scattering for biofilm characterization. Chemosensors 2018, 6, 5. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Chu, P.K. Surface Characterization of Biomaterials. In Characterization of Biomaterials; Elsevier Inc.: Amsterdam, The Netherlands, 2013; pp. 105–174. ISBN 9780124158009. [Google Scholar]
- Agapov, R.L.; Scherger, J.D.; Sokolov, A.P.; Foster, M.D. Identification of individual isotopes in a polymer blend using tip enhanced Raman spectroscopy. J. Raman Spectrosc. 2015, 46, 447–450. [Google Scholar] [CrossRef]
- Xu, S.; Camp, C.H.; Lee, Y.J. Coherent anti-Stokes Raman scattering microscopy for polymers. J. Polym. Sci. 2022, 60, 1244–1265. [Google Scholar] [CrossRef]
- Parekh, S.H.; Domke, K.F. Watching orientational ordering at the nanoscale with coherent anti-stokes raman microscopy. Chem. A Eur. J. 2013, 19, 11822–11830. [Google Scholar] [CrossRef]
- Lee, Y.J. Determination of 3D molecular orientation by concurrent polarization analysis of multiple Raman modes in broadband CARS spectroscopy. Opt. Express 2015, 23, 29279. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Kumar, S.; Nisar, A.; Bonn, M.; Rausch, M.K.; Parekh, S.H. Probing fibrin’s molecular response to shear and tensile deformation with coherent Raman microscopy. Acta Biomater. 2021, 121, 383–392. [Google Scholar] [CrossRef]
- Kang, E.; Wang, H.; Kwon, I.K.; Robinson, J.; Park, K.; Cheng, J.-X. In Situ Visualization of Paclitaxel Distribution and Release by Coherent Anti-Stokes Raman Scattering Microscopy. Anal. Chem. 2006, 78, 8036–8043. [Google Scholar] [CrossRef]
- Nishiyama, H.; Takamuku, S.; Oshikawa, K.; Lacher, S.; Iiyama, A.; Inukai, J. Chemical States of Water Molecules Distributed Inside a Proton Exchange Membrane of a Running Fuel Cell Studied by Operando Coherent Anti-Stokes Raman Scattering Spectroscopy. J. Phys. Chem. C 2020, 124, 9703–9711. [Google Scholar] [CrossRef] [Green Version]
- Zimmerley, M.; Younger, R.; Valenton, T.; Oertel, D.C.; Ward, J.L.; Potma, E.O. Molecular orientation in dry and hydrated cellulose fibers: A coherent anti-stokes Raman scattering microscopy study. J. Phys. Chem. B 2010, 114, 10200–10208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krafft, C.; Popp, J. The many facets of Raman spectroscopy for biomedical analysis. Anal. Bioanal. Chem. 2015, 407, 699–717. [Google Scholar] [CrossRef]
- Liu, H.; Wang, C.; Li, C.; Qin, Y.; Wang, Z.; Yang, F.; Li, Z.; Wang, J. A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing. RSC Adv. 2018, 8, 7533–7549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paul, W.; Sharma, C.P. Chitosan, a drug carrier for the 21st century: A review. S.T.P. Pharma Sci. 2000, 10, 5–22. [Google Scholar]
- Abdel-Mohsen, A.M.; Abdel-Rahman, R.M.; Kubena, I.; Kobera, L.; Spotz, Z.; Zboncak, M.; Prikryl, R.; Brus, J.; Jancar, J. Chitosan-glucan complex hollow fibers reinforced collagen wound dressing embedded with aloe vera. Part I: Preparation and characterization. Carbohydr. Polym. 2020, 230, 115708. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Chen, P.; Zhang, B.; Zhang, D.; Li, J.; Martin, F.L.; Zhang, K. Interrogating chemical variation via layer-by-layer SERS during biofouling and cleaning of nanofiltration membranes with further investigations into cleaning efficiency. Water Res. 2015, 87, 282–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baranska, M.; Schulz, H.; Baranski, R.; Nothnagel, T.; Christensen, L.P. In situ simultaneous analysis of polyacetylenes, carotenoids and polysaccharides in carrot roots. J. Agric. Food Chem. 2005, 53, 6565–6571. [Google Scholar] [CrossRef]
