LL-37 Triggers Antimicrobial Activity in Human Platelets
Abstract
:1. Introduction
2. Results
2.1. LL-37 Increases the Surface Expression of Receptors for Recognizing Microorganisms
2.2. LL-37-Treated Platelets Demonstrate Increased Binding to Microorganisms
2.3. LL-37 Triggers the Release of Antimicrobial Molecules in Human Platelets
2.4. LL-37 Impacts the Antimicrobial Response of Platelets
2.4.1. Platelet LL-37 Inhibits Microbial Growth
2.4.2. The Platelet Supernatant Treated with LL-37 Inhibits the Growth of E. coli
2.5. LL-37 Induces Translation of Azurocidin in Platelets
2.6. LL-37 Increases Platelet Surface Expression of Molecules for Antigen Presentation to T Lymphocytes
3. Discussion
4. Materials and Methods
4.1. Purification of Platelets from Peripheral Blood
4.2. Effect of LL-37 on the Immunophenotype of Peripheral Blood Platelets
4.3. Platelet-Microorganism Interaction Assays
4.4. Antimicrobial Molecules Secreted by Platelets in Response to LL-37
4.5. Antimicrobial Activity Assay
4.6. Platelet Translation Assays
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koupenova, M.; Clancy, L.; Corkrey, H.A.; Freedman, J.E. Circulating platelets as mediators of immunity, inflammation, and thrombosis. Circ. Res. 2018, 122, 337–351. [Google Scholar] [CrossRef] [PubMed]
- Ghoshal, K.; Bhattacharyya, M. Overview of platelet physiology: Its hemostatic and nonhemostatic role in disease pathogenesis. Sci. World J. 2014, 2014, 781857. [Google Scholar] [CrossRef] [PubMed]
- Dittrich, M.; Birschmann, I.; Pfrang, J.; Herterich, S.; Walter, U. Analysis of SAGE Data in Human Platelets: Features of the Transcriptome in an Anucleate Cell. Thromb. Haemost. 2006, 95, 643–651. [Google Scholar] [CrossRef]
- Neu, C.T.; Gutschner, T.; Haemmerle, M. Post-transcriptional expression control in platelet biogenesis and function. Int. J. Mol. Sci. 2020, 21, 7614. [Google Scholar] [CrossRef] [PubMed]
- Thon, J.N.; Devine, D.V. Translation of glycoprotein IIIa in stored blood platelets. Transfusion 2007, 47, 2260–2270. [Google Scholar] [CrossRef]
- Kieffer, N.; Guichard, J.; Farcet, J.P.; Vainchenker, W.; Breton-Gorius, J. Biosynthesis of Major Platelet Proteins in Human Blood Platelets. Eur. J. Biochem. 1987, 164, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, B.F.; Geimer, M.; Franz-Wachtel, M.; Lamkemeyer, T.; Mannell, H.; Lindemann, S. Extracellular matrix-specific platelet activation leads to a differential translational response and protein de novo synthesis in human platelets. Int. J. Mol. Sci. 2020, 21, 8155. [Google Scholar] [CrossRef] [PubMed]
- Lindemann, S.; Tolley, N.D.; Dixon, D.A.; McIntyre, T.M.; Prescott, S.M.; Zimmerman, G.A.; Weyrich, A.S. Activated platelets mediate inflammatory signaling by regulated interleukin 1β synthesis. J. Cell Biol. 2001, 154, 485–490. [Google Scholar] [CrossRef]
- Broos, K.; Feys, H.B.; de Meyer, S.F.; Vanhoorelbeke, K.; Deckmyn, H. Platelets at work in primary hemostasis. Blood Rev. 2011, 25, 155–167. [Google Scholar] [CrossRef]
- Sang, Y.; Roest, M.; de Laat, B.; de Groot, P.G.; Huskens, D. Interplay between platelets and coagulation. Blood Rev. 2021, 46, 100733. [Google Scholar] [CrossRef]
- Aquino-Domínguez, A.S.; Acevedo-Sánchez, V.; Cruz-Hernández, D.S.; Sánchez-Aparicio, S.R.; Romero-Tlalolini, M.L.Á.; Baltiérrez-Hoyos, R.; Sánchez-Navarro, L.M.; Torres-Aguilar, H.; Bustos-Arriaga, J.; Aguilar-Ruiz, S.R. Human Platelets Contain, Translate, and Secrete Azurocidin; A Novel Effect on Hemostasis. Int. J. Mol. Sci. 2022, 23, 5667. [Google Scholar] [CrossRef] [PubMed]
