Tumors of the Nose and Paranasal Sinuses: Promoting Factors and Molecular Mechanisms—A Systematic Review
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
3.1. Sinonasal Squamous Cell Carcinoma
Marker | Article (Authors, Publication Year) | Unit of Measurement | IP | IP with SCC | Primary SCC | Unspecified SCC | Statistical Difference |
---|---|---|---|---|---|---|---|
Ki-67 | Oncel S et al., 2011 [5] | % of positive cases | 10.77 | 35.33 | p < 0.05 | ||
Katori H et al., 2007 [6] | Mean % of positive area | 8.5 (with mild dysplasia) 9 (with moderate dysplasia) 21.12 (with severe dysplasia) | 26.5 | 18.8 | A significant increase was observed in IP with severe dysplasia, IP with SCC, and primary SCC compared with IP with mild and moderate dysplasia (p < 0.05). | ||
Katori H et al., 2005 [7] | Mean % of positive area | NA | NA | NA | Significant increase was observed in IP with severe dysplasia, IP with SCC, and primary SCC compared to IP with mild and moderate dysplasia (p < 0.05). | ||
Fan G et al., 2006 [8] | Ki-67 index | 22.3 (without dysplasia) 19.2 (IP portion of IP with dysplasia) 22.5 (dysplasia portion of IP with dysplasia) | 21 (IP portion) 47.4 (CIS portion) 61 (SCC portion) | 60.8 | Ki-67 index was higher in primary SCC compared with IP (p = 0.0002), in the portion of in situ SCC than in the IP portion (p = 0.0048), and in the portion of invasive SCC than in the IP portion (p = 0.0019). | ||
Bandoh N et al., 2005 [9] | % of positive cases | 24 | / | ||||
Schwerer MJ et al., 2002 [10] | 13.6 (columnar) 20.1 (transitional) 16.9 (squamous) 50.2 (IP with dysplasia) | 71 (CIS) | 38.4 (NKCa) 30 (KSCC) | Transitional and squamous epithelium showed significantly higher Ki-67 immunopositivity compared with columnar epithelium in IP (p < 0.05). Significantly higher expression rates of Ki-67 were present in dysplastic compared with non-dysplastic IP (p < 0.05). The difference between CIS and dysplastic IP and between SCC and CIS was not statistically significant. The expression rates of Ki-67 were comparable between NKCa and KSCC. | |||
Tsou Y et al., 2014 [11] | NA | NA | Elevated Ki-67 was found in IP with SCC compared with IPs alone (p = 0.001). | ||||
Hakim SA et al., 2021 [12] | 20.5 | 31.43 | Yes (p value not available). | ||||
Valente G et al., 2006 [13] | % of positive cases | 50 | / | ||||
El-Mofty SK et al., 2005 [14] | % of positive cases | 100 (KSCC) 100 (NKCa) | / | ||||
p21 | Oncel S et al., 2011 [5] | % of positive cases | NA | NA | No | ||
Kim S et al., 2011 [15] | % of positive cases | 12.5 | 77.8 | p < 0.05 | |||
Bandoh N et al., 2005 [9] | % of positive cases | 9 | / | ||||
Katori H et al., 2006 [16] | % of positive cases | 14.3 (with mild dysplasia) 37.5 (with moderate dysplasia) 57.1 (with severe dysplasia) | 71.4 | 50 | Significant increased staining of p21 was observed in IP with severe dysplasia and IP with carcinoma compared with IP with slight dysplasia (p value not available). | ||
Kakizaki T et al., 2017 [30] | NA | NA | NA | No significant differences were observed in p21 expression between non-dysplastic and dysplastic IPs, or between SCCs with IPs and SCCs without IPs. | |||
Tsou Y et al., 2014 [11] | NA | NA | No | ||||
p27 | Oncel S et al., 2011 [5] | % of positive cases | NA | NA | There was a marked decrease in the expression of p27Kip1 in the SCC group compared to the IP group, but this was not statistically significant. | ||
Bandoh N et al., 2005 [9] | % of positive cases | 12 | / | ||||
Schwerer MJ et al., 2002 [10] | 63.1 (without dysplasia) 68 (with dysplasia) | 39.4 (CIS) 25.1 (NKCa) 42.1 (KSCC) | Significantly reduced p27Kip1 expression was found in surface cells in dysplastic compared with non-dysplastic IP, as well as in the total number of cells in carcinoma in situ compared with dysplastic inverted papillomas (p < 0.05). | ||||
Tsou Y et al., 2014 [11] | NA | NA | Elevated p27 was found in IP with SCC compared with IPs alone (p = 0.001). | ||||
p63 | Oncel S et al., 2011 [5] | % of positive cases | 22.7 | 77.8 | p = 0.019 | ||
Kim S et al., 2011 [15] | % of positive cases | 100 | 100 | No | |||
cox-2 | Yoon B et al., 2013 [17] | NA | Data do not fit within the categories of this table. | ||||
Lee G et al., 2012 [20] | 5.4 (without dysplasia) 0 (with dysplasia) | 38.9 | 41.7 | The percentage of positive tumors was significantly higher in IPs with SCC and primary SCCs compared with benign IPs (p = 0.000) and in primary SCC compared with IP with dysplasia (p = 0.44). | |||
bcl-2 | Fan G et al., 2006 [8] | Mean expression rate (%) | 2.2 (without dysplasia) 1.2 (IP portion of IP with dysplasia) 2 (dysplasia portion of IP with dysplasia) | 2.1 (IP portion) 3.6 (CIS portion) 4.3 (SCC portion) | 6.4 | No | |
Yoon B et al., 2013 [17] | NA | Data do not fit within the categories of this table. | |||||
Katori H et al., 2007 [6] | 1.8 (with mild dysplasia) 3.1 (with moderate dysplasia) 5.2 (with severe dysplasia) | 5.3 | 6.2 | A significant increase was observed in IP with severe dysplasia and carcinoma and invasive SCC compared with IP with mild dysplasia (p < 0.05). | |||
bcl-xL | Bandoh N et al., 2005 [9] | % of positive cases | 47 | / | |||
Bandoh N et al., 2003 [22] | % of positive cases | 47 | / | ||||
Bandoh N et al., 2001 [31] | % of positive cases | 47 | / | ||||
bax | Takahashi Y et al., 2013 [32] | % of positive cases | 18.8 | p = 0.0186 (with respect to normal tissue). | |||
Bandoh N et al., 2005 [9] | % of positive cases | 57 | / | ||||
Bandoh N et al., 2003 [22] | % of positive cases | 57 | / | ||||
Bandoh N et al., 2001 [31] | % of positive cases | 57 | / | ||||
Fan G et al., 2006 [8] | Mean expression rate (%) | 85.3 (without dysplasia) 84 (IP portion of IP with dysplasia) 88.5 (dysplasia portion of IP with dysplasia) | 86.5 (IP portion) 83.2 (CIS portion) 77.2 (SCC portion) | 59.5 | Bax expression was significantly higher in primary SCC than in IP without dysplasia (p < 0.05). | ||
Yoon B et al., 2013 [17] | NA | Data do not fit within the categories of this table. | |||||
p53 | Takahashi Y et al., 2013 [32] | % of positive cases | 39.1 | p = 0.0001 (with respect to normal tissue). | |||
Bandoh N et al., 2005 [9] | % of positive cases | 56 | / | ||||
Bandoh N et al., 2003 [22] | % of positive cases | 56 | / | ||||