- Bhaladhare, S.; Das, D. Cellulose: A fascinating biopolymer for hydrogel synthesis. J. Mater. Chem. B 2022, 10, 1923–1945. [Google Scholar] [CrossRef]
- Przekora, A.; Penolazzi, L.; Kalisz, G.; Kazimierczak, P.; Canal, C.; Wojcik, M.; Piva, R.; Sroka-Bartnicka, A. Osteoclast-mediated acidic hydrolysis of thermally gelled curdlan component of the bone scaffolds: Is it possible? Carbohydr. Polym. 2022, 295, 119914. [Google Scholar] [CrossRef] [PubMed]
- Baharlouei, P.; Rahman, A. Chitin and Chitosan: Prospective Biomedical Applications in Drug Delivery, Cancer Treatment, and Wound Healing. Mar. Drugs 2022, 20, 460. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.; Wu, C.; Yang, W.; Liang, W.; Yu, H.; Liu, L. Recent advance in surface modification for regulating cell adhesion and behaviors. Nanotechnol. Rev. 2020, 9, 971–989. [Google Scholar] [CrossRef]
- Rouxhet, P.G.; Genet, M.J. XPS analysis of bio-organic systems. Surf. Interface Anal. 2011, 43, 1453–1470. [Google Scholar] [CrossRef]
- Morra, M.; Cassinelli, C. Simple model for the XPS analysis of polysaccharide-coated surfaces. Surf. Interface Anal. 1998, 26, 742–747. [Google Scholar] [CrossRef]
- Gerin, P.; Dengis, P.; Rouxhet, P. Performance of XPS analysis of model biochemical compounds. J. Chim. Phys. 1995, 92, 1043–1065. [Google Scholar] [CrossRef]
- Rudolph, G.; Virtanen, T.; Ferrando, M.; Güell, C.; Lipnizki, F.; Kallioinen, M. A review of in situ real-time monitoring techniques for membrane fouling in the biotechnology, biorefinery and food sectors. J. Memb. Sci. 2019, 588, 117221. [Google Scholar] [CrossRef]
- Gould, J.M. Characterization of Lignin in Situ by Photoacoustic Spectroscopy. Plant Physiol. 1982, 70, 1521–1525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnan, V. Molecular Thermodynamics Using Nuclear Magnetic Resonance (NMR) Spectroscopy. Inventions 2019, 4, 13. [Google Scholar] [CrossRef] [Green Version]
- Yao, H.-Y.-Y.; Wang, J.-Q.; Yin, J.-Y.; Nie, S.-P.; Xie, M.-Y. A review of NMR analysis in polysaccharide structure and conformation: Progress, challenge and perspective. Food Res. Int. 2021, 143, 110290. [Google Scholar] [CrossRef]
- Singh, B.; Camps Arbestain, M.; Lehmann, J. Biochar: A Guide to Analytical Methods; CRC Press: Boca Raton, FL, USA, 2017; ISBN 9781498765534. [Google Scholar]
- Rubin, A.; Ma, C. Brief Review of Crystallography and Crystal Chemistry. In Meteorite Mineralogy; Cambridge University Press: Cambridge, UK, 2021; pp. 58–65. ISBN 9781108613767. [Google Scholar]
- Biancolillo, A.; Marini, F. Chemometric methods for spectroscopy-based pharmaceutical analysis. Front. Chem. 2018, 6, 576. [Google Scholar] [CrossRef]
- Ringnér, M. What is principal components analysis? Nat. Biotechnol. 2008, 26, 303–304. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Kokot, S.; Sambi, T.J. Vibrational spectroscopic investigation of Australian cotton cellulose fibres: Part 1. A Fourier transform Raman study. Analyst 1998, 123, 633–636. [Google Scholar] [CrossRef]
