Anti-Hypoxia Nanoplatforms for Enhanced Photosensitizer Uptake and Photodynamic Therapy Effects in Cancer Cells
Abstract
:1. Introduction
2. Photodynamic Therapy (PDT) and Photosensitizers (PSs)
3. Photodynamic Therapy (PDT) Mechanism of Action and Cell Death
4. Passive and Active Intracellular Accumulation of Photosensitizers
5. Hypoxia-Mediated PDT Resistance
6. Current Approaches for Circumventing Hypoxia in PDT
6.1. Increasing Oxygen Supply
Hyperbaric Oxygenation (HBO)
6.2. Improving Oxygen Circulation
6.2.1. Hemoglobin (Hb) and Red Blood Cells (RBCs)
6.2.2. Perfluorochemicals
6.3. In-Situ Oxygen Source
6.4. Disruption of Tumor Extracellular Matrix (ECM)
6.5. Inhibition of Tumor O2 Consumption
6.6. Inhibition of Angiogenic Factors
7. Active PS Nanocarrier Platforms Incorporated with Anti-Hypoxia Agents for Enhanced PDT Treatment of 3D Tumor Spheroids
8. Conclusions and Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
1O2 | Singlet oxygen |
2D | Two-dimensional |
3D | Three-dimensional |
5-ALA | 5-aminolevulinic acid |
ACF | Acriflavine |
APCs | Antigen-presenting cells |
Ce6 | Chlorin e6 |
CLG | Collagenase |
CPGL | Cationic porphyrin-grafted lipid |
DAMPs | Damage-associated molecular patterns |
DPP-4 | Diketopyrrolopyrrole |
ECM | Extracellular Matrix |
EMAP-II | Endothelial-activating polypeptide |
EPR | Enhanced permeability and retention |
FA | Folic acid |
HAS-Ce6 | Human serum albumin-chlorin e6 |
HB | Hemoglobin |
HBO | Hyperbaric oxygenation |
HCe6 | Hydrophobic chlorin e6 |
HpD | Hematoporphyrin derivative |
HIFs | Hypoxia-inducible factors |
HIF-1α siRNA | Hypoxia-inducible factor-1α small interfering RNA |
HAase | Hyaluronidase |
ICG | Indocyanine green |
ICG-BSA | Indocyanine green-bovine serum albumin |
MB | Methylene blue |
MCTS | Multicellular tumor spheroids |
MnO2 | Manganese oxide |
MPa | MegaPascal |
m-THPC | meta-tetra(hydroxyphenyl)chlorin. |
NBO | Normabaric conditions |
NPs | Nanoparticles |
OXPHOS | Oxidative phosphorylation |
PDT | Photodynamic therapy |
PFCs | Perfluorocarbons |
PFH | Perfluorohexane |
PS | Photosensitizer |
RB | Rose Bengal |
RBCs | Red blood cells |
ROS | Reactive oxygen species |
TCPP | Carboxyphenyl-porphyrin |
TME | Tumor microenvironment |
UCNPs | Upconversion nanoparticles |
VEGF-A | Vascular endothelial growth factor-A |
ZnPc | Zinc phthalocyanine |
ZnF16Pc: | Zinc 1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25-hexadecafluoro-29H,31H-phthalocyanine |
References
- Mfouo-Tynga, I.S.; Dias, L.D.; Inada, N.M.; Kurachi, C. Features of Third Generation Photosensitizers Used in Anticancer Photodynamic Therapy: Review. Photodiagnosis Photodyn. Ther. 2021, 34, 102091. [Google Scholar] [CrossRef] [PubMed]
- Domingues, B.; Lopes, J.M.; Soares, P.; Pópulo, H. Melanoma Treatment in Review. Immunotargets Ther. 2018, 7, 35–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naidoo, C.; Kruger, C.A.; Abrahamse, H. Photodynamic Therapy for Metastatic Melanoma Treatment: A Review. Technol. Cancer Res. Treat. 2018, 17, 1533033818791795. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, B.; Zhao, R.; Zhang, Q.; Kong, X. Multifunctional Nanoparticles as Photosensitizer Delivery Carriers for Enhanced Photodynamic Cancer Therapy. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 115, 111099. [Google Scholar] [CrossRef]
- Nkune, N.; Abrahamse, H. Nanoparticle-Based Drug Delivery Systems for Photodynamic Therapy of Metastatic Melanoma: A Review. Int. J. Mol. Sci. 2021, 22, 12549. [Google Scholar] [CrossRef] [PubMed]
- Denko, N.C. Hypoxia, HIF1 and Glucose Metabolism in the Solid Tumour. Nat. Rev. Cancer 2008, 8, 705–713. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Bu, W.; Shi, J. Chemical Design and Synthesis of Functionalized Probes for Imaging and Treating Tumor Hypoxia. Chem. Rev. 2017, 117, 6160–6224. [Google Scholar] [CrossRef] [PubMed]
- Graham, K.; Unger, E. Overcoming Tumor Hypoxia as a Barrier to Radiotherapy, Chemotherapy and Immunotherapy in Cancer Treatment. Int. J. Nanomed. 2018, 13, 6049–6058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dang, J.; He, H.; Chen, D.; Yin, L. Manipulating Tumor Hypoxia toward Enhanced Photodynamic Therapy (PDT). Biomater. Sci. 2017, 5, 1500–1511. [Google Scholar] [CrossRef]
- Zhou, R.; Zeng, X.; Zhao, H.; Chen, Q.; Wu, P. Combating the Hypoxia Limit of Photodynamic Therapy through Reversing the Survival-Related Pathways of Cancer Cells. Coord. Chem. Rev. 2022, 452, 214306. [Google Scholar] [CrossRef]