Bandoh N et al., 2001 [31] | % of positive cases | 56 | / | ||||
Tsou Y et al., 2014 [11] | NA | NA | NA | No | |||
Oncel S et al., 2011 [5] | % of positive cases | 0 | 33.3 | p = 0.015 | |||
Kim S et al., 2011 [15] | % of positive cases | 0 | 44.4 | p < 0.05 | |||
Fan G et al., 2006 [8] | Mean expression rate (%) | 2.4 (without dysplasia) 8.1 (IP portion of IP with dysplasia) 10.4 (dysplasia portion of IP with dysplasia) | 9.3 (IP portion) 11.5 (CIS portion) 24.6 (SCC portion) | 37.5 | p53 expression was higher in primary SCC with respect to IP (p = 0.016). There also was a trend for p53 to accumulate in IP with dysplasia and IP with SCC. | ||
Yoon B et al., 2013 [17] | NA | Data do not fit within the categories of this table. | |||||
El-Mofty SK et al., 2005 [14] | % of positive cases | 27.8 (KSCC) 37.7 (NKCa) | / | ||||
Scheel A et al., 2015 [33] | % of positive cases | 51.9 | / | ||||
Katori H et al., 2005 [7] | Mean % of positive area | NA | NA | NA | Significant increase was observed in IP with severe dysplasia, IP with carcinoma, and invasive SCC compared to IP with mild and moderate dysplasia (p value not available). | ||
Katori H et al., 2006 [16] | % of positive cases | 14.3 (with mild dysplasia) 25 (with moderate dysplasia) 57.1 (with severe dysplasia) | 57.1 | 66.7 | A significant increase was observed in IP with severe dysplasia, IP with SCC, and primary SCC compared with IP with mild dysplasia (p < 0.05). | ||
HER-2/ErbB2 | Takahashi Y et al., 2013 [32] | % of positive cases | 2.9 | No (with respect to normal tissue). | |||
Li et al., 2019 [34] | Mean mRNA expression level and mean protein expression level | NA | NA | mRNA and protein expression levels were higher in IP than in normal nasal mucosa (p < 0.01). Protein expression levels were higher in the IP and IP with SCC than in normal nasal mucosa (p < 0.01). Protein expression levels were significantly higher in IP with SCC than IP (p < 0.01). | |||
López F et al., 2011 [35] | % of positive cases | 7 | / | ||||
EGFR | Takahashi Y et al., 2013 [32] | % of positive cases | 82.1 | p < 0.0001 (with respect to normal tissue). | |||
Katori H et al., 2005 [7] | Mean % of positive area | NA | NA | NA | Significant increase was observed in IP with severe dysplasia, IP with SCC, and primary SCC compared to IP with mild and moderate dysplasia (p < 0.05). | ||
López F et al., 2011 [35] | % of positive cases | 39 | / | ||||
Hongo T et al., 2021 [26] | % of positive cases | 77.1 | / | ||||
Jiromaru R et al., 2019 [36] | % of positive cases | 77.2 | / | ||||
Chao J et al., 2008 [37] | % of positive cases | 80 | 100 (synchronous) 90 (metachronous) | NA | |||
Scheel A et al., 2015 [33] | % of positive cases | 61 | / | ||||
VEGF | Takahashi Y et al., 2013 [32] | % of positive cases | 40.3 | p = 0.0073 (with respect to normal tissue). | |||
Valente G et al., 2006 [13] | % of positive cases | 41.1 | / | ||||
Yu H et al., 2013 [21] | Relative protein level | NA | NA | Protein expression was increased in IP and IP with SCC with respect to normal nasal mucosa (p < 0.01), and in IP with SCC with respect to IP alone (p < 0.05). | |||
Bandoh N et al., 2003 [22] | % of positive cases | 50 | / | ||||
TGF-a | Katori H et al., 2005 [7] | Mean % of positive area | NA | NA | NA | A significant increase was observed in IP with SCC and primary SCC compared to IP with mild and moderate dysplasia (p < 0.05). | |
Li et al., 2019 [34] | Mean mRNA expression level | NA | TGF-a mRNA expression levels were significantly higher in the IP than in the normal nasal mucosa (p < 0.01). | ||||
Cyclin-D1 | Takahashi Y et al., 2013 [32] | % of positive cases | 57.6 | p < 0.0001 (with respect to normal tissue). | |||
Scheel A et al., 2015 [33] | Mean % of positive area | 79.7 | / | ||||
Fas | Bandoh N et al., 2005 [9] | % of positive cases | 29 | / | |||
Bandoh N et al., 2003 [22] | % of positive cases | 29 | / | ||||
Bandoh N et al., 2001 [31] | % of positive cases | 29 | / | ||||
Fan G et al., 2006 [8] | Mean expression rate (%) | 78.2 (without dysplasia) 81.2 (IP portion of IP with dysplasia) 79.5 (dysplasia portion of IP with dysplasia) | 83.8 (IP portion) 84 (CIS portion) 81.1 (SCC portion) | 75.5 | No |
Article (Author, Publication Year) | HPV+ Cells (%) | Technique | ||||
---|---|---|---|---|---|---|
IP without Dysplasia | IP with Dysplasia | IP with SCC | Primary SCC | SCC (Unspecified) | ||
Katori H et al., 2006 [16] | mild: 16.7 (HPV 6/11); 0 (HPV 16/18) moderate: 33.3 (HPV 6/11); 33.3 (HPV 16/18) severe: 71 (HPV 6/11); 57 (HPV 16/18) | 57 (HPV 6/11) 43 (HPV 16/18) | 25 (HPV 6/11) 17 (HPV 16/18) | HPV DNA ISH | ||
Katori H et al., 2006 [23] | severe: 63 (HPV 6/11); 50 (HPV 16/18) | 57 (HPV 6/11) 43 (HPV 16/18) | 25 (HPV 6/11) 17 (HPV 16/18) | HPV DNA ISH | ||
Hoffman M et al., 2005 [42] | 11.5 (HPV 6+11) | 20 (HPV 16) | HPV DNA PCR | |||
McKay SP et al., 2005 [53] | 9.1 (HPV 11) | 66.7 (HPV18) | HPV DNA PCR | |||
Paehler vor der Holte A et al. 2020 [40] | 22.5 (LR-HPV) 15.5 (HR-HPV) | 47.6 (HR-HPV) | HPV DNA PCR | |||
Katori H et al., 2005 [7] | severe: 57.1 (HPV 6/11); 42.9 (HPV 16/18) | 66.7 (HPV 6/11) 50 (HPV 16/18) | 25 (HPV 6/11) 17 (HPV 16/18) | HPV DNA ISH | ||
Chatzipantelis P et al., 2020 [54] | 78.6 | 66.7 | p16 IHC | |||
Sahnane N et al., 2019 [39] | 0 (HR-HPV) 24 (LR-HPV) | 13 (HR-HPV) 0 (LR-HPV) | 8 (HR-HPV) 0 (LR-HPV) | HPV DNA ISH | ||
Mohajeri S et al., 2018 [41] | 11.4 | severe: 20 (HPV 6/56) | 0 | HPV DNA PCR | ||
Udager AM et al., 2017 [38] | 10.3 (HPV 6/11) | 22.7 (18.2 LR, 4.5 HR) | 35.7 (28.6 HR, 7.1 unknown) | HPV DNA PCR | ||
Rooper LM et al., 2016 [43] | 0 | 6 | 43 | p16 IHC | ||
0 | 0 | 29 | HR-HPV RNA ISH | |||
Scheel A et al., 2015 [33] | 12.2 (LR-HPV) | HPV DNA PCR | ||||
Stoddard Jr DG et al., 2015 [55] | 12.5 | 0 | p16 IHC, LR-HPV DNA PCR, mRNA ISH | |||
Larque AB et al., 2014 [48] | 20 (HR-HPV) | HPV DNA PCR, HR-HPV DNA ISH, p16 IHC | ||||
El-Mofty SK et al., 2005 [14] | KSCC: 19 (HPV-16) NKCa: 50 (HPV-16) | HPV DNA PCR | ||||
4.8 (KSCC) 62.5 (NKCa) | p16 IHC | |||||
Tendron A et al., 2022 [47] | 18.6 | p16 IHC | ||||
Hongo T et al., 2021 [26] | 11.5 | p16 IHC | ||||
6.1 (HR-HPV) | HPV mRNA ISH | |||||
Nishikawa D et al., 2021 [49] | 8 | HPV DNA PCR | ||||
Laco et al., 2015 [44] | 32.7 | p16 IHC | ||||
19 | HPV DNA PCR | |||||
