Disruptions in Hypothalamic–Pituitary–Gonadal Axis Development and Their IgG Modulation after Prenatal Systemic Inflammation in Male Rats
Abstract
:1. Introduction
2. Results
2.1. The Effect of Prenatal LPS Exposure on the Synaptic Input Number on the GnRH Neurons and in Adjacent Areas in the Septopreoptic Area in Adult Male Offspring
2.2. Long-Term Effects of IgG and IL-6 Receptor Blockade on Synaptic Input Formation on the GnRH Neurons of Male Rats after Prenatal Exposure to LPS
2.3. The Effect of Prenatal LPS and Immunoglobulin Treatments on the Plasma Levels of Follicle-Stimulating Hormone (FSH) and Sex Steroids in Adult Male Offspring
2.4. Long-Term Effects of LPS, IgG, and IL-6 Receptor Blockade on the Gonadal Structure in Male Offspring
3. Discussion
4. Materials and Methods
4.1. Animals and Experimental Design
4.2. GnRH and Synapsin-1 Double Immunohistochemical Staining
4.3. Gonadal Revising in the Male Offspring
4.4. Evaluation of FSH and Sex Steroid Levels in the Male Offspring Blood by ELISA
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BSA | bovine serum albumin |
ED | day of embryonic development (embryonic day) |
FSH | follicle-stimulating hormone |
GABA | gamma-aminobutyric acid |
GnRH | Gonadotropin-releasing hormone |
HPG | Hypothalamic–pituitary–gonadal |
IgG | immunoglobulin G |
IL | interleukin |
IL-6RmAbs | monoclonal anti-interleukin-6 receptor antibodies |
LH | luteinizing hormone |
LIF | leukemia inhibitory factor |
LPS | lipopolysaccharide |
MCP-1 | monocyte chemotactic protein-1 |
PAF | paraformaldehyde |
PBS | Phosphate-buffered saline |
PBST | Phosphate-buffered saline with 0.3% Triton X-100 |
PND | day of postnatal development (postnatal day) |
References
- Cho, H.J.; Shan, Y.; Whittington, N.C.; Wray, S. Nasal Placode Development, GnRH Neuronal Migration and Kallmann Syndrome. Front. Cell Dev. Biol. 2019, 11, 121. [Google Scholar] [CrossRef] [PubMed]
- Herbison, A.E. The Gonadotropin-Releasing Hormone Pulse Generator. Endocrinology 2018, 159, 3723–3736. [Google Scholar] [CrossRef] [PubMed]
- Yip, S.H.; Campos, P.; Liu, X.; Porteous, R.; Herbison, A.E. Innervation of GnRH Neuron Distal Projections and Activation by Kisspeptin in a New GnRH-Cre Rat Model. Endocrinology 2021, 162, bqaa186. [Google Scholar] [CrossRef] [PubMed]
- Stamatiades, G.A.; Kaiser, U.B. Gonadotropin regulation by pulsatile GnRH: Signaling and gene expression. Mol. Cell. Endocrinol. 2018, 463, 131–141. [Google Scholar] [CrossRef]
- Moore, A.M.; Coolen, L.M.; Porter, D.T.; Goodman, R.L.; Lehman, M.N. KNDy cells revisited. Endocrinology 2018, 159, 3219–3234. [Google Scholar] [CrossRef]
- Izvolskaia, M.; Sharova, V.; Zakharova, L. Perinatal inflammation reprograms neuroendocrine, immune, and reproductive functions: Profile of cytokine biomarkers. Inflammation 2020, 43, 1175–1183. [Google Scholar] [CrossRef]
- Constantin, S.; Reynolds, D.; Oh, A.; Pizano, K.; Wray, S. Nitric oxide resets kisspeptin-excited GnRH neurons via PIP2 replenishment. Proc. Natl. Acad. Sci. USA 2021, 118, e2012339118. [Google Scholar] [CrossRef]