- Scharping, N.E.; Menk, A.V.; Whetstone, R.D.; Zeng, X.; Delgoffe, G.M. Efficacy of PD-1 Blockade Is Potentiated by Metformin-Induced Reduction of Tumor Hypoxia. Cancer Immunol. Res. 2017, 5, 9–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moen, I.; Stuhr, L.E.B. Hyperbaric Oxygen Therapy and Cancer—A Review. Target Oncol. 2012, 7, 233–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, W.R.; Hay, M.P. Targeting Hypoxia in Cancer Therapy. Nat. Rev. Cancer 2011, 11, 393–410. [Google Scholar] [CrossRef] [PubMed]
- Nath, S.; Devi, G.R. Three-Dimensional Culture Systems in Cancer Research: Focus on Tumor Spheroid Model. Pharmacol. Ther. 2016, 163, 94–108. [Google Scholar] [CrossRef] [Green Version]
- Chaicharoenaudomrung, N.; Kunhorm, P.; Noisa, P. Three-Dimensional Cell Culture Systems as an in Vitro Platform for Cancer and Stem Cell Modeling. World J. Stem Cells 2019, 11, 1065–1083. [Google Scholar] [CrossRef] [PubMed]
- Lv, D.; Hu, Z.; Lu, L.; Lu, H.; Xu, X. Three-Dimensional Cell Culture: A Powerful Tool in Tumor Research and Drug Discovery. Oncol. Lett. 2017, 14, 6999–7010. [Google Scholar] [CrossRef] [Green Version]
- Weigelt, B.; Ghajar, C.M.; Bissell, M.J. The Need for Complex 3D Culture Models to Unravel Novel Pathways and Identify Accurate Biomarkers in Breast Cancer. Adv. Drug Deliv. Rev. 2014, 69–70, 42–51. [Google Scholar] [CrossRef] [Green Version]
- Aguilar Cosme, J.R.; Gagui, D.C.; Green, N.H.; Bryant, H.E.; Claeyssens, F. In Vitro Low-Fluence Photodynamic Therapy Parameter Screening Using 3D Tumor Spheroids Shows That Fractionated Light Treatments Enhance Phototoxicity. ACS Biomater. Sci. Eng. 2021, 7, 5078–5089. [Google Scholar] [CrossRef]
- Pinto, B.; Henriques, A.; Silva, P.; Bousbaa, H. Three-Dimensional Spheroids as In Vitro Preclinical Models for Cancer Research. Pharmaceutics 2020, 12, 1186. [Google Scholar] [CrossRef]
- Yang, Y.; Hu, Y.; Wang, H. Targeting Antitumor Immune Response for Enhancing the Efficacy of Photodynamic Therapy of Cancer: Recent Advances and Future Perspectives. Oxid. Med. Cell. Longev. 2016, 2016, 5274084. [Google Scholar] [CrossRef]
- Lazzari, G.; Couvreur, P.; Mura, S. Multicellular Tumor Spheroids: A Relevant 3D Model for the in Vitro Preclinical Investigation of Polymer Nanomedicines. Polym. Chem. 2017, 8, 4947–4969. [Google Scholar] [CrossRef] [Green Version]
- Montaseri, H.; Kruger, C.; Abrahamse, H. Inorganic Nanoparticles Applied for Active Targeted Photodynamic Therapy of Breast Cancer. Pharmaceutics 2021, 13, 296. [Google Scholar] [CrossRef] [PubMed]
- Hwang, H.S.; Shin, H.; Han, J.; Na, K. Combination of Photodynamic Therapy (PDT) and Anti-Tumor Immunity in Cancer Therapy. J. Pharm. Investig. 2018, 48, 143–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwiatkowski, S.; Knap, B.; Przystupski, D.; Saczko, J.; Kędzierska, E.; Knap-Czop, K.; Kotlińska, J.; Michel, O.; Kotowski, K.; Kulbacka, J. Photodynamic Therapy—Mechanisms, Photosensitizers and Combinations. Biomed. Pharmacother. 2018, 106, 1098–1107. [Google Scholar] [CrossRef]
- Van Straten, D.; Mashayekhi, V.; De Bruijn, H.S.; Oliveira, S.; Robinson, D.J. Oncologic Photodynamic Therapy: Basic Principles, Current Clinical Status and Future Directions. Cancers 2017, 9, 19. [Google Scholar] [CrossRef] [Green Version]
- Abrahamse, H.; Hamblin, M.R. New Photosensitizers for Photodynamic Therapy. Biochem. J. 2016, 473, 347–364. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Jiang, C.; Figueiró Longo, J.P.; Azevedo, R.B.; Zhang, H.; Muehlmann, L.A. An Updated Overview on the Development of New Photosensitizers for Anticancer Photodynamic Therapy. Acta Pharm. Sin. B 2018, 8, 137–146. [Google Scholar] [CrossRef]
- Simelane, N.; Abrahamse, H. Nanoparticle-Mediated Delivery Systems in Photodynamic Therapy of Colorectal Cancer. Int. J. Mol. Sci. 2021, 22, 12405. [Google Scholar] [CrossRef]
- Mokwena, M.G.; Kruger, C.A.; Ivan, M.-T.; Heidi, A. A Review of Nanoparticle Photosensitizer Drug Delivery Uptake Systems for Photodynamic Treatment of Lung Cancer. Photodiagnosis Photodyn. Ther. 2018, 22, 147–154. [Google Scholar] [CrossRef]
- François, A.; Marchal, S.; Guillemin, F.; Bezdetnaya, L. MTHPC-Based Photodynamic Therapy Induction of Autophagy and Apoptosis in Cultured Cells in Relation to Mitochondria and Endoplasmic Reticulum Stress. Int. J. Oncol. 2011, 39, 1537–1543. [Google Scholar] [CrossRef]