24.5 | HPV DNA ISH | |||||
Vietía D et al., 2014 [56] | 8.3 | Reverse hybridization | ||||
Jiromaru et al. 2019 [36] | 14.9 | p16 IHC | ||||
8.9 | HPV RNA ISH | |||||
Takahashi Y et al., 2013 [32] | 9.4 | HPV DNA ISH | ||||
17.9 | p16 IHC | |||||
Doescher J et al., 2015 [51] | 20.5 | HPV DNA ISH | ||||
29.5 | p16 IHC |
3.2. Intestinal Type Adenocarcinoma
3.3. Olfactory Neuroblastoma
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dutta, R.; Dubal, P.M.; Svider, P.F.; Liu, J.K.; Baredes, S.; Eloy, J.A. Sinonasal Malignancies: A Population-Based Analysis of Site-Specific Incidence and Survival: Sinonasal Malignancies. Laryngoscope 2015, 125, 2491–2497. [Google Scholar] [CrossRef] [PubMed]
- Sanghvi, S.; Khan, M.N.; Patel, N.R.; Yeldandi, S.; Baredes, S.; Eloy, J.A. Epidemiology of Sinonasal Squamous Cell Carcinoma: A Comprehensive Analysis of 4994 Patients. Laryngoscope 2014, 124, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Gore, M.R. Survival in Sinonasal and Middle Ear Malignancies: A Population-Based Study Using the SEER 1973–2015 Database. BMC Ear Nose Throat Disord. 2018, 18, 13. [Google Scholar] [CrossRef] [PubMed]
- Youlden, D.R.; Cramb, S.M.; Peters, S.; Porceddu, S.V.; Møller, H.; Fritschi, L.; Baade, P.D. International Comparisons of the Incidence and Mortality of Sinonasal Cancer. Cancer Epidemiol. 2013, 37, 770–779. [Google Scholar] [CrossRef] [Green Version]
- Oncel, S.; Cosgul, T.; Calli, A.; Calli, C.; Pinar, E. Evaluation of P53, P63, P21, P27, Ki-67 in Paranasal Sinus Squamous Cell Carcinoma and Inverted Papilloma. Indian J. Otolaryngol. Head Neck Surg. 2011, 63, 172–177. [Google Scholar] [CrossRef] [Green Version]
- Katori, H.; Nozawa, A.; Tsukuda, M. Cell Proliferation, Apoptosis, and Apoptosis Inhibition in Malignant Transformation of Sinonasal Inverted Papilloma. Acta Otolaryngol. 2007, 127, 540–546. [Google Scholar] [CrossRef]
- Katori, H.; Nozawa, A.; Tsukuda, M. Markers of Malignant Transformation of Sinonasal Inverted Papilloma. Eur. J. Surg. Oncol. EJSO 2005, 31, 905–911. [Google Scholar] [CrossRef]
- Fan, G.-K.; Imanaka, M.; Yang, B.; Takenaka, H. Characteristics of Nasal Inverted Papilloma and Its Malignant Transformation: A Study of Cell Proliferation and Programmed Cell Death. Am. J. Rhinol. 2006, 20, 360–363. [Google Scholar] [CrossRef]
- Bandoh, N.; Hayashi, T.; Takahara, M.; Kishibe, K.; Ogino, T.; Katayama, A.; Imada, M.; Nonaka, S.; Harabuchi, Y. Loss of P21 Expression Is Associated with P53 Mutations and Increased Cell Proliferation and P27 Expression Is Associated with Apoptosis in Maxillary Sinus Squamous Cell Carcinoma. Acta Otolaryngol. 2005, 125, 779–785. [Google Scholar] [CrossRef] [Green Version]
- Schwerer, M.J.; Sailer, A.; Kraft, K.; Maier, H. Cell Proliferation and P27Kip1 Expression in Endophytic Schneiderian Papillomas. Laryngoscope 2002, 112, 852–857. [Google Scholar] [CrossRef]
- Tsou, Y.-A.; Huang, H.-J.; Wang, T.-C.; Tai, C.-J.; Chen, C.-M.; Chen, C.Y.-C. Evaluation of Correlation of Cell Cycle Proteins and Ki-67 Interaction in Paranasal Sinus Inverted Papilloma Prognosis and Squamous Cell Carcinoma Transformation. BioMed Res. Int. 2014, 2014, 634945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hakim, S.A.; Abd Raboh, N.M.; Shash, L.S. IMP3 Immunohistochemical Expression in Inverted Papilloma and Inverted Papilloma-Associated Sinonasal Squamous Cell Carcinoma. Anal. Cell. Pathol. 2021, 2021, 6639834. [Google Scholar] [CrossRef] [PubMed]
- Valente, G.; Mamo, C.; Bena, A.; Prudente, E.; Cavaliere, C.; Kerim, S.; Nicotra, G.; Comino, A.; Palestro, G.; Isidoro, C. Prognostic Significance of Microvessel Density and Vascular Endothelial Growth Factor Expression in Sinonasal Carcinomas☆. Hum. Pathol. 2006, 37, 391–400. [Google Scholar] [CrossRef]
- El-Mofty, S.K.; Lu, D.W. Prevalence of High-Risk Human Papillomavirus DNA in Nonkeratinizing (Cylindrical Cell) Carcinoma of the Sinonasal Tract: A Distinct Clinicopathologic and Molecular Disease Entity. Am. J. Surg. Pathol. 2005, 29, 1367–1372. [Google Scholar] [CrossRef]
- Kim, S.-G.; Lee, O.-Y.; Choi, J.-W.; Park, Y.-H.; Kim, Y.-M.; Yeo, M.-K.; Kim, J.-M.; Rha, K.-S. Pattern of Expression of Cell Cycle–Related Proteins in Malignant Transformation of Sinonasal Inverted Papilloma. Am. J. Rhinol. Allergy 2011, 25, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Katori, H.; Nozawa, A.; Tsukuda, M. Relationship between P21 and P53 Expression, Human Papilloma Virus Infection and Malignant Transformation in Sinonasal-Inverted Papilloma. Clin. Oncol. 2006, 18, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Yoon, B.-N.; Chon, K.-M.; Hong, S.-L.; Lee, J.-H.; Kim, J.-Y.; Cho, K.-S.; Roh, H.-J. Inflammation and Apoptosis in Malignant Transformation of Sinonasal Inverted Papilloma: The Role of the Bridge Molecules, Cyclooxygenase-2, and Nuclear Factor ΚB. Am. J. Otolaryngol. 2013, 34, 22–30. [Google Scholar] [CrossRef]
- Brown, N.A.; Plouffe, K.R.; Yilmaz, O.; Weindorf, S.C.; Betz, B.L.; Carey, T.E.; Seethala, R.R.; McHugh, J.B.; Tomlins, S.A.; Udager, A.M. TP53 Mutations and CDKN2A Mutations/Deletions Are Highly Recurrent Molecular Alterations in the Malignant Progression of Sinonasal Papillomas. Mod. Pathol. 2021, 34, 1133–1142. [Google Scholar] [CrossRef]
- Yasukawa, S.; Kano, S.; Hatakeyama, H.; Nakamaru, Y.; Takagi, D.; Mizumachi, T.; Suzuki, M.; Suzuki, T.; Nakazono, A.; Tanaka, S.; et al. Genetic Mutation Analysis of the Malignant Transformation of Sinonasal Inverted Papilloma by Targeted Amplicon Sequencing. Int. J. Clin. Oncol. 2018, 23, 835–843. [Google Scholar] [CrossRef] [Green Version]
- Lee, G.-H.; Yoon, Y.-H.; Kim, Y.M.; Yeo, M.-K.; Liang, Z.L.; Kim, J.-M.; Rha, K.-S. Pattern of Expression of Cyclooxygenase-2 in Malignant Transformation of Sinonasal Inverted Papilloma. Am. J. Otolaryngol. 2012, 33, 585–589. [Google Scholar] [CrossRef]
- Yu, H.; Liu, Q.; Wang, H.; Wang, D.; Hu, L.; Sun, X.; Liu, J. The Role of Tissue Factor Pathway Inhibitor-2 in Malignant Transformation of Sinonasal Inverted Papilloma. Eur. Arch. Otorhinolaryngol. 2014, 271, 2191–2196. [Google Scholar] [CrossRef] [PubMed]