- Kokot, S.; Czarnik-Matusewicz, B.; Ozaki, Y. Two-dimensional correlation spectroscopy and principal component analysis studies of temperature-dependent IR spectra of cotton-cellulose. Biopolym. Biospectrosc. Sect. 2002, 67, 456–469. [Google Scholar] [CrossRef]
- Chylińska, M.; Szymańska-Chargot, M.; Zdunek, A. FT-IR and FT-Raman characterization of non-cellulosic polysaccharides fractions isolated from plant cell wall. Carbohydr. Polym. 2016, 154, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Mikkelsen, M.S.; Jespersen, B.M.; Larsen, F.H.; Blennow, A.; Engelsen, S.B. Molecular structure of large-scale extracted β-glucan from barley and oat: Identification of a significantly changed block structure in a high β-glucan barley mutant. Food Chem. 2013, 136, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Queiroz, A.L.P.; Kerins, B.M.; Yadav, J.; Farag, F.; Faisal, W.; Crowley, M.E.; Lawrence, S.E.; Moynihan, H.A.; Healy, A.M.; Vucen, S.; et al. Investigating microcrystalline cellulose crystallinity using Raman spectroscopy. Cellulose 2021, 28, 8971–8985. [Google Scholar] [CrossRef]
- Dimzon, I.K.D.; Knepper, T.P. Degree of deacetylation of chitosan by infrared spectroscopy and partial least squares. Int. J. Biol. Macromol. 2015, 72, 939–945. [Google Scholar] [CrossRef]
- Salomonsen, T.; Jensen, H.M.; Stenbæk, D.; Engelsen, S.B. Chemometric prediction of alginate monomer composition: A comparative spectroscopic study using IR, Raman, NIR and NMR. Carbohydr. Polym. 2008, 72, 730–739. [Google Scholar] [CrossRef]
Wavenumbers (cm−1) | Assignment | Wavenumbers (cm−1) | Assignment | Wavenumbers (cm−1) | Assignment |
---|---|---|---|---|---|
Agar [32] | Arabinoxylan [33] | Carboxymethylcellulose [34] | |||
3404 | OH stretching | 1160 | CO asymmetric stretching | 3416 | OH stretching vibrations |
2924 | CH2 stretching | 1045 | COH bending | 3238 | OH stretching vibrations |
1392 | CH2 bending | 1020–920 | substitution of the xylan backbone by arabinose residues. | 2986 | CH stretching vibration |
1039 | CH2 scissoring | 895 | COC stretching (β-1→4 glycosidic bond) | 1618 | CO asymmetric stretching |
1420 | CO symmetric stretching | ||||
1108 | COC stretching | ||||
1060 | COC stretching | ||||
Carrageenans [35] | Cellulose [36,37] | Chitosan [37,38] | |||
3350 | OH stretching | 3700–3000 | OH stretching vibration | 3700–3000 | OH stretching vibration |
2922 | CH stretching | 3000–2800 | CH stretching | 3000–2800 | CH stretching |
1215 | O=S=O symmetric stretching | 1427 | CH and OH wagging | 1632 | Amide I (C=O) |
1156 | CO stretching | 1370 | C3, C4: CC stretching, CH wagging | 1570 | Amide II (NH) |
1058 | CO stretching | 1335 | CH and OH wagging | 1130 | Amide III (CN) |
928 | COC stretching | 1314 | CH and OH wagging | 1080 | CO stretching |
846 | O-SO3 stretching | 1161 | CO asymmetric stretching | 1033 | CO stretching |
1057 | CO stretching | ||||
1037 | C5O stretching | ||||
983 | C1O stretching | ||||
896 | CH rocking | ||||
610 | COC scissoring | ||||
550 | C3,C6: OH torsion | ||||
Curdlan [39] | Hyaluronic acid [40] | Pectin [41] | |||
2917 | CH2, CH3 | 3425 | OH stretching | 3402 | OH stretching |
2884 | CH | 2970 | CH3 asymmetric stretching | 2924 | CH stretching |
1640 | C=O | 2923 | CH2 asymmetric stretching | 1715 | C=O stretching (ester groups) |
1576 | COO− | 2880 | CH3 symmetric stretching | 1620 | C=O stretching (carboxyl groups) |