- Uenoyama, Y.; Nagae, M.; Tsuchida, H.; Inoue, N.; Tsukamura, H. Role of KNDy Neurons Expressing Kisspeptin, Neurokinin B, and Dynorphin A as a GnRH Pulse Generator Controlling Mammalian Reproduction. Front. Endocrinol. 2021, 12, 724632. [Google Scholar] [CrossRef]
- Desroziers, E.; Mikkelsen, J.D.; Duittoz, A.; Franceschini, I. Kisspeptin-immunoreactivity changes in a sex- and hypothalamic-region-specific manner across rat postnatal development. J. Neuroendocrinol. 2012, 24, 1154–1165. [Google Scholar] [CrossRef]
- Herbison, A.E.; Moenter, S.M. Depolarising and hyperpolarising actions of GABA(A) receptor activation on gonadotrophin-releasing hormone neurones: Towards an emerging consensus. J. Neuroendocrinol. 2011, 23, 557–569. [Google Scholar] [CrossRef] [Green Version]
- Ottem, E.N.; Godwin, J.G.; Krishnan, S.; Petersen, S.L. Dual-phenotype GABA/glutamate neurons in adult preoptic area: Sexual dimorphism and function. J. Neurosci. 2004, 24, 8097–8105. [Google Scholar] [CrossRef] [PubMed]
- Ugryumov, M.V. Endocrine functions of brain in adult and developing mammals. Russ. J. Dev. Biol. 2009, 40, 19–29. [Google Scholar] [CrossRef]
- Sato, S.; Yin, C.; Teramoto, A.; Sakuma, Y.; Kato, M. Sexually dimorphic modulation of GABA(A) receptor currents by melatonin in rat gonadotropin-releasing hormone neurons. J. Physiol. Sci. 2008, 58, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Nestor, C.C.; Bedenbaugh, M.N.; Hileman, S.M.; Coolen, L.M.; Lehman, M.N.; Goodman, R.L. Regulation of GnRH pulsatility in ewes. Reproduction 2018, 156, R83–R99. [Google Scholar] [CrossRef] [PubMed]
- Plant, T.M. The neurobiological mechanism underlying hypothalamic GnRH pulse generation: The role of kisspeptin neurons in the arcuate nucleus. F1000Research 2019, 8, 982. [Google Scholar] [CrossRef]
- Lehman, M.N.; He, W.; Coolen, L.M.; Levine, J.E.; Goodman, R.L. Does the KNDy model for the control of gonadotropin-releasing hormone pulses apply to monkeys and humans? Semin. Reprod. Med. 2019, 37, 71–83. [Google Scholar] [CrossRef] [PubMed]
- Han, S.Y.; Cheong, I.; McLennan, T.; Herbison, A.E. Neural Determinants of Pulsatile Luteinizing Hormone Secretion in Male Mice. Endocrinology 2020, 161, bqz045. [Google Scholar] [CrossRef]
- Izvolskaia, M.S.; Sharova, V.S.; Ignatiuk, V.M.; Voronova, S.N.; Zakharova, L.A. Abolition of prenatal lipopolysaccharide-induced reproductive disorders in rat male offspring by fulvestrant. Andrologia 2019, 51, e13204. [Google Scholar] [CrossRef]
- Barabás, K.; Szabó-Meleg, E.; Ábrahám, I.M. Effect of Inflammation on Female Gonadotropin-Releasing Hormone (GnRH) Neurons: Mechanisms and Consequences. Int. J. Mol. Sci. 2020, 21, 529. [Google Scholar] [CrossRef]
- Wang, H.; Yang, L.L.; Hu, Y.F.; Wang, B.W.; Huang, Y.Y.; Zhang, C.; Chen, Y.H.; Xu, D.X. Maternal LPS exposure during pregnancy impairs testicular development, steroidogenesis and spermatogenesis in male offspring. PLoS ONE 2014, 9, e106786. [Google Scholar] [CrossRef] [Green Version]