- Bandoh, N.; Hayashi, T.; Takahara, M.; Kishibe, K.; Ogino, T.; Katayama, A.; Imada, M.; Nonaka, S.; Harabuchi, Y. VEGF and BFGF Expression and Microvessel Density of Maxillary Sinus Squamous Cell Carcinoma in Relation to P53 Status, Spontaneous Apoptosis and Prognosis. Cancer Lett. 2004, 208, 215–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katori, H.; Nozawa, A.; Tsukuda, M. Increased Expression of Matrix Metalloproteinase-2 and 9 and Human Papilloma Virus Infection Are Associated with Malignant Transformation of Sinonasal Inverted Papilloma. J. Surg. Oncol. 2006, 93, 80–85. [Google Scholar] [CrossRef]
- Shin, D.H.; Lee, J.-K.; Cho, K.-S.; Roh, H.-J. Copy Number Variation in Progression of Inverted Papilloma to Squamous Cell Carcinoma of the Nasal Cavity. Int. J. Clin. Exp. Pathol. 2018, 11, 4637. [Google Scholar] [PubMed]
- Gu, J.T.; Claudio, N.; Betts, C.; Sivagnanam, S.; Geltzeiler, M.; Pucci, F. Characterization of the Tumor Immune Microenvironment of Sinonasal Squamous-cell Carcinoma. Int. Forum Allergy Rhinol. 2022, 12, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Hongo, T.; Yamamoto, H.; Jiromaru, R.; Yasumatsu, R.; Kuga, R.; Nozaki, Y.; Hashimoto, K.; Matsuo, M.; Wakasaki, T.; Tamae, A.; et al. PD-L1 Expression, Tumor-Infiltrating Lymphocytes, Mismatch Repair Deficiency, EGFR Alteration and HPV Infection in Sinonasal Squamous Cell Carcinoma. Mod. Pathol. 2021, 34, 1966–1978. [Google Scholar] [CrossRef]
- García-Marín, R.; Reda, S.; Riobello, C.; Cabal, V.N.; Suárez-Fernández, L.; Vivanco, B.; Álvarez-Marcos, C.; López, F.; Llorente, J.L.; Hermsen, M.A. Prognostic and Therapeutic Implications of Immune Classification by CD8+ Tumor-Infiltrating Lymphocytes and PD-L1 Expression in Sinonasal Squamous Cell Carcinoma. Int. J. Mol. Sci. 2021, 22, 6926. [Google Scholar] [CrossRef]
- Park, J.C.; Faquin, W.C.; Durbeck, J.; Faden, D.L. Immune Checkpoint Inhibitors in Sinonasal Squamous Cell Carcinoma. Oral Oncol. 2020, 109, 104776. [Google Scholar] [CrossRef]
- Riobello, C.; Vivanco, B.; Reda, S.; López-Hernández, A.; García-Inclán, C.; Potes-Ares, S.; Cabal, V.N.; López, F.; Llorente, J.L.; Hermsen, M.A. Programmed Death Ligand-1 Expression as Immunotherapeutic Target in Sinonasal Cancer. Head Neck 2018, 40, 818–827. [Google Scholar] [CrossRef]
- Kakizaki, T.; Hatakeyama, H.; Nakamaru, Y.; Takagi, D.; Mizumachi, T.; Sakashita, T.; Kano, S.; Homma, A.; Fukuda, S. Role of MicroRNA-296-3p in the Malignant Transformation of Sinonasal Inverted Papilloma. Oncol. Lett. 2017, 14, 987–992. [Google Scholar] [CrossRef]
- Bandoh, N.; Hayashi, T.; Kishibe, K.; Takahara, M.; Imada, M.; Nonaka, S.; Harabuchi, Y. Prognostic Value of P53 Mutations, Bax, and Spontaneous Apoptosis in Maxillary Sinus Squamous Cell Carcinoma. Cancer 2002, 94, 1968–1980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, Y.; Bell, D.; Agarwal, G.; Roberts, D.; Xie, T.-X.; El-Naggar, A.; Myers, J.N.; Hanna, E.Y. Comprehensive Assessment of Prognostic Markers for Sinonasal Squamous Cell Carcinoma: Prognostic Markers in Sinonasal SCC. Head Neck 2014, 36, 1094–1102. [Google Scholar] [CrossRef]
- Scheel, A.; Lin, G.C.; McHugh, J.B.; Komarck, C.M.; Walline, H.M.; Prince, M.E.; Zacharek, M.A.; Carey, T.E. Human Papillomavirus Infection and Biomarkers in Sinonasal Inverted Papillomas: Clinical Significance and Molecular Mechanisms: HPV and Biomarkers in Inverted Papilloma. Int. Forum Allergy Rhinol. 2015, 5, 701–707. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Hu, L.; Zhang, H.; Wang, D. ErbB1 and ErbB2 Overexpression in Patients with Sinonasal Inverted Papilloma and Inverted Papilloma with Squamous Cell Carcinoma in China. Acta Otolaryngol. 2019, 139, 1104–1111. [Google Scholar] [CrossRef] [PubMed]
- López, F.; García Inclán, C.; Pérez-Escuredo, J.; Álvarez Marcos, C.; Scola, B.; Suárez, C.; Llorente, J.L.; Hermsen, M.A. KRAS and BRAF Mutations in Sinonasal Cancer. Oral Oncol. 2012, 48, 692–697. [Google Scholar] [CrossRef] [PubMed]
- Jiromaru, R.; Yamamoto, H.; Yasumatsu, R.; Hongo, T.; Nozaki, Y.; Hashimoto, K.; Taguchi, K.; Masuda, M.; Nakagawa, T.; Oda, Y. HPV-Related Sinonasal Carcinoma: Clinicopathologic Features, Diagnostic Utility of P16 and Rb Immunohistochemistry, and EGFR Copy Number Alteration. Am. J. Surg. Pathol. 2020, 44, 305–315. [Google Scholar] [CrossRef] [PubMed]
- Chao, J.-C.; Fang, S.-Y. Expression of Epidermal Growth Factor Receptor in the Inverted Papilloma and Squamous Cell Carcinoma of Nasal Cavity. Eur. Arch. Otorhinolaryngol. 2008, 265, 917–922. [Google Scholar] [CrossRef]
- Udager, A.M.; McHugh, J.B.; Goudsmit, C.M.; Weigelin, H.C.; Lim, M.S.; Elenitoba-Johnson, K.S.J.; Betz, B.L.; Carey, T.E.; Brown, N.A. Human Papillomavirus (HPV) and Somatic EGFR Mutations Are Essential, Mutually Exclusive Oncogenic Mechanisms for Inverted Sinonasal Papillomas and Associated Sinonasal Squamous Cell Carcinomas. Ann. Oncol. 2018, 29, 466–471. [Google Scholar] [CrossRef]
- Sahnane, N.; Ottini, G.; Turri-Zanoni, M.; Furlan, D.; Battaglia, P.; Karligkiotis, A.; Albeni, C.; Cerutti, R.; Mura, E.; Chiaravalli, A.M.; et al. Comprehensive Analysis of HPV Infection, EGFR Exon 20 Mutations and LINE1 Hypomethylation as Risk Factors for Malignant Transformation of Sinonasal-Inverted Papilloma to Squamous Cell Carcinoma: Comprehensive Analysis of HPV Infection, EGFR Exon 20 Mutations and LINE1 Hypomethylation. Int. J. Cancer 2019, 144, 1313–1320. [Google Scholar] [CrossRef]
- Paehler vor der Holte, A.; Fangk, I.; Glombitza, S.; Wilkens, L.; Welkoborsky, H.J. Impact of Human Papillomaviruses (HPV) on Recurrence Rate and Malignant Progression of Sinonasal Papillomas. Cancer Med. 2021, 10, 634–641. [Google Scholar] [CrossRef]
- Mohajeri, S.; Lai, C.; Purgina, B.; Almutairi, D.; Baghai, T.; Dimitroulakos, J.; Kilty, S. Human Papillomavirus: An Unlikely Etiologic Factor in Sinonasal Inverted Papilloma: HPV Is an Unlikely Etiologic Factor in SNIP. Laryngoscope 2018, 128, 2443–2447. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.; Klose, N.; Gottschlich, S.; Gorogh, T.; Fazel, A.; Lohrey, C.; Rittgen, W.; Ambrosch, P.; Schwarz, E.; Kahn, T. Detection of Human Papillomavirus DNA in Benign and Malignant Sinonasal Neoplasms. Cancer Lett. 2006, 239, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Rooper, L.M.; Bishop, J.A.; Westra, W.H. Transcriptionally Active High-Risk Human Papillomavirus Is Not a Common Etiologic Agent in the Malignant Transformation of Inverted Schneiderian Papillomas. Head Neck Pathol. 2017, 11, 346–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laco, J.; Sieglová, K.; Vošmiková, H.; Dundr, P.; Němejcová, K.; Michálek, J.; Čelakovský, P.; Chrobok, V.; Mottl, R.; Mottlová, A.; et al. The Presence of High-Risk Human Papillomavirus (HPV) E6/E7 MRNA Transcripts in a Subset of Sinonasal Carcinomas Is Evidence of Involvement of HPV in Its Etiopathogenesis. Virchows Arch. 2015, 467, 405–415. [Google Scholar] [CrossRef] [PubMed]