1463 | CH2 | 2853 | CH2 symmetric stretching | 1148–1041 | Glycoside bond and sugar ring |
1419 | CH2, CH3 | 1740 | C=O stretching | ||
1367 | CH, CH3 | 1657 | Amide I | ||
1312 | CH2 | 1555 | Amide II | ||
1285 | C-O | 1468 and 1454 | CH2 and CH3 scissoring | ||
1235 | C-OH | 1427 | COH scissoring | ||
1203 | C-O, C-O-C | 1380 | CH3 and OH scissoring | ||
1157 | C-O-C (ring) | 1325, 1260, 1229 | Amide III | ||
1107 | C-O | 1156, 1126 | COC stretching | ||
1067 | C-O | 1105, 1079 | CO and CC stretching, COH scissoring | ||
1028 | C-O | 946 | CC out of plane vibration | ||
991 | C-O, C-C | 925 | COH out of plane vibration | ||
926 | C-H | 692 | CH2 out of plane vibration | ||
887 | COC, (β glycosidic bond) |
Wavenumbers (cm−1) | Assignment | Wavenumbers (cm−1) | Assignment | Wavenumbers (cm−1) | Assignment |
---|---|---|---|---|---|
Botryospheran [81] | Cellulose [82] | Chitosan [83] | |||
1382 | CH2 bending OH bending | 2968, 2944 | CH2 asymmetric stretching | 2932 | CH3 stretching |
1115 | C-O-C antisymmetric stretching | 2904–2894 | CH stretching | 2885 | CH2 stretching |
1100 | C-O-C symmetric stretching | 1470 | CH2 bending | 1458 | CH and OH scissoring, CH2 wagging |
1067 | C-C, C-O stretching | 1378–1338 | C–C-H, C-O–H, and O-C-H | 1411 | CH3 and CH scissoring |
826 | stretching of ring carbon atoms and OH | 1315 | C–C-H, C-O–H, and CH2 bending | 1377 | CH2, CH and OH scissoring |
1160 | Skeletal deformation | 1325 | CN stretching and CH scissoring | ||
1120–1090 | Skeletal deformation | 1146, 1114, 1093 | COC, COH, CCH2, ring stretching, CH scissoring, CH2 and CH3 rocking | ||
1050–970 | C–C and C-O | 1044 | CH3 rocking, CH and OH scissoring | ||
896 | Glucose ring deformation | 936 | CN stretching | ||
740 | Glucose ring deformation with bending of glycosidic bond, Iα type cellulose | 896 | Ring stretching, CH2 rocking | ||
710 | Glucose ring deformation with bending of glycosidic bond, Iβ type cellulose | 493 | CONH and CCH3 scissoring, | ||
380 | Out of plane breathing of glucose ring | 479 | COC scissoring | ||
2968, 2944 | CH2 asymmetric stretching | 444, 424, 357 | OH and ring out-of-plane vibration | ||
2904–2894 | CH stretching | 285 | CNHC scissoring, OH out-of-plane vibration | ||
1470 | CH2 bending | ||||
1378–1338 | C–C-H, C-O–H, and O-C-H | ||||
1315 | C–C-H, C-O–H, and CH2 bending | ||||
1160 | Skeletal deformation | ||||
1120–1090 | Skeletal deformation | ||||
1050–970 | C–C and C-O | ||||
896 | Glucose ring deformation | ||||
740 | Glucose ring deformation with bending of glycosidic bond, Iα type cellulose | ||||
710 | Glucose ring deformation with bending of glycosidic bond, Iβ type cellulose | ||||
380 | Out of plane breathing of glucose ring | ||||
Curdlan [60] | Cyclodextrin [84] | Dextran [85] | |||
1459 | CH2 deformation | 1455 | OCH and HCH bending | 1348 | COH |
1369 | CH and COH deformation | 1415 | OCH and CCH bending | 1274 | Glycosidic bond |
1263 | CH2OH | 1375 | CCH, OCH and COH bending | 1084 | COH |
1205 | CCH | 1350 | CCH, OCH and COH bending | 1024 | COH |
1117 | COC asymmetric stretching | 1340 | CCH, OCH HCH bending | 913 | COH |
1097 | COC symmetric stretching | 1250 | OCH, COH, CCH bending | ||
1037 | CC and COH stretching | 1205 | CO stretching and CCH, COH bending | ||
890 | CH deformation (glycosidic bond) | 1160 | CO and CC stretching, COH bending | ||