- Sharova, V.S.; Izvolskaia, M.S.; Zakharova, L.A. Lipopolysaccharide-induced maternal inflammation affects the gonadotropin-releasing hormone neuron development in fetal mice. Neuroimmunomodulation 2015, 224, 222–232. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Soto, Á.; Simón-Fuentes, M.; de Las Casas-Engel, M.; Cuevas, V.D.; López-Bravo, M.; Domínguez-Andrés, J.; Saz-Leal, P.; Sancho, D.; Ardavín, C.; Ochoa-Grullón, J.; et al. IVIg Promote Cross-Tolerance against Inflammatory Stimuli In Vitro and In Vivo. J. Immunol. 2018, 201, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Kyvelidou, C.; Sotiriou, D.; Zerva, I.; Athanassakis, I. Protection against Lipopolysaccharide-Induced Immunosuppression by IgG and IgM. Shock 2018, 49, 474–482. [Google Scholar] [CrossRef] [PubMed]
- Sawa, T.; Kinoshita, M.; Inoue, K.; Ohara, J.; Moriyama, K. Immunoglobulin for Treating Bacterial Infections: One More Mechanism of Action. Antibodies 2019, 8, 52. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, M.; Laskou, F.; Stapleton, P.P.; Hadavi, S.; Dasgupta, B. Tocilizumab (Actemra). Hum. Vaccin. Immunother. 2017, 13, 1972–1988. [Google Scholar] [CrossRef]
- Berardicurti, O.; Ruscitti, P.; Ursini, F.; D’Andrea, S.; Ciaffi, J.; Meliconi, R.; Iagnocco, A.; Cipriani, P.; Giacomelli, R. Mortality in tocilizumab-treated patients with COVID-19: A systematic review and meta-analysis. Clin. Exp. Rheumatol. 2020, 38, 1247–1254. [Google Scholar]
- Gascuel, J.; Lemoine, A.; Rigault, C.; Datiche, F.; Benani, A.; Penicaud, L.; Lopez-Mascaraque, L. Hypothalamus-olfactory system crosstalk: Orexin a immunostaining in mice. Front. Neuroanat. 2012, 6, 44. [Google Scholar] [CrossRef] [PubMed]
- Oleari, R.; Lettieri, A.; Paganoni, A.; Zanieri, L.; Cariboni, A. Semaphorin Signaling in GnRH Neurons: From Development to Disease. Neuroendocrinology 2019, 109, 193–199. [Google Scholar] [CrossRef]
- Duittoz, A.H.; Forni, P.E.; Giacobini, P.; Golan, M.; Mollard, P.; Negrón, A.L.; Radovick, S.; Wray, S. Development of the gonadotropin-releasing hormone system. J. Neuroendocrinol. 2022, 34, e13087. [Google Scholar] [CrossRef]
- Wu, X.Q.; Li, X.F.; Ye, B.; Popat, N.; Milligan, S.R.; Lightman, S.L.; O’Byrne, K.T. Neonatal programming by immunological challenge: Effects on ovarian function in the adult rat. Reproduction 2011, 41, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Garrido, M.A.; García-Galiano, D.; Tena-Sempere, M. Early programming of reproductive health and fertility: Novel neuroendocrine mechanisms and implications in reproductive medicine. Hum. Reprod. Update 2022, 28, 346–375. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Yan, J.Y.; Lo, Y.K.; Carvey, P.M.; Ling, Z. Dopaminergic and serotoninergic deficiencies in young adult rats prenatally exposed to the bacterial lipopolysaccaharide. Brain Res. 2009, 1265, 196–204. [Google Scholar] [CrossRef]
- Harvey, L.; Boksa, P. A stereological comparison of GAD67 and reelin expression in the hippocampal stratum oriens of offspring from two mouse models of maternal inflammation during pregnancy. Neuropharmacology 2012, 62, 1767–1776. [Google Scholar] [CrossRef]