- Hongo, T.; Yamamoto, H.; Jiromaru, R.; Nozaki, Y.; Yasumatsu, R.; Hashimoto, K.; Yoneda, R.; Sugii, A.; Taguchi, K.; Masuda, M.; et al. Clinicopathologic Significance of EGFR Mutation and HPV Infection in Sinonasal Squamous Cell Carcinoma. Am. J. Surg. Pathol. 2021, 45, 108–118. [Google Scholar] [CrossRef] [PubMed]
- Udager, A.M.; Rolland, D.C.M.; McHugh, J.B.; Betz, B.L.; Murga-Zamalloa, C.; Carey, T.E.; Marentette, L.J.; Hermsen, M.A.; DuRoss, K.E.; Lim, M.S.; et al. High-Frequency Targetable EGFR Mutations in Sinonasal Squamous Cell Carcinomas Arising from Inverted Sinonasal Papilloma. Cancer Res. 2015, 75, 2600–2606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tendron, A.; Classe, M.; Casiraghi, O.; Pere, H.; Even, C.; Gorphe, P.; Moya-Plana, A. Prognostic Analysis of HPV Status in Sinonasal Squamous Cell Carcinoma. Cancers 2022, 14, 1874. [Google Scholar] [CrossRef]
- Larque, A.B.; Hakim, S.; Ordi, J.; Nadal, A.; Diaz, A.; del Pino, M.; Marimon, L.; Alobid, I.; Cardesa, A.; Alos, L. High-Risk Human Papillomavirus Is Transcriptionally Active in a Subset of Sinonasal Squamous Cell Carcinomas. Mod. Pathol. 2014, 27, 343–351. [Google Scholar] [CrossRef] [Green Version]
- Nishikawa, D.; Sasaki, E.; Suzuki, H.; Beppu, S.; Sawabe, M.; Terada, H.; Sone, M.; Hanai, N. Treatment Outcome and Pattern of Recurrence of Sinonasal Squamous Cell Carcinoma with EGFR-Mutation and Human Papillomavirus. J. Cranio-Maxillofac. Surg. 2021, 49, 494–500. [Google Scholar] [CrossRef]
- Sasaki, E.; Nishikawa, D.; Hanai, N.; Hasegawa, Y.; Yatabe, Y. Sinonasal Squamous Cell Carcinoma and EGFR Mutations: A Molecular Footprint of a Benign Lesion. Histopathology 2018, 73, 953–962. [Google Scholar] [CrossRef]
- Doescher, J.; Piontek, G.; Wirth, M.; Bettstetter, M.; Schlegel, J.; Haller, B.; Brockhoff, G.; Reiter, R.; Pickhard, A. Epstein-Barr Virus Infection Is Strictly Associated with the Metastatic Spread of Sinonasal Squamous-Cell Carcinomas. Oral Oncol. 2015, 51, 929–934. [Google Scholar] [CrossRef]
- Nukpook, T.; Ekalaksananan, T.; Teeramatwanich, W.; Patarapadungkit, N.; Chaiwiriyakul, S.; Vatanasapt, P.; Aromseree, S.; Pientong, C. Prevalence and Association of Epstein-Barr Virus Infection with Sinonasal Inverted Papilloma and Sinonasal Squamous Cell Carcinoma in the Northeastern Thai Population. Infect. Agent. Cancer 2020, 15, 43. [Google Scholar] [CrossRef]
- McKay, S.P.; Grégoire, L.; Lonardo, F.; Reidy, P.; Mathog, R.H.; Lancaster, W.D. Human Papillomavirus (HPV) Transcripts in Malignant Inverted Papilloma Are from Integrated HPV DNA. Laryngoscope 2005, 115, 1428–1431. [Google Scholar] [CrossRef] [PubMed]
- Chatzipantelis, P.; Koukourakis, M.; Kouroupi, M.; Giatromanolaki, A. P16 Detection in Benign, Precursor Epithelial Lesions and Carcinomas of Head and Neck. Pathol. Res. Pract. 2020, 216, 153035. [Google Scholar] [CrossRef]
- Stoddard, D.G.; Keeney, M.G.; Gao, G.; Smith, D.I.; García, J.J.; O’Brien, E.K. Transcriptional Activity of HPV in Inverted Papilloma Demonstrated by In Situ Hybridization for E6/E7 MRNA. Otolaryngol. Neck Surg. 2015, 152, 752–758. [Google Scholar] [CrossRef]
- Vietia, D. Human Papillomavirus Detection in Head and Neck Squamous Cell Carcinoma. Ecancermedicalscience 2014, 8, 475. [Google Scholar] [CrossRef] [Green Version]
- Gallet, P.; Nguyen, D.T.; Russel, A.; Jankowski, R.; Vigouroux, C.; Rumeau, C. Intestinal and Non-Intestinal Nasal Cavity Adenocarcinoma: Impact of Wood Dust Exposure. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2018, 135, 383–387. [Google Scholar] [CrossRef]
- Tripodi, D.; Ferron, C.; Malard, O.; de Montreuil, C.B.; Planche, L.; Sebille-Rivain, V.; Roedlich, C.; Quéméner, S.; Renaudin, K.; Longuenesse, C.; et al. Relevance of Both Individual Risk Factors and Occupational Exposure in Cancer Survival Studies: The Example of Intestinal Type Sinonasal Adenocarcinoma. Laryngoscope 2011, 121, 2011–2018. [Google Scholar] [CrossRef]
- Bonzini, M.; Battaglia, P.; Parassoni, D.; Casa, M.; Facchinetti, N.; Turri-Zanoni, M.; Borchini, R.; Castelnuovo, P.; Ferrario, M.M. Prevalence of Occupational Hazards in Patients with Different Types of Epithelial Sinonasal Cancers. Rhinol. J. 2013, 51, 31–36. [Google Scholar] [CrossRef]
- Holmila, R.; Bornholdt, J.; Heikkilä, P.; Suitiala, T.; Févotte, J.; Cyr, D.; Hansen, J.; Snellman, S.-M.; Dictor, M.; Steiniche, T.; et al. Mutations in TP53 Tumor Suppressor Gene in Wood Dust-Related Sinonasal Cancer. Int. J. Cancer 2010, 127, 578–588. [Google Scholar] [CrossRef]
- Holmila, R.; Cyr, D.; Luce, D.; Heikkilä, P.; Dictor, M.; Steiniche, T.; Stjernvall, T.; Bornholdt, J.; Wallin, H.; Wolff, H.; et al. COX-2 and P53 in Human Sinonasal Cancer: COX-2 Expression Is Associated with Adenocarcinoma Histology and Wood-Dust Exposure. Int. J. Cancer 2008, 122, 2154–2159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bornholdt, J.; Hansen, J.; Steiniche, T.; Dictor, M.; Antonsen, A.; Wolff, H.; Schlünssen, V.; Holmila, R.; Luce, D.; Vogel, U.; et al. K-Rasmutations in Sinonasal Cancers in Relation to Wood Dust Exposure. BMC Cancer 2008, 8, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Agency for Research on Cancer (Ed.) Wood Dust and Formaldehyde. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC: Lyon, France, 1995; ISBN 978-92-832-1262-1. [Google Scholar]
- Demers, P.A.; Kogevinas, M.; Boffetta, P.; Leclerc, A.; Luce, D.; Gérin, M.; Battista, G.; Belli, S.; Bolm-Audorf, U.; Brinton, L.A.; et al. Wood Dust and Sino-Nasal Cancer: Pooled Reanalysis of Twelve Case-Control Studies. Am. J. Ind. Med. 1995, 28, 151–166. [Google Scholar] [CrossRef] [PubMed]