- Kessel, D.; Reiners, J.J. Apoptosis and Autophagy after Mitochondrial or Endoplasmic Reticulum Photodamage. Photochem. Photobiol. 2007, 83, 1024–1028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, L.Y.; Chiu, S.M.; Oleinick, N.L. Photochemical Destruction of the Bcl-2 Oncoprotein during Photodynamic Therapy with the Phthalocyanine Photosensitizer Pc 4. Oncogene 2001, 20, 3420–3427. [Google Scholar] [CrossRef] [Green Version]
- Xue, L.; Chiu, S.; Fiebig, A.; Andrews, D.W.; Oleinick, N.L. Photodamage to Multiple Bcl-XL Isoforms by Photodynamic Therapy with the Phthalocyanine Photosensitizer Pc 4. Oncogene 2003, 22, 9197–9204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weyergang, A.; Berg, K.; Kaalhus, O.; Peng, Q.; Selbo, P.K. Photodynamic Therapy Targets the MTOR Signaling Network in Vitro and in Vivo. Mol. Pharm. 2009, 6, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Xu, W.; Wu, H.; Wang, X.; Gong, Q.; Liu, C.; Liu, J.; Zhou, L. Photodynamic Therapy Induces Autophagy-Mediated Cell Death in Human Colorectal Cancer Cells via Activation of the ROS/JNK Signaling Pathway. Cell Death Dis. 2020, 11, 938. [Google Scholar] [CrossRef]
- Kruger, C.; Abrahamse, H. Utilisation of Targeted Nanoparticle Photosensitiser Drug Delivery Systems for the Enhancement of Photodynamic Therapy. Molecules 2018, 23, 2628. [Google Scholar] [CrossRef] [Green Version]
- Montaseri, H.; Kruger, C.; Abrahamse, H. Review: Organic Nanoparticle Based Active Targeting for Photodynamic Therapy Treatment of Breast Cancer Cells. Oncotarget 2020, 11, 2120–2136. [Google Scholar] [CrossRef]
- Zhou, T.-J.; Xing, L.; Fan, Y.-T.; Cui, P.-F.; Jiang, H.-L. Light Triggered Oxygen-Affording Engines for Repeated Hypoxia-Resistant Photodynamic Therapy. J. Control. Release 2019, 307, 44–54. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, R.; Xiao, D.; Shi, S.; Peng, S.; Wu, S.; Wu, P.; Lin, Y. Polypeptide Uploaded Efficient Nanophotosensitizers to Overcome Photodynamic Resistance for Enhanced Anticancer Therapy. Chem. Eng. J. 2021, 403, 126344. [Google Scholar] [CrossRef]
- Rosin, F.C.P.; Teixeira, M.G.; Pelissari, C.; Corrêa, L. Resistance of Oral Cancer Cells to 5-ALA-Mediated Photodynamic Therapy. J. Cell. Biochem. 2018, 119, 3554–3562. [Google Scholar] [CrossRef]
- Yan, W.; Lang, T.; Zhu, R.; Zhu, X.; Li, Y.; Wu, T.; Yin, Q.; Li, Y. Anti-Hypoxia Nanosized Drug Delivery Systems Improving Cancer Therapy. Nano Today 2022, 42, 101376. [Google Scholar] [CrossRef]
- Dean, M.; Annilo, T. Evolution of the ATP-Binding Cassette (ABC) Transporter Superfamily in Vertebrates. Annu. Rev. Genom. Hum. Genet. 2005, 6, 123–142. [Google Scholar] [CrossRef]
- Chen, J.; Ding, Z.; Peng, Y.; Pan, F.; Li, J.; Zou, L.; Zhang, Y.; Liang, H. HIF-1α Inhibition Reverses Multidrug Resistance in Colon Cancer Cells via Downregulation of MDR1/P-Glycoprotein. PLoS ONE 2014, 9, e98882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gui, L.; Liu, B.; Lv, G. Hypoxia Induces Autophagy in Cardiomyocytes via a Hypoxia-Inducible Factor 1-Dependent Mechanism. Exp. Ther. Med. 2016, 11, 2233–2239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cerrada, I.; Ruiz-Saurí, A.; Carrero, R.; Trigueros, C.; Dorronsoro, A.; Sanchez-Puelles, J.M.; Diez-Juan, A.; Montero, J.A.; Sepúlveda, P. Hypoxia-Inducible Factor 1 Alpha Contributes to Cardiac Healing in Mesenchymal Stem Cells-Mediated Cardiac Repair. Stem Cells Dev. 2013, 22, 501–511. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Li, C.; Yao, W.; Alsiddig, M.C.; Huo, L.; Liu, H.; Miao, Y.-L. Hypoxia-Inducible Factor-1α-Dependent Autophagy Plays a Role in Glycolysis Switch in Mouse Granulosa Cells. Biol. Reprod. 2018, 99, 308–318. [Google Scholar] [CrossRef]
- Abdul Rahim, S.A.; Dirkse, A.; Oudin, A.; Schuster, A.; Bohler, J.; Barthelemy, V.; Muller, A.; Vallar, L.; Janji, B.; Golebiewska, A.; et al. Regulation of Hypoxia-Induced Autophagy in Glioblastoma Involves ATG9A. Br. J. Cancer 2017, 117, 813–825. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Ney, P.A. Role of BNIP3 and NIX in Cell Death, Autophagy, and Mitophagy. Cell Death Differ. 2009, 16, 939–946. [Google Scholar] [CrossRef] [Green Version]
- Azad, M.B.; Gibson, S.B. Role of BNIP3 in Proliferation and Hypoxia-Induced Autophagy: Implications for Personalized Cancer Therapies. Ann. N. Y. Acad. Sci. 2010, 1210, 8–16. [Google Scholar] [CrossRef]