- Berg, T.; Silveira, M.A.; Moenter, S.M. Prepubertal Development of GABAergic Transmission to Gonadotropin-Releasing Hormone (GnRH) Neurons and Postsynaptic Response Are Altered by Prenatal Androgenization. J. Neurosci. 2018, 38, 2283–2293. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Shuang, L.; Yujie, S.; Xiaohui, M.; Wei, W.; Jidong, W. Activin A overexpression promotes rat follicular development through SCF-kit-mediated cell signals. Gynecol. Endocrinol. 2020, 36, 1070–1073. [Google Scholar] [CrossRef] [PubMed]
- Lim, W.L.; Idris, M.M.; Kevin, F.S.; Soga, T.; Parhar, I.S. Maternal Dexamethasone Exposure Alters Synaptic Inputs to Gonadotropin-Releasing Hormone Neurons in the Early Postnatal Rat. Front. Endocrinol. 2016, 7, 117. [Google Scholar] [CrossRef]
- Biala, Y.N.; Bogoch, Y.; Bejar, C.; Linial, M.; Weinstock, M. Prenatal stress diminishes gender differences in behavior and in expression of hippocampal synaptic genes and proteins in rats. Hippocampus 2011, 21, 1114–1125. [Google Scholar] [CrossRef]
- Sharova, V.S.; Izvolskaia, M.S.; Voronova, S.N.; Zakharova, L.A. Effect of Bacterial Endotoxin on Migration of Gonadotropin-Releasing Hormone Producing Neurons in Rat Embryogenesis. Russ. J. Dev. Biol. 2011, 42, 439–446. [Google Scholar] [CrossRef]
- Giovanoli, S.; Weber-Stadlbauer, U.; Schedlowski, M.; Meyer, U.; Engler, H. Prenatal immune activation causes hippocampal synaptic deficits in the absence of overt microglia anomalies. Brain Behav. Immun. 2016, 55, 25–38. [Google Scholar] [CrossRef] [PubMed]
- Mirabella, F.; Desiato, G.; Mancinelli, S.; Fossati, G.; Rasile, M.; Morini, R.; Markicevic, M.; Grimm, C.; Amegandjin, C.; Termanini, A.; et al. Prenatal interleukin 6 elevation increases glutamatergic synapse density and disrupts hippocampal connectivity in offspring. Immunity 2021, 54, 2611–2631. [Google Scholar] [CrossRef]
- Zhu, H.; Hu, S.; Li, Y.; Sun, Y.; Xiong, X.; Hu, X.; Chen, J.; Qiu, S. Interleukins and Ischemic Stroke. Front. Immunol. 2022, 13, 828447. [Google Scholar] [CrossRef]
- Yao, H.; Zhang, Y.; Shu, H.; Xie, B.; Tao, Y.; Yuan, Y.; Shang, Y.; Yuan, S.; Zhang, J. Hyperforin Promotes Post-Stroke Neuroangiogenesis via Astrocytic IL-6-Mediated Negative Immune Regulation in the Ischemic Brain. Front. Cell. Neurosci. 2019, 13, 201. [Google Scholar] [CrossRef]
- Izvolskaia, M.S.; Tillet, Y.; Sharova, V.S.; Voronova, S.N.; Zakharova, L.A. Disruptions in the hypothalamic-pituitary-gonadal axis in rat offspring following prenatal maternal exposure to lipopolysaccharide. Stress 2016, 19, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Das, N.; Kumar, T.R. Molecular regulation of follicle-stimulating hormone synthesis, secretion and action. J. Mol. Endocrinol. 2018, 60, R131–R155. [Google Scholar] [PubMed]
- Magre, S.; Jost, A. Sertoli cells and testicular differentiation in the rat fetus. J. Electron. Microsc. Tech. 1991, 19, 172–188. [Google Scholar] [CrossRef] [PubMed]
- Eddie, S.L.; Childs, A.J.; Jabbour, H.N.; Anderson, R.A. Developmentally regulated IL6-type cytokines signal to germ cells in the human fetal ovary. Mol. Hum. Reprod. 2012, 18, 88–95. [Google Scholar] [CrossRef]