- Gallet, P.; Oussalah, A.; Pouget, C.; Dittmar, G.; Chery, C.; Gauchotte, G.; Jankowski, R.; Gueant, J.L.; Houlgatte, R. Integrative Genomics Analysis of Nasal Intestinal-Type Adenocarcinomas Demonstrates the Major Role of CACNA1C and Paves the Way for a Simple Diagnostic Tool in Male Woodworkers. Clin. Epigenet. 2021, 13, 179. [Google Scholar] [CrossRef] [PubMed]
- Pastore, E.; Perrone, F.; Orsenigo, M.; Mariani, L.; Millefanti, C.; Riccio, S.; Colombo, S.; Cantù, G.; Pierotti, M.A.; Pilotti, S. Polymorphisms of Metabolizing Enzymes and Susceptibility to Ethmoid Intestinal-Type Adenocarcinoma in Professionally Exposed Patients. Transl. Oncol. 2009, 2, 84–88. [Google Scholar] [CrossRef] [Green Version]
- Ahman, M.; Holmstrom, M.; Cynkier, I.; Soderman, E. Work Related Impairment of Nasal Function in Swedish Woodwork Teachers. Occup. Environ. Med. 1996, 53, 112–117. [Google Scholar] [CrossRef] [Green Version]
- Llorente, J.L.; Pérez-Escuredo, J.; Alvarez-Marcos, C.; Suárez, C.; Hermsen, M. Genetic and Clinical Aspects of Wood Dust Related Intestinal-Type Sinonasal Adenocarcinoma: A Review. Eur. Arch. Otorhinolaryngol. 2009, 266, 1–7. [Google Scholar] [CrossRef]
- Acheson, E.D.; Cowdell, R.H.; Hadfield, E.; Macbeth, R.G. Nasal Cancer in Woodworkers in the Furniture Industry. Br. Med. J. 1968, 2, 587. [Google Scholar] [CrossRef] [Green Version]
- Franchi, A.; Massi, D.; Palomba, A.; Biancalani, M.; Santucci, M. CDX-2, Cytokeratin 7 and Cytokeratin 20 Immunohistochemical Expression in the Differential Diagnosis of Primary Adenocarcinomas of the Sinonasal Tract. Virchows Arch. 2003, 445, 63–67. [Google Scholar] [CrossRef]
- Franchi, A.; Palomba, A.; Miligi, L.; Ranucci, V.; Innocenti, D.R.D.; Simoni, A.; Pepi, M.; Santucci, M. Intestinal Metaplasia of the Sinonasal Mucosa Adjacent to Intestinal-Type Adenocarcinoma. A Morphologic, Immunohistochemical, and Molecular Study. Virchows Arch. 2015, 466, 161–168. [Google Scholar] [CrossRef]
- Kennedy, M.T. Expression Pattern of CK7, CK20, CDX-2, and Villin in Intestinal-Type Sinonasal Adenocarcinoma. J. Clin. Pathol. 2004, 57, 932–937. [Google Scholar] [CrossRef] [PubMed]
- Ozolek, J.A.; Barnes, E.L.; Hunt, J.L. Basal/Myoepithelial Cells in Chronic Sinusitis, Respiratory Epithelial Adenomatoid Hamartoma, Inverted Papilloma, and Intestinal-Type and Nonintestinal-Type Sinonasal Adenocarcinoma: An Immunohistochemical Study. Arch. Pathol. Lab. Med. 2007, 131, 530–537. [Google Scholar] [CrossRef] [PubMed]
- Meerwein, C.M.; Brada, M.D.; Soyka, M.B.; Holzmann, D.; Rupp, N.J. Reappraisal of Grading in Intestinal-Type Sinonasal Adenocarcinoma: Tumor Budding as an Independent Prognostic Parameter. Head Neck Pathol. 2022, 16, 670–678. [Google Scholar] [CrossRef] [PubMed]
- Franchi, A.; Miligi, L.; Palomba, A.; Giovannetti, L.; Santucci, M. Sinonasal Carcinomas: Recent Advances in Molecular and Phenotypic Characterization and Their Clinical Implications. Crit. Rev. Oncol. Hematol. 2011, 79, 265–277. [Google Scholar] [CrossRef]
- Tilson, M.P.; Gallia, G.L.; Bishop, J.A. Among Sinonasal Tumors, CDX-2 Immunoexpression Is Not Restricted to Intestinal-Type Adenocarcinomas. Head Neck Pathol. 2014, 8, 59–65. [Google Scholar] [CrossRef] [Green Version]
- Cathro, H.P.; Mills, S.E. Immunophenotypic Differences Between Intestinal-Type and Low-Grade Papillary Sinonasal Adenocarcinomas: An Immunohistochemical Study of 22 Cases Utilizing CDX2 and MUC2. Am. J. Surg. Pathol. 2004, 28, 1026–1032. [Google Scholar] [CrossRef]
- Abecasis, J.; Viana, G.; Pissarra, C.; Pereira, T.; Fonseca, I.; Soares, J. Adenocarcinomas of the Nasal Cavity and Paranasal Sinuses: A Clinicopathological and Immunohistochemical Study of 14 Cases. Histopathology 2004, 45, 254–259. [Google Scholar] [CrossRef]
- Resto, V.A.; Krane, J.F.; Faquin, W.C. Immunohistochemical Distinction of Intestinal-Type Sinonasal Adenocarcinoma From Metastatic Adenocarcinoma of Intestinal Origin. Ann. Otol. Rhinol. Laryngol. 2006, 115, 59–64. [Google Scholar] [CrossRef]
- Bashir, A.A.; Robinson, R.A.; Benda, J.A.; Smith, R.B. Sinonasal Adenocarcinoma: Immunohistochemical Marking and Expression of Oncoproteins. Head Neck 2003, 25, 763–771. [Google Scholar] [CrossRef]
- Bigagli, E.; Maggiore, G.; Cinci, L.; D’Ambrosio, M.; Locatello, L.G.; Nardi, C.; Palomba, A.; Leopardi, G.; Orlando, P.; Licci, G.; et al. Low Levels of MiR-34c in Nasal Washings as a Candidate Marker of Aggressive Disease in Wood and Leather Exposed Workers with Sinonasal Intestinal-Type Adenocarcinomas (ITACs). Transl. Oncol. 2022, 25, 101507. [Google Scholar] [CrossRef]
- Choi, H. Sinonasal Adenocarcinoma: Evidence for Histogenetic Divergence of the Enteric and Nonenteric Phenotypes. Hum. Pathol. 2003, 34, 1101–1107. [Google Scholar] [CrossRef] [PubMed]
- Vivanco, B.; Llorente, J.L.; Perez-Escuredo, J.; Álvarez Marcos, C.; Fresno, M.F.; Hermsen, M.A. Benign Lesions in Mucosa Adjacent to Intestinal-Type Sinonasal Adenocarcinoma. Pathol. Res. Int. 2011, 2011, 230147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Inclán, C.; López, F.; Pérez-Escuredo, J.; Cuesta-Albalad, M.P.; Vivanco, B.; Centeno, I.; Balbín, M.; Suárez, C.; Llorente, J.L.; Hermsen, M.A. EGFR Status and KRAS/BRAF Mutations in Intestinal-Type Sinonasal Adenocarcinomas. Cell. Oncol. 2012, 35, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Sjöstedt, S.; Schmidt, A.Y.; Vieira, F.G.; Willemoe, G.L.; Agander, T.K.; Olsen, C.; Nielsen, F.C.; von Buchwald, C. Major Driver Mutations Are Shared between Sinonasal Intestinal-Type Adenocarcinoma and the Morphologically Identical Colorectal Adenocarcinoma. J. Cancer Res. Clin. Oncol. 2021, 147, 1019–1027. [Google Scholar] [CrossRef] [PubMed]
- Frattini, M.; Perrone, F.; Suardi, S.; Balestra, D.; Caramuta, S.; Colombo, F.; Licitra, L.; Cantù, G.; Pierotti, M.A.; Pilotti, S. Phenotype–Genotype Correlation: Challenge of Intestinal-Type Adenocarcinoma of the Nasal Cavity and Paranasal Sinuses. Head Neck 2006, 28, 909–915. [Google Scholar] [CrossRef] [PubMed]
- Perez-Ordonez, B. Expression of Mismatch Repair Proteins, Catenin, and E Cadherin in Intestinal-Type Sinonasal Adenocarcinoma. J. Clin. Pathol. 2004, 57, 1080–1083. [Google Scholar] [CrossRef] [Green Version]
- Perrone, F.; Oggionni, M.; Birindelli, S.; Suardi, S.; Tabano, S.; Romano, R.; Moiraghi, M.L.; Bimbi, G.; Quattrone, P.; Cantu, G.; et al. TP53, P14ARF, P16INK4a and H- Ras Gene Molecular Analysis in Intestinal-Type Adenocarcinoma of the Nasal Cavity and Paranasal Sinuses: TP53, P14ARF and P16 INK4a Deregulation in ITAC. Int. J. Cancer 2003, 105, 196–203. [Google Scholar] [CrossRef] [Green Version]