1080 | CO and CC stretching, COH bending | ||||
1050 | CO and CC stretching | ||||
1010 | CC stretching, OCH, CCH, CCO bending | ||||
950 | Skeletal vibration involving α-1,4 linkage | ||||
850 | CCH bending, CO and CC stretching | ||||
580 | Skeletal vibrations | ||||
480 | Skeletal vibrations | ||||
Gellan [86] | Starch [87] | Xanthan [88] | |||
3065 | OH stretching | 2973 | CH2 asymmetric stretching | ||
2937 | CH3 stretching | 2914 | CH2 asymmetric stretching | 2944 | CH stretching |
1683 | C=C stretching | 1463 | CH2 twisting, CH bending | 2907 | CH stretching |
1628, 1578 | ring carboxyl groups stretching | 1401 | OCH and CCH scissoring | 1469 | CH bending, wagging |
1487, 1419 | CH in plane vibration | 1383 | CH scissoring and bending | 1413 | CH bending, wagging |
1390 | ring carboxyl groups stretching | 1340 | CH2 scissoring, COH bending | 1369 | CO stretching |
1174 | CH in plane vibration CH3 rocking | 1261 | CH2 scissoring, CH2OH (side chain) related mod | 1276 | COH stretching, bending, deformation |
1004 | CC stretching, CH3 rocking | 1150 | COC stretching (α-1,4-glycosidic linkage) | 906 | COH stretching |
960 | ring carboxyl groups stretching and bending | 1128 | COH and CO stretching, COH scissoring | 887 | β-glycosidic linkage |
856, 820 | CC stretching | 1087 | COC stretching (ring) COH bending | ||
793 | CH out-of-plane vibrations | 1056 | COH stretching | ||
742 | ring carboxyl groups stretching and bending | 941 | COC stretching (α-1,4-glycosidic linkage) | ||
643 | ring carboxyl groups bending | 911 | α-configuration COH bending | ||
601 | COC bending, CH out-of-plane vibrations | 862 | COC stretching (ring), C1H bending α-configuration | ||
524 | ring carboxyl groups stretching | 769 | CO stretching | ||
491 | COC bending, in-plane CO vibrations | 578 | skeletal modes | ||
410 | COO wagging | 480 | skeletal mode involving COC ring mode, CCO scissoring | ||
286 | out-of-plane CO vibrations | 440 | CCC scissoring | ||
233 | CH3 torsion | 411 | CCO scissoring | ||
206 | CH3 torsion, in-plane CO vibrations |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gieroba, B.; Kalisz, G.; Krysa, M.; Khalavka, M.; Przekora, A. Application of Vibrational Spectroscopic Techniques in the Study of the Natural Polysaccharides and Their Cross-Linking Process. Int. J. Mol. Sci. 2023, 24, 2630. https://doi.org/10.3390/ijms24032630
Gieroba B, Kalisz G, Krysa M, Khalavka M, Przekora A. Application of Vibrational Spectroscopic Techniques in the Study of the Natural Polysaccharides and Their Cross-Linking Process. International Journal of Molecular Sciences. 2023; 24(3):2630. https://doi.org/10.3390/ijms24032630
Chicago/Turabian StyleGieroba, Barbara, Grzegorz Kalisz, Mikolaj Krysa, Maryna Khalavka, and Agata Przekora. 2023. "Application of Vibrational Spectroscopic Techniques in the Study of the Natural Polysaccharides and Their Cross-Linking Process" International Journal of Molecular Sciences 24, no. 3: 2630. https://doi.org/10.3390/ijms24032630
APA StyleGieroba, B., Kalisz, G., Krysa, M., Khalavka, M., & Przekora, A. (2023). Application of Vibrational Spectroscopic Techniques in the Study of the Natural Polysaccharides and Their Cross-Linking Process. International Journal of Molecular Sciences, 24(3), 2630. https://doi.org/10.3390/ijms24032630