- Jing, X.; Yang, F.; Shao, C.; Wei, K.; Xie, M.; Shen, H.; Shu, Y. Role of Hypoxia in Cancer Therapy by Regulating the Tumor Microenvironment. Mol. Cancer 2019, 18, 157. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-H.; Sarbassov, D.D.; Ali, S.M.; King, J.E.; Latek, R.R.; Erdjument-Bromage, H.; Tempst, P.; Sabatini, D.M. mTOR Interacts with Raptor to Form a Nutrient-Sensitive Complex That Signals to the Cell Growth Machinery. Cell 2002, 110, 163–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, C.H.; Ro, S.-H.; Cao, J.; Otto, N.M.; Kim, D.-H. MTOR Regulation of Autophagy. FEBS Lett. 2010, 584, 1287–1295. [Google Scholar] [CrossRef] [Green Version]
- Larue, L.; Myrzakhmetov, B.; Ben-Mihoub, A.; Moussaron, A.; Thomas, N.; Arnoux, P.; Baros, F.; Vanderesse, R.; Acherar, S.; Frochot, C. Fighting Hypoxia to Improve PDT. Pharmaceuticals 2019, 12, 163. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Huang, J.; Ao, Y.; Li, S.; Miao, Y.; Yu, Z.; Zhu, L.; Lan, X.; Zhu, Y.; Zhang, Y.; et al. Synergizing Upconversion Nanophotosensitizers with Hyperbaric Oxygen to Remodel the Extracellular Matrix for Enhanced Photodynamic Cancer Therapy. ACS Appl. Mater. Interfaces 2018, 10, 22985–22996. [Google Scholar] [CrossRef]
- Mei, L.-H.; Yang, G.; Fang, F. Hyperbaric Oxygen Combined with 5-Aminolevulinic Acid Photodynamic Therapy Inhibited Human Squamous Cell Proliferation. Biol. Pharm. Bull. 2019, 42, 394–400. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Chen, H.; Shapiro, H.; Beckers, J.; Hetzel, F.W. Improvement of Tumor Response by Manipulation of Tumor Oxygenation during Photodynamic Therapy. Photochem. Photobiol. 2002, 76, 197–203. [Google Scholar] [CrossRef]
- Hjelde, A.; Gederaas, O.A.; Krokan, H.E.; Brubakk, A.O. Lack of Effect of Hyperoxia on Photodynamic Therapy and Lipid Peroxidation in Three Different Cancer Cell Lines. Med. Sci. Monit. 2005, 11, BR351–BR356. [Google Scholar] [PubMed]
- Maier, A.; Anegg, U.; Tomaselli, F.; Rehak, P.; Sankin, O.; Fell, B.; Renner, H.; Pinter, H.; Smolle-Jüttner, F.M.; Friehs, G.B. Does Hyperbaric Oxygen Enhance the Effect of Photodynamic Therapy in Patients with Advanced Esophageal Carcinoma? A Clinical Pilot Study. Endoscopy 2000, 32, 42–48. [Google Scholar] [CrossRef]
- Schouwink, H.; Ruevekamp, M.; Oppelaar, H.; van Veen, R.; Baas, P.; Stewart, F.A. Photodynamic Therapy for Malignant Mesothelioma: Preclinical Studies for Optimization of Treatment Protocols. Photochem. Photobiol. 2001, 73, 410–417. [Google Scholar] [CrossRef]
- Luo, Z.; Zheng, M.; Zhao, P.; Chen, Z.; Siu, F.; Gong, P.; Gao, G.; Sheng, Z.; Zheng, C.; Ma, Y.; et al. Self-Monitoring Artificial Red Cells with Sufficient Oxygen Supply for Enhanced Photodynamic Therapy. Sci. Rep. 2016, 6, 23393. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Li, T.; Ruan, Z.; Yan, L. Polypeptide-Based Artificial Erythrocytes Conjugated with near Infrared Photosensitizers for Imaging-Guided Photodynamic Therapy. J. Mater. Sci. 2018, 53, 9368–9381. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, L.; Liang, R.; Luo, Z.; He, H.; Wu, Z.; Tian, H.; Zheng, M.; Ma, Y.; Cai, L. Bioinspired Hybrid Protein Oxygen Nanocarrier Amplified Photodynamic Therapy for Eliciting Anti-Tumor Immunity and Abscopal Effect. ACS Nano 2018, 12, 8633–8645. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Zhen, Z.; Wang, M.; Wang, H.; Chuang, Y.-J.; Zhang, W.; Wang, G.D.; Todd, T.; Cowger, T.; Chen, H.; et al. Red Blood Cell-Facilitated Photodynamic Therapy for Cancer Treatment. Adv. Funct. Mater. 2016, 26, 1757–1768. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Li, X.; Yao, C.; Wang, W.; Zhao, M.; El-Toni, A.M.; Zhang, F. Orthogonal Near-Infrared Upconversion Co-Regulated Site-Specific O2 Delivery and Photodynamic Therapy for Hypoxia Tumor by Using Red Blood Cell Microcarriers. Biomaterials 2017, 125, 90–100. [Google Scholar] [CrossRef]
- Cao, H.; Wang, L.; Yang, Y.; Li, J.; Qi, Y.; Li, Y.; Li, Y.; Wang, H.; Li, J. An Assembled Nanocomplex for Improving Both Therapeutic Efficiency and Treatment Depth in Photodynamic Therapy. Angew. Chem. Int. Ed. Engl. 2018, 57, 7759–7763. [Google Scholar] [CrossRef]
- Xu, X.; Cui, Y.; Bu, H.; Chen, J.; Li, Y.; Tang, G.; Wang, L.-Q. A Photosensitizer Loaded Hemoglobin–Polymer Conjugate as a Nanocarrier for Enhanced Photodynamic Therapy. J. Mater. Chem. B 2018, 6, 1825–1833. [Google Scholar] [CrossRef]
- Gao, S.; Zheng, P.; Li, Z.; Feng, X.; Yan, W.; Chen, S.; Guo, W.; Liu, D.; Yang, X.; Wang, S.; et al. Biomimetic O2-Evolving Metal-Organic Framework Nanoplatform for Highly Efficient Photodynamic Therapy against Hypoxic Tumor. Biomaterials 2018, 178, 83–94. [Google Scholar] [CrossRef]