- Oduwole, O.O.; Huhtaniemi, I.T.; Misrahi, M. The Roles of Luteinizing Hormone, Follicle-Stimulating Hormone and Testosterone in Spermatogenesis and Folliculogenesis Revisited. Int. J. Mol. Sci. 2021, 22, 12735. [Google Scholar] [CrossRef]
- Chen, L.; Wang, R.; Wang, W.; Lu, W.; Xiao, Y.; Wang, D.; Dong, Z. Hormone Inhibition during Mini-Puberty and Testicular Function in Male Rats. Int. J. Endocrinol. Metab. 2015, 13, e25465. [Google Scholar] [CrossRef]
- Rice, T.R. Postnatal testosterone may be an important mediator of the association between prematurity and male neurodevelopmental disorders: A hypothesis. Int. J. Adolesc. Med. Health 2017, 29. [Google Scholar] [CrossRef]
- Luca, G.; Arato, I.; Sorci, G.; Cameron, D.F.; Hansen, B.C.; Baroni, T.; Donato, R.; White, D.G.J.; Calafiore, R. Sertoli cells for cell transplantation: Pre-clinical studies and future perspectives. Andrology 2018, 6, 385–395. [Google Scholar] [CrossRef]
- Casarini, L.; Crépieux, P.; Reiter, E.; Lazzaretti, C.; Paradiso, E.; Rochira, V.; Brigante, G.; Santi, D.; Simoni, M. FSH for the Treatment of Male Infertility. Int. J. Mol. Sci. 2020, 21, 2270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaigne, B.; Mouthon, L. Mechanisms of action of intravenous immunoglobulin. Transfus. Apher. Sci. 2017, 56, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Durandy, A.; Kaveri, S.V.; Kuijpers, T.W.; Basta, M.; Miescher, S.; Ravetch, J.V.; Rieben, R. Intravenous immunoglobulins–understanding properties and mechanisms. Clin. Exp. Immunol. 2009, 158 (Suppl. S1), 2–13. [Google Scholar] [CrossRef] [PubMed]
- Izvolskaia, M.; Ignatiuk, V.; Ismailova, A.; Sharova, V.; Zakharova, L. IgG modulation in male mice with reproductive failure after prenatal inflammation. Reproduction 2021, 161, 669–679. [Google Scholar] [CrossRef] [PubMed]
- Clermont, Y.; Perey, B. Quantitative study of the cell population of the seminiferous tubules in immature rats. Am. J. Anat. 1957, 100, 241–267. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ignatiuk, V.; Izvolskaia, M.; Sharova, V.; Zakharova, L. Disruptions in Hypothalamic–Pituitary–Gonadal Axis Development and Their IgG Modulation after Prenatal Systemic Inflammation in Male Rats. Int. J. Mol. Sci. 2023, 24, 2726. https://doi.org/10.3390/ijms24032726
Ignatiuk V, Izvolskaia M, Sharova V, Zakharova L. Disruptions in Hypothalamic–Pituitary–Gonadal Axis Development and Their IgG Modulation after Prenatal Systemic Inflammation in Male Rats. International Journal of Molecular Sciences. 2023; 24(3):2726. https://doi.org/10.3390/ijms24032726
Chicago/Turabian StyleIgnatiuk, Vasilina, Marina Izvolskaia, Viktoria Sharova, and Liudmila Zakharova. 2023. "Disruptions in Hypothalamic–Pituitary–Gonadal Axis Development and Their IgG Modulation after Prenatal Systemic Inflammation in Male Rats" International Journal of Molecular Sciences 24, no. 3: 2726. https://doi.org/10.3390/ijms24032726
APA StyleIgnatiuk, V., Izvolskaia, M., Sharova, V., & Zakharova, L. (2023). Disruptions in Hypothalamic–Pituitary–Gonadal Axis Development and Their IgG Modulation after Prenatal Systemic Inflammation in Male Rats. International Journal of Molecular Sciences, 24(3), 2726. https://doi.org/10.3390/ijms24032726