- Diaz-Molina, J.P.; Llorente, J.L.; Vivanco, B.; Martínez-Camblor, P.; Florentino-Fresno, M.; Pérez-Escuredo, J.; Álvarez-Marcos, C.; Hermsen, M.A. Wnt-Pathway Activation in Intestinal-Type Sinonasal Adenocarcinoma. Rhinol. J. 2011, 49, 593–599. [Google Scholar] [CrossRef]
- Franchi, A.; Palomba, A.; Fondi, C.; Miligi, L.; Paglierani, M.; Pepi, M.; Santucci, M. Immunohistochemical Investigation of Tumorigenic Pathways in Sinonasal Intestinal-Type Adenocarcinoma. A Tissue Microarray Analysis of 62 Cases: Tumorigenic Pathways in Sinonasal Intestinal Type Adenocarcinoma. Histopathology 2011, 59, 98–105. [Google Scholar] [CrossRef]
- Franchi, A.; Fondi, C.; Paglierani, M.; Pepi, M.; Gallo, O.; Santucci, M. Epidermal Growth Factor Receptor Expression and Gene Copy Number in Sinonasal Intestinal Type Adenocarcinoma. Oral Oncol. 2009, 45, 835–838. [Google Scholar] [CrossRef]
- Projetti, F.; Durand, K.; Chaunavel, A.; Léobon, S.; Lacorre, S.; Caire, F.; Bessède, J.-P.; Moreau, J.-J.; Coulibaly, B.; Labrousse, F. Epidermal Growth Factor Receptor Expression and KRAS and BRAF Mutations: Study of 39 Sinonasal Intestinal-Type Adenocarcinomas. Hum. Pathol. 2013, 44, 2116–2125. [Google Scholar] [CrossRef] [PubMed]
- Freund, J.-N.; Domon-Dell, C.; Kedinger, M.; Duluc, I. The Cdx-1 and Cdx-2 Homeobox Genes in the Intestine. Biochem. Cell Biol. 1998, 76, 957–969. [Google Scholar] [CrossRef] [PubMed]
- Beilstein, M.; Silberg, D. Cellular and Molecular Mechanisms Responsible for Progression of Barrett’s Metaplasia to Esophageal Carcinoma. Matol./Oncol. Clin. 2002, 17, 453–470. [Google Scholar] [CrossRef]
- Castillo, C.; Buob, D.; Mortuaire, G.; Chevalier, D.; Aubert, S.; Copin, M.-C.; Leroy, X. Signet-Ring Cell Adenocarcinoma of Sinonasal Tract: An Immunohistochemical Study of the Mucins Profile. Arch. Pathol. Lab. Med. 2007, 131, 961–964. [Google Scholar] [CrossRef]
- Pérez-Escuredo, J.; Martínez, J.G.; Vivanco, B.; Marcos, C.Á.; Suárez, C.; Llorente, J.L.; Hermsen, M.A. Wood Dust–Related Mutational Profile of TP53 in Intestinal-Type Sinonasal Adenocarcinoma. Hum. Pathol. 2012, 43, 1894–1901. [Google Scholar] [CrossRef]
- Bossi, P.; Perrone, F.; Miceli, R.; Cantù, G.; Mariani, L.; Orlandi, E.; Fallai, C.; Locati, L.D.; Cortelazzi, B.; Quattrone, P.; et al. Tp53 Status as Guide for the Management of Ethmoid Sinus Intestinal-Type Adenocarcinoma. Oral Oncol. 2013, 49, 413–419. [Google Scholar] [CrossRef]
- Re, M.; Magliulo, G.; Tarchini, P.; Mallardi, V.; Rubini, C.; Santarelli, A.; Muzio, L.L. P53 and BCL-2 Over-Expression Inversely Correlates with Histological Differentiation in Occupational Ethmoidal Intestinal-Type Sinonasal Adenocarcinoma. Int. J. Immunopathol. Pharmacol. 2011, 24, 603–609. [Google Scholar] [CrossRef] [Green Version]
- Mutoh, H.; Hakamata, Y.; Sato, K.; Eda, A.; Yanaka, I.; Honda, S.; Osawa, H.; Kaneko, Y.; Sugano, K. Conversion of Gastric Mucosa to Intestinal Metaplasia in Cdx2-Expressing Transgenic Mice. Biochem. Biophys. Res. Commun. 2002, 294, 470–479. [Google Scholar] [CrossRef]
- Shiao, Y.-H.; Rugge, M.; Correa, P.; Lehmann, H.P.; Scheer, W.D. P53 Alteration in Gastric Precancerous Lesions. Am. J. Pathol. 1994, 144, 511. [Google Scholar]
- Bian, Y.-S.; Benhattar, J. P53 Gene Mutation and Protein Accumulation during Neoplastic Progression in Barrett’s Esophagus. Mod. Pathol. 2001, 14, 397–403. [Google Scholar] [CrossRef] [Green Version]
- Valente, G.; Ferrari, L.; Kerim, S.; Gervasio, C.F.; Ricci, E.; Migliaretti, G.; Pira, E.; Bussi, M. Evidence of P53 Immunohistochemical Overexpression in Ethmoidal Mucosa of Woodworkers. Cancer Detect. Prev. 2004, 28, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Varshavsky, A. Targeting the Absence: Homozygous DNA Deletions as Immutable Signposts for Cancer Therapy. Proc. Natl. Acad. Sci. USA 2007, 104, 14935–14940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schatz, C.; Sprung, S.; Schartinger, V.; Codina-Martínez, H.; Lechner, M.; Hermsen, M.; Haybaeck, J. Dysregulation of Translation Factors EIF2S1, EIF5A and EIF6 in Intestinal-Type Adenocarcinoma (ITAC). Cancers 2021, 13, 5649. [Google Scholar] [CrossRef] [PubMed]
- Czapiewski, P.; Kunc, M.; Haybaeck, J. Genetic and Molecular Alterations in Olfactory Neuroblastoma: Implications for Pathogenesis, Prognosis and Treatment. Oncotarget 2016, 7, 52584–52596. [Google Scholar] [CrossRef] [Green Version]
- Lazo de la Vega, L.; McHugh, J.B.; Cani, A.K.; Kunder, K.; Walocko, F.M.; Liu, C.-J.; Hovelson, D.H.; Robinson, D.; Chinnaiyan, A.M.; Tomlins, S.A.; et al. Comprehensive Molecular Profiling of Olfactory Neuroblastoma Identifies Potentially Targetable FGFR3 Amplifications. Mol. Cancer Res. 2017, 15, 1551–1557. [Google Scholar] [CrossRef] [Green Version]
- Guled, M.; Myllykangas, S.; Jr, H.F.F.; Mills, S.E.; Knuutila, S.; Stelow, E.B. Array Comparative Genomic Hybridization Analysis of Olfactory Neuroblastoma. Mod. Pathol. 2008, 21, 770–778. [Google Scholar] [CrossRef] [Green Version]
- Holland, H.; Koschny, R.; Krupp, W.; Meixensberger, J.; Bauer, M.; Kirsten, H.; Ahnert, P. Comprehensive Cytogenetic Characterization of an Esthesioneuroblastoma. Cancer Genet. Cytogenet. 2007, 173, 89–96. [Google Scholar] [CrossRef]
- Valli, R.; De Bernardi, F.; Frattini, A.; Volpi, L.; Bignami, M.; Facchetti, F.; Pasquali, F.; Castelnuovo, P.; Maserati, E. Comparative Genomic Hybridization on Microarray (a-CGH) in Olfactory Neuroblastoma: Analysis of Ten Cases and Review of the Literature: A-CGH in Olfactory Neuroblastoma. Genes. Chromosomes Cancer 2015, 54, 771–775. [Google Scholar] [CrossRef]
- Weiss, G.J.; Liang, W.S.; Izatt, T.; Arora, S.; Cherni, I.; Raju, R.N.; Hostetter, G.; Kurdoglu, A.; Christoforides, A.; Sinari, S.; et al. Paired Tumor and Normal Whole Genome Sequencing of Metastatic Olfactory Neuroblastoma. PLoS ONE 2012, 7, e37029. [Google Scholar] [CrossRef] [Green Version]
- Schröck, A.; Göke, F.; Wagner, P.; Bode, M.; Franzen, A.; Huss, S.; Agaimy, A.; Ihrler, S.; Kirsten, R.; Kristiansen, G.; et al. Fibroblast Growth Factor Receptor-1 as a Potential Therapeutic Target in Sinonasal Cancer: FGFR1 Amplification of Sinonasal Carcinoma. Head Neck 2014, 36, 1253–1257. [Google Scholar] [CrossRef]