- Cheng, Y.; Cheng, H.; Jiang, C.; Qiu, X.; Wang, K.; Huan, W.; Yuan, A.; Wu, J.; Hu, Y. Perfluorocarbon Nanoparticles Enhance Reactive Oxygen Levels and Tumour Growth Inhibition in Photodynamic Therapy. Nat. Commun. 2015, 6, 8785. [Google Scholar] [CrossRef] [Green Version]
- Yuan, P.; Ruan, Z.; Jiang, W.; Liu, L.; Dou, J.; Li, T.; Yan, L. Oxygen Self-Sufficient Fluorinated Polypeptide Nanoparticles for NIR Imaging-Guided Enhanced Photodynamic Therapy. J. Mater. Chem. B 2018, 6, 2323–2331. [Google Scholar] [CrossRef]
- Day, R.A.; Estabrook, D.A.; Logan, J.K.; Sletten, E.M. Fluorous Photosensitizers Enhance Photodynamic Therapy with Perfluorocarbon Nanoemulsions. Chem. Commun. 2017, 53, 13043–13046. [Google Scholar] [CrossRef]
- Sheng, D.; Liu, T.; Deng, L.; Zhang, L.; Li, X.; Xu, J.; Hao, L.; Li, P.; Ran, H.; Chen, H.; et al. Perfluorooctyl Bromide & Indocyanine Green Co-Loaded Nanoliposomes for Enhanced Multimodal Imaging-Guided Phototherapy. Biomaterials 2018, 165, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Yang, Z.; Wang, S.; Wang, Z.; Song, J.; Yu, G.; Fan, W.; Dai, Y.; Wang, J.; Shan, L.; et al. Organic Semiconducting Photoacoustic Nanodroplets for Laser-Activatable Ultrasound Imaging and Combinational Cancer Therapy. ACS Nano 2018, 12, 2610–2622. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Cheng, Y.; Huang, S.; Zhi, F.; Yuan, A.; Hu, Y.; Wu, J. Overcome the Limitation of Hypoxia against Photodynamic Therapy to Treat Cancer Cells by Using Perfluorocarbon Nanodroplet for Photosensitizer Delivery. Biochem. Biophys. Res. Commun. 2017, 487, 483–487. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Guo, T.; Qiu, Y.; Lin, Y.; Yao, Y.; Lian, W.; Lin, L.; Song, J.; Yang, H. An Inorganic Prodrug, Tellurium Nanowires with Enhanced ROS Generation and GSH Depletion for Selective Cancer Therapy. Chem. Sci. 2019, 10, 7068–7075. [Google Scholar] [CrossRef]
- Xu, X.-L.; Shao, J.; Chen, Q.-Y.; Li, C.-H.; Kong, M.-Y.; Fang, F.; Ji, L.; Boison, D.; Huang, T.; Gao, J.; et al. A Mn(II) Complex of Boradiazaindacene (BODIPY) Loaded Graphene Oxide as Both LED Light and H2O2 Enhanced Anticancer Agent. J. Inorg. Biochem. 2016, 159, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, W.; Dong, Z.; Fu, T.; Liu, J.; Chen, Q.; Li, Y.; Zhu, R.; Xu, L.; Liu, Z. Modulation of Hypoxia in Solid Tumor Microenvironment with MnO2 Nanoparticles to Enhance Photodynamic Therapy. Adv. Funct. Mater. 2016, 26, 5490–5498. [Google Scholar] [CrossRef]
- Ai, X.; Hu, M.; Wang, Z.; Lyu, L.; Zhang, W.; Li, J.; Yang, H.; Lin, J.; Xing, B. Enhanced Cellular Ablation by Attenuating Hypoxia Status and Reprogramming Tumor-Associated Macrophages via NIR Light-Responsive Upconversion Nanocrystals. Bioconjugate Chem. 2018, 29, 928–938. [Google Scholar] [CrossRef]
- Lin, T.; Zhao, X.; Zhao, S.; Yu, H.; Cao, W.; Chen, W.; Wei, H.; Guo, H. O2-Generating MnO2 Nanoparticles for Enhanced Photodynamic Therapy of Bladder Cancer by Ameliorating Hypoxia. Theranostics 2018, 8, 990–1004. [Google Scholar] [CrossRef]
- Chudal, L.; Pandey, N.K.; Phan, J.; Johnson, O.; Li, X.; Chen, W. Investigation of PPIX-Lipo-MnO2 to Enhance Photodynamic Therapy by Improving Tumor Hypoxia. Mater. Sci. Eng. C 2019, 104, 109979. [Google Scholar] [CrossRef]
- Ji, C.; Lu, Z.; Xu, Y.; Shen, B.; Yu, S.; Shi, D. Self-Production of Oxygen System CaO2/MnO2@PDA-MB for the Photodynamic Therapy Research and Switch-Control Tumor Cell Imaging. J. Biomed. Mater. Res. Part B Appl. Biomater. 2018, 106, 2544–2552. [Google Scholar] [CrossRef]
- Chu, C.; Lin, H.; Liu, H.; Wang, X.; Wang, J.; Zhang, P.; Gao, H.; Huang, C.; Zeng, Y.; Tan, Y.; et al. Tumor Microenvironment-Triggered Supramolecular System as an In Situ Nanotheranostic Generator for Cancer Phototherapy. Adv. Mater. 2017, 29, 1605928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, R.; Zhao, M.; Deng, D.; Ye, X.; Zhang, F.; Chen, H.; Kong, J. An Intelligent and Biocompatible Photosensitizer Conjugated Silicon Quantum Dots–MnO2 Nanosystem for Fluorescence Imaging-Guided Efficient Photodynamic Therapy. J. Mater. Chem. B 2018, 6, 4592–4601. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-B.; Chen, Z.-X.; Gao, F.; Zhang, C.; Zou, M.-Z.; Ye, J.-J.; Zeng, X.; Zhang, X.-Z. Remodeling Extracellular Matrix Based on Functional Covalent Organic Framework to Enhance Tumor Photodynamic Therapy. Biomaterials 2020, 234, 119772. [Google Scholar] [CrossRef] [PubMed]
- Gong, H.; Chao, Y.; Xiang, J.; Han, X.; Song, G.; Feng, L.; Liu, J.; Yang, G.; Chen, Q.; Liu, Z. Hyaluronidase To Enhance Nanoparticle-Based Photodynamic Tumor Therapy. Nano Lett. 2016, 16, 2512–2521. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Tian, L.; Zhang, R.; Dong, Z.; Wang, H.; Liu, Z. Collagenase-Encapsulated PH-Responsive Nanoscale Coordination Polymers for Tumor Microenvironment Modulation and Enhanced Photodynamic Nanomedicine. ACS Appl. Mater. Interfaces 2018, 10, 43493–43502. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Ma, Q.; Zhou, X.; Zhang, G.; Hao, G.; Sun, Y.; Cao, J. Strategies to Improve Photodynamic Therapy Efficacy by Relieving the Tumor Hypoxia Environment. NPG Asia Mater. 2021, 13, 39. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, J.; Ai, S.; Sun, J.; Mai, X.; Guan, W. Self-Generating Oxygen Enhanced Mitochondrion-Targeted Photodynamic Therapy for Tumor Treatment with Hypoxia Scavenging. Theranostics 2019, 9, 6809–6823. [Google Scholar] [CrossRef]
- Song, X.; Feng, L.; Liang, C.; Gao, M.; Song, G.; Liu, Z. Liposomes Co-Loaded with Metformin and Chlorin E6 Modulate Tumor Hypoxia during Enhanced Photodynamic Therapy. Nano Res. 2017, 10, 1200–1212. [Google Scholar] [CrossRef]
- Zuo, H.; Tao, J.; Shi, H.; He, J.; Zhou, Z.; Zhang, C. Platelet-Mimicking Nanoparticles Co-Loaded with W18O49 and Metformin Alleviate Tumor Hypoxia for Enhanced Photodynamic Therapy and Photothermal Therapy. Acta Biomater. 2018, 80, 296–307. [Google Scholar] [CrossRef]
- Yang, Z.; Chen, Q.; Chen, J.; Dong, Z.; Zhang, R.; Liu, J.; Liu, Z. Tumor-PH-Responsive Dissociable Albumin–Tamoxifen Nanocomplexes Enabling Efficient Tumor Penetration and Hypoxia Relief for Enhanced Cancer Photodynamic Therapy. Small 2018, 14, 1803262. [Google Scholar] [CrossRef]
- Xia, D.; Xu, P.; Luo, X.; Zhu, J.; Gu, H.; Huo, D.; Hu, Y. Overcoming Hypoxia by Multistage Nanoparticle Delivery System to Inhibit Mitochondrial Respiration for Photodynamic Therapy. Adv. Funct. Mater. 2019, 29, 1807294. [Google Scholar] [CrossRef]
- Chen, W.-H.; Lecaros, R.L.G.; Tseng, Y.-C.; Huang, L.; Hsu, Y.-C. Nanoparticle Delivery of HIF1α SiRNA Combined with Photodynamic Therapy as a Potential Treatment Strategy for Head-and-Neck Cancer. Cancer Lett. 2015, 359, 65–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrario, A.; von Tiehl, K.F.; Rucker, N.; Schwarz, M.A.; Gill, P.S.; Gomer, C.J. Antiangiogenic Treatment Enhances Photodynamic Therapy Responsiveness in a Mouse Mammary Carcinoma. Cancer Res. 2000, 60, 4066–4069. [Google Scholar] [PubMed]
- Sun, S.; Xu, Y.; Fu, P.; Chen, M.; Sun, S.; Zhao, R.; Wang, J.; Liang, X.; Wang, S. Ultrasound-Targeted Photodynamic and Gene Dual Therapy for Effectively Inhibiting Triple Negative Breast Cancer by Cationic Porphyrin Lipid Microbubbles Loaded with HIF1α-SiRNA. Nanoscale 2018, 10, 19945–19956. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Olivo, M.; Lye, K.Y.K.; Moore, S.; Sharma, A.; Chowbay, B. Enhancing the Therapeutic Responsiveness of Photodynamic Therapy with the Antiangiogenic Agents SU5416 and SU6668 in Murine Nasopharyngeal Carcinoma Models. Cancer Chemother. Pharmacol. 2005, 56, 569–577. [Google Scholar] [CrossRef] [PubMed]
- Broekgaarden, M.; Weijer, R.; Krekorian, M.; van den IJssel, B.; Kos, M.; Alles, L.K.; van Wijk, A.C.; Bikadi, Z.; Hazai, E.; van Gulik, T.M.; et al. Inhibition of Hypoxia-Inducible Factor 1 with Acriflavine Sensitizes Hypoxic Tumor Cells to Photodynamic Therapy with Zinc Phthalocyanine-Encapsulating Cationic Liposomes. Nano Res. 2016, 9, 1639–1662. [Google Scholar] [CrossRef]
- Weiss, A.; van Beijnum, J.R.; Bonvin, D.; Jichlinski, P.; Dyson, P.J.; Griffioen, A.W.; Nowak-Sliwinska, P. Low-Dose Angiostatic Tyrosine Kinase Inhibitors Improve Photodynamic Therapy for Cancer: Lack of Vascular Normalization. J. Cell. Mol. Med. 2014, 18, 480–491. [Google Scholar] [CrossRef]
- Lecaros, R.L.G.; Huang, L.; Lee, T.-C.; Hsu, Y.-C. Nanoparticle Delivered VEGF-A SiRNA Enhances Photodynamic Therapy for Head and Neck Cancer Treatment. Mol. Ther. 2016, 24, 106–116. [Google Scholar] [CrossRef] [Green Version]
- Liang, P.; Huang, X.; Wang, Y.; Chen, D.; Ou, C.; Zhang, Q.; Shao, J.; Huang, W.; Dong, X. Tumor-Microenvironment-Responsive Nanoconjugate for Synergistic Antivascular Activity and Phototherapy. ACS Nano 2018, 12, 11446–11457. [Google Scholar] [CrossRef]