- Micheloni, G.; Millefanti, G.; Conti, A.; Pirrone, C.; Marando, A.; Rainero, A.; Tararà, L.; Pistochini, A.; Lo Curto, F.; Pasquali, F.; et al. Identification of OTX1 and OTX2 As Two Possible Molecular Markers for Sinonasal Carcinomas and Olfactory Neuroblastomas. J. Vis. Exp. 2019, 144, e56880. [Google Scholar] [CrossRef]
- Pirrone, C.; Chiaravalli, A.M.; Marando, A.; Conti, A.; Rainero, A.; Pistochini, A.; Lo Curto, F.; Pasquali, F.; Castelnuovo, P.; Capella, C.; et al. OTX1 and OTX2 as Possible Molecular Markers of Sinonasal Carcinomas and Olfactory Neuroblastomas. Eur. J. Histochem. 2017, 61, 2320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Topcagic, J.; Feldman, R.; Ghazalpour, A.; Swensen, J.; Gatalica, Z.; Vranic, S. Comprehensive Molecular Profiling of Advanced/Metastatic Olfactory Neuroblastomas. PLoS ONE 2018, 13, e0191244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gay, L.M.; Kim, S.; Fedorchak, K.; Kundranda, M.; Odia, Y.; Nangia, C.; Battiste, J.; Colon-Otero, G.; Powell, S.; Russell, J.; et al. Comprehensive Genomic Profiling of Esthesioneuroblastoma Reveals Additional Treatment Options. Oncologist 2017, 22, 834–842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- London, N.R.; Rooper, L.M.; Bishop, J.A.; Xu, H.; Bernhardt, L.J.; Ishii, M.; Hann, C.L.; Taube, J.M.; Izumchenko, E.; Gaykalova, D.A.; et al. Expression of Programmed Cell Death Ligand 1 and Associated Lymphocyte Infiltration in Olfactory Neuroblastoma. World Neurosurg. 2020, 135, e187–e193. [Google Scholar] [CrossRef]
- Friedman, J.; Schumacher, J.K.; Papagiannopoulos, P.; Al-Khudari, S.; Tajudeen, B.A.; Batra, P.S. Targeted 595-gene Genomic Profiling Demonstrates Low Tumor Mutational Burden in Olfactory Neuroblastoma. Int. Forum Allergy Rhinol. 2021, 11, 58–64. [Google Scholar] [CrossRef]
- Classe, M.; Yao, H.; Mouawad, R.; Creighton, C.J.; Burgess, A.; Allanic, F.; Wassef, M.; Leroy, X.; Verillaud, B.; Mortuaire, G.; et al. Integrated Multi-Omic Analysis of Esthesioneuroblastomas Identifies Two Subgroups Linked to Cell Ontogeny. Cell Rep. 2018, 25, 811–821.e5. [Google Scholar] [CrossRef] [Green Version]
- Capper, D.; Engel, N.W.; Stichel, D.; Lechner, M.; Glöss, S.; Schmid, S.; Koelsche, C.; Schrimpf, D.; Niesen, J.; Wefers, A.K.; et al. DNA Methylation-Based Reclassification of Olfactory Neuroblastoma. Acta Neuropathol. 2018, 136, 255–271. [Google Scholar] [CrossRef] [Green Version]
- Glöss, S.; Jurmeister, P.; Thieme, A.; Schmid, S.; Cai, W.Y.; Serrette, R.N.; Perner, S.; Ribbat-Idel, J.; Pagenstecher, A.; Bläker, H.; et al. IDH2 R172 Mutations Across Poorly Differentiated Sinonasal Tract Malignancies: Forty Molecularly Homogenous and Histologically Variable Cases With Favorable Outcome. Am. J. Surg. Pathol. 2021, 45, 1190–1204. [Google Scholar] [CrossRef]
- Dogan, S.; Vasudevaraja, V.; Xu, B.; Serrano, J.; Ptashkin, R.N.; Jung, H.J.; Chiang, S.; Jungbluth, A.A.; Cohen, M.A.; Ganly, I.; et al. DNA Methylation-Based Classification of Sinonasal Undifferentiated Carcinoma. Mod. Pathol. 2019, 32, 1447–1459. [Google Scholar] [CrossRef]
- Romani, C.; Bignotti, E.; Mattavelli, D.; Bozzola, A.; Lorini, L.; Tomasoni, M.; Ardighieri, L.; Rampinelli, V.; Paderno, A.; Battocchio, S.; et al. Gene Expression Profiling of Olfactory Neuroblastoma Helps Identify Prognostic Pathways and Define Potentially Therapeutic Targets. Cancers 2021, 13, 2527. [Google Scholar] [CrossRef] [PubMed]
- Czapiewski, P.; Gorczyński, A.; Haybaeck, J.; Okoń, K.; Reszeć, J.; Skrzypczak, W.; Dzierżanowski, J.; Kunc, M.; Karczewska, J.; Biernat, W. Expression Pattern of ISL-1, TTF-1 and PAX5 in Olfactory Neuroblastoma. Pol. J. Pathol. 2016, 2, 130–135. [Google Scholar] [CrossRef] [Green Version]
- Mao, L.; Xia, Y.; Zhou, Y.; Dai, R.; Yang, X.; Wang, Y.; Duan, S.; Qiao, X.; Mei, Y.; Hu, B. Activation of Sonic Hedgehog Signaling Pathway in Olfactory Neuroblastoma. Oncology 2009, 77, 231–243. [Google Scholar] [CrossRef] [PubMed]
- Czapiewski, P.; Kunc, M.; Gorczyński, A.; Haybaeck, J.; Okoń, K.; Reszec, J.; Lewczuk, A.; Dzierzanowski, J.; Karczewska, J.; Biernat, W.; et al. Frequent Expression of Somatostatin Receptor 2a in Olfactory Neuroblastomas: A New and Distinctive Feature. Hum. Pathol. 2018, 79, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Cracolici, V.; Wang, E.W.; Gardner, P.A.; Snyderman, C.; Gargano, S.M.; Chiosea, S.; Singhi, A.D.; Seethala, R.R. SSTR2 Expression in Olfactory Neuroblastoma: Clinical and Therapeutic Implications. Head Neck Pathol. 2021, 15, 1185–1191. [Google Scholar] [CrossRef] [PubMed]
- Lechner, M.; Takahashi, Y.; Turri-Zanoni, M.; Liu, J.; Counsell, N.; Hermsen, M.; Kaur, R.P.; Zhao, T.; Ramanathan, M.; Schartinger, V.H.; et al. Clinical Outcomes, Kadish-INSICA Staging and Therapeutic Targeting of Somatostatin Receptor 2 in Olfactory Neuroblastoma. Eur. J. Cancer 2022, 162, 221–236. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucidi, D.; Cantaffa, C.; Miglio, M.; Spina, F.; Alicandri Ciufelli, M.; Marchioni, A.; Marchioni, D. Tumors of the Nose and Paranasal Sinuses: Promoting Factors and Molecular Mechanisms—A Systematic Review. Int. J. Mol. Sci. 2023, 24, 2670. https://doi.org/10.3390/ijms24032670
Lucidi D, Cantaffa C, Miglio M, Spina F, Alicandri Ciufelli M, Marchioni A, Marchioni D. Tumors of the Nose and Paranasal Sinuses: Promoting Factors and Molecular Mechanisms—A Systematic Review. International Journal of Molecular Sciences. 2023; 24(3):2670. https://doi.org/10.3390/ijms24032670
Chicago/Turabian StyleLucidi, Daniela, Carla Cantaffa, Matteo Miglio, Federica Spina, Matteo Alicandri Ciufelli, Alessandro Marchioni, and Daniele Marchioni. 2023. "Tumors of the Nose and Paranasal Sinuses: Promoting Factors and Molecular Mechanisms—A Systematic Review" International Journal of Molecular Sciences 24, no. 3: 2670. https://doi.org/10.3390/ijms24032670
APA StyleLucidi, D., Cantaffa, C., Miglio, M., Spina, F., Alicandri Ciufelli, M., Marchioni, A., & Marchioni, D. (2023). Tumors of the Nose and Paranasal Sinuses: Promoting Factors and Molecular Mechanisms—A Systematic Review. International Journal of Molecular Sciences, 24(3), 2670. https://doi.org/10.3390/ijms24032670