- Zhu, R.; He, H.; Liu, Y.; Cao, D.; Yan, J.; Duan, S.; Chen, Y.; Yin, L. Cancer-Selective Bioreductive Chemotherapy Mediated by Dual Hypoxia-Responsive Nanomedicine upon Photodynamic Therapy-Induced Hypoxia Aggravation. Biomacromolecules 2019, 20, 2649–2656. [Google Scholar] [CrossRef]
- Cheng, X.; He, L.; Xu, J.; Fang, Q.; Yang, L.; Xue, Y.; Wang, X.; Tang, R. Oxygen-Producing Catalase-Based Prodrug Nanoparticles Overcoming Resistance in Hypoxia-Mediated Chemo-Photodynamic Therapy. Acta Biomater. 2020, 112, 234–249. [Google Scholar] [CrossRef] [PubMed]
- Kucinska, M.; Murias, M.; Nowak-Sliwinska, P. Beyond Mouse Cancer Models: Three-Dimensional Human-Relevant in Vitro and Non-Mammalian in Vivo Models for Photodynamic Therapy. Mutat. Res. Rev. Mutat. Res. 2017, 773, 242–262. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Zhou, J.; Zhang, Y.; Yang, B.; He, Y.; Tian, C.; Xu, X.; Gu, Z. An Oxygen Self-Sufficient Fluorinated Nanoplatform for Relieved Tumor Hypoxia and Enhanced Photodynamic Therapy of Cancers. ACS Appl. Mater. Interfaces 2019, 11, 7731–7742. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.S.; Han, J.; Shi, H.; Koo, S.; Singh, H.; Kim, H.-J.; Sessler, J.L.; Lee, J.Y.; Kim, J.-H.; Kim, J.S. Overcoming the Limits of Hypoxia in Photodynamic Therapy: A Carbonic Anhydrase IX-Targeted Approach. J. Am. Chem. Soc. 2017, 139, 7595–7602. [Google Scholar] [CrossRef] [Green Version]
- Kucinska, M.; Plewinski, A.; Szczolko, W.; Kaczmarek, M.; Goslinski, T.; Murias, M. Modeling the Photodynamic Effect in 2D versus 3D Cell Culture under Normoxic and Hypoxic Conditions. Free. Radic. Biol. Med. 2021, 162, 309–326. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, Y.; Wei, X.; Li, N.; Huang, H.; Xie, Z.; Zhang, H.; Yang, G.; Li, M.; Li, T.; et al. Tumor Homing-Penetrating and Nanoenzyme-Augmented 2D Phototheranostics against Hypoxic Solid Tumors. Acta Biomater. 2022, 150, 391–401. [Google Scholar] [CrossRef]
- Wan, Y.; Fu, L.-H.; Li, C.; Lin, J.; Huang, P. Conquering the Hypoxia Limitation for Photodynamic Therapy. Adv. Mater. 2021, 33, 2103978. [Google Scholar] [CrossRef]
PS | O2 Supplier | Cell Line | Cell Culture Model | Outcomes | Ref |
---|---|---|---|---|---|
5-ALA | Hyperbaric chamber with 100% O2 (21, 100, 200, 300, or 400 kPa) | AY27, WiDr and SW840 | 2D | PDT was subjected to normoxia-induced lipid peroxidation, which resulted in a significant decrease in cell survival. Additionally, hyperoxic conditions had no effect on lipid peroxidation versus untreated control cells. | [57] |
HpD (Photosan) or 5-ALA | HBO (Hyperbaric chamber: 2 atm O2) | Esophageal cancer | Clinical trials | PDT/HBO considerably decreased tumor length resulting in a 41.2% survival rate. | [58] |
m-THPC | Nicotinamide and carbogen (95% oxygen with 5% carbon dioxide) | H-MESO1 | tumor-bearing mice | Nicotinamide therapy and carbogen breathing enhanced tumor oxygenation as well as tumoricidal effects of PDT 24 h post PS administration. | [59] |
PS | O2 Supplier | Cell Line | In Vitro/In Vivo | Outcome | Ref |
---|---|---|---|---|---|
Ce6 | Hb | 4T1 | 2D and in vivo | PDT combined with Hb remarkably alleviated tumor hypoxia and enhanced the efficacy of PDT. | |
ZnF16Pc | RBCs | U87MG | 2D and in vivo | PDT-RBC exhibited an appreciable tumor inhibitory effect (76,7%) that was attributed to the co-delivery of O2 and PS. | [63] |
RB | RBCs | U87MG | 2D and in vivo | PDT-RBC relieved hypoxia and demonstrated a significant anti-tumor efficacy by remarkably reducing tumor volumes. | [64] |
RB | Hb | MCF-7 | 2D and in vivo | RB loaded with Hb exhibited more severe phototoxicity than RB treatment alone due to more O2 and ROS produced during the PDT process. | [65] |
TCPP | Hb | 4T1 | 2D | PDT and HB exerted better phototoxicity compared to free PS due to the oxygen supplied by Hb. | [66] |
ICG | Hb-RBC | MCF-7 | 3D tumor spheroids and in vivo | ICG-RBC revealed a remarkable O2 self-sufficient PDT effect in 3D tumor spheroids and suppressed HIF-1α expression in vivo. | [67] |
PS | O2 Supplier | Cell Line | In Vitro/In Vivo | Outcome | Ref |
---|---|---|---|---|---|
Fluorous porphyrin | PFC | A375 | 2D | PFC concurrently delivered O2 and PS in cancer cells, which effectively produced more cytotoxic 1O2 as compared to PS alone. | [70] |
ICG | PFH | 2D-MDA-MB-231 | 2D and in vivo | ICG co-loaded with PFH significantly inhibited tumor growth and effectively ameliorated tumor hypoxia. | [71] |
ZnF16Pc | PFC | U87MG | 2D and in vivo | PS modified with PFC exhibited O2 self-enriched PDT treatment, which ultimately obliterated tumor cells without showing any off-target toxicity. | [72] |
IR780 | PFH | CT26 | 2D and in vivo | PS loaded into PFH demonstrated significant anticancer effects, while free PS has shown insignificant effects. | [73] |
PS | Catalyst | O2 Source | Cell Line | Cell Culture Model | Outcome | Ref |
---|---|---|---|---|---|---|
Ce6 | MnO2 nanosheet | H2O2 | B16F10 | 2D | Ce6 loaded with Mno2 nanosheets reacted with H2O2 and led to massive production of oxygen for enhanced efficacy of oxygen-dependent PDT upon irradiation. | [77] |
Ce6 | MnO2 | H2O2 | MB-49 | 2D and in vivo | MnO2-Ce6 nanocomposite significantly enhanced PDT effects by increasing 1O2 generation by 3.5-fold in vivo and by 2-fold in vitro. | [78] |
PPIX | MnO2 | H2O2 | MCF-7 | 2D | PPIX and MnO2 co-delivery caused more photodamage under hypoxic conditions than when compared to PPIX. | [79] |
Methylene blue (MB) | MnO2 nanosheet | H2O2 | HeLa | 2D | MB-MnO2 significantly impeded tumor cell growth versus bare MB due to its ability to produce oxygen for hypoxia amelioration. | [80] |
DVDMS | MnO2 | H2O2 | MCF-7 | 2D and in vivo | Exhibited a more significant reduction in tumor growth compared to bare DVDMS. | [81] |
Ce6 | MnO2 | H2O2 | HeLa | In vivo | Ce6-MnO2 demonstrated a significant inhibitory effect on tumor cells compared to unbound Ce6. | [82] |
PS | Anti-Hypoxia Agent | Cell Line | Cell Culture Model | Outcome | Ref |
---|---|---|---|---|---|
HCe6 | Metformin (met) | 4T1 | 2D and in vivo | HCe6-met and PDT showed significantly enhanced therapeutic effects versus that of PDT without met. | [88] |
W18O49 | Metformin | Raji | 2D and in vivo | W18O49-Met-mediated PDT showed an increased ROS generation, which significantly decreased tumor growth via activation of apoptotic cell death pathway when compared to PDT without met. | [89] |
HAS-Ce6-nanocomplex | Tamoxifen | 4T1 | 2D and in vivo | HAS-Ce6 and Tam demonstrated increased half-life and bioavailability, as well as rapid pH-responsive dissociation, to improve Ce6 intertumoral penetration and efficiently attenuate hypoxia for increased PDT efficacy. | [90] |
ICG-BSA nanoconjugate | Atovaquone (ato) | Hela | 2D and in vivo | ICG-BSA and ato inhibited oxidative phosphorylation, which increased PDT’s therapeutic effects. | [91] |
PS | Angiogenesis Inhibitor | Cell Line | Cell Culture Model | Outcome | Ref |
---|---|---|---|---|---|
ZnPc | ACF | A431 and SK-ChA-1 | 2D | ACF and PDT showed a significant phototoxicity and attenuated the expression of HIF-1 under hypoxic conditions. | [96] |
Visudyne | sunitinib, sorafenib and axitinib/bevacizumab | A278 and HCT-116 | In vivo | Sunitinib, sorafenib and axitinib significantly enhanced PDT tumoricidal effects and suppressed the expression of VEGFR-2 receptors, while bevacizumab had a negligible effect on PDT. | [97] |
Photosan | VEGF-A siRNA | SCC4 and SAS | 2D and in vivo | In comparison to the untreated control group, combination therapy significantly reduced the tumor volume in SCC4 and SAS by 70% and 120%, respectively. | [98] |
DPP-4 | 5,6-dimethylxanthenone- 4-acetic acid (DAA) | HeLa and HUVEC | 2D and in vivo | PDT combined with DAA significantly destroyed vascular endothelial cells and inhibited tumor proliferation and metastasis. | [99] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nkune, N.W.; Abrahamse, H. Anti-Hypoxia Nanoplatforms for Enhanced Photosensitizer Uptake and Photodynamic Therapy Effects in Cancer Cells. Int. J. Mol. Sci. 2023, 24, 2656. https://doi.org/10.3390/ijms24032656
Nkune NW, Abrahamse H. Anti-Hypoxia Nanoplatforms for Enhanced Photosensitizer Uptake and Photodynamic Therapy Effects in Cancer Cells. International Journal of Molecular Sciences. 2023; 24(3):2656. https://doi.org/10.3390/ijms24032656
Chicago/Turabian StyleNkune, Nkune Williams, and Heidi Abrahamse. 2023. "Anti-Hypoxia Nanoplatforms for Enhanced Photosensitizer Uptake and Photodynamic Therapy Effects in Cancer Cells" International Journal of Molecular Sciences 24, no. 3: 2656. https://doi.org/10.3390/ijms24032656
APA StyleNkune, N. W., & Abrahamse, H. (2023). Anti-Hypoxia Nanoplatforms for Enhanced Photosensitizer Uptake and Photodynamic Therapy Effects in Cancer Cells. International Journal of Molecular Sciences, 24(3), 2656. https://doi.org/10.3390/ijms24032656