- Aquino-Domínguez, A.S.; Romero-Tlalolini, M.d.l.A.; Torres-Aguilar, H.; Aguilar-Ruiz, S.R. Recent advances in the discovery and function of antimicrobial molecules in platelets. Int. J. Mol. Sci. 2021, 22, 10230. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Good, D.; Mosaiab, T.; Liu, W.; Ni, G.; Kaur, J.; Liu, X.; Jessop, C.; Yang, L.; Fadhil, R.; et al. Significance of LL-37 on Immunomodulation and Disease Outcome. Biomed. Res. Int. 2020, 2020, 8349712. [Google Scholar] [CrossRef] [PubMed]
- Bandurska, K.; Berdowska, A.; Barczyńska-Felusiak, R.; Krupa, P. Unique features of human cathelicidin LL-37. BioFactors 2015, 41, 289–300. [Google Scholar] [CrossRef]
- Verjans, E.T.; Zels, S.; Luyten, W.; Landuyt, B.; Schoofs, L. Molecular mechanisms of LL-37-induced receptor activation: An overview. Peptides 2016, 85, 16–26. [Google Scholar] [CrossRef]
- Salamah, M.F.; Ravishankar, D.; Kodji, X.; Moraes, L.A.; Williams, H.F.; Vallance, T.M.; Albadawi, D.A.; Vaiyapuri, R.; Watson, K.; Gibbins, J.M.; et al. The endogenous antimicrobial cathelicidin LL37 induces platelet activation and augments thrombus formation. Blood Adv. 2018, 2, 2973–2985. [Google Scholar] [CrossRef]
- Pircher, J.; Czermak, T.; Ehrlich, A.; Eberle, C.; Gaitzsch, E.; Margraf, A.; Grommes, J.; Saha, P.; Titova, A.; Ishikawa-Ankerhold, H.; et al. Cathelicidins prime platelets to mediate arterial thrombosis and tissue inflammation. Nat. Commun. 2018, 9, 1523. [Google Scholar] [CrossRef]
- Horn, M.; Bertling, A.; Brodde, M.F.; Müller, A.; Roth, J.; Van Aken, H.; Jurk, K.; Heilmann, C.; Peters, G.; Kehrel, B.E. Human neutrophil alpha-defensins induce formation of fibrinogen and thrombospondin-1 amyloid-like structures and activate platelets via glycoprotein IIb/IIIa. J. Thromb. Haemost. 2012, 10, 647–661. [Google Scholar] [CrossRef]
- Portier, I.; Campbell, R.A. Role of platelets in detection and regulation of infection. Arterioscler. Thromb. Vasc. Biol. 2021, 41, 70–78. [Google Scholar] [CrossRef]
- Hamzeh-Cognasse, H.; Damien, P.; Chabert, A.; Pozzetto, B.; Cognasse, F.; Garraud, O. Platelets and infections—Complex interactions with bacteria. Front. Immunol. 2015, 6, 82. [Google Scholar] [CrossRef] [Green Version]
- Ong, P.Y.; Ohtake, T.; Brandt, C.; Strickland, I.; Boguniewicz, M.; Ganz, T.; Gallo, R.L.; Leung, D.Y. Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N. Engl. J. Med. 2002, 347, 1151–1160. [Google Scholar] [CrossRef]
- Schaller-Bals, S.; Schulze, A.; Bals, R. Increased levels of antimicrobial peptides in tracheal aspirates of newborn infants during infection. Am. J. Respir. Crit. Care Med. 2002, 165, 992–995. [Google Scholar] [CrossRef]
- Raque, V.X.; Carlos, S.J.; Eduardo, R.R.; Rafael, B.H.; Ángeles, R.M.L.; Adriana, R.C.; Honorio, T.A.; José, B.A.; Roberto, A.S. Modification of immunological features in human platelets during sepsis. Immuno.l Investig. 2018, 47, 196–211. [Google Scholar] [CrossRef]
- Tsai, J.C.; Lin, Y.W.; Huang, C.Y.; Lin, C.Y.; Tsai, Y.T.; Shih, C.M.; Lee, C.Y.; Chen, Y.H.; Li, C.Y.; Chang, N.C.; et al. The role of calpain-myosin 9-Rab7b pathway in mediating the expression of toll-like receptor 4 in platelets: A novel mechanism involved in α-granules trafficking. PLoS ONE 2014, 9, e111995. [Google Scholar] [CrossRef] [PubMed]
- Harrison, P.; Cramer, E.M. Platelet alpha-granules. Blood Rev. 1993, 7, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Pawar, P.; Shin, P.K.; Mousa, S.A.; Ross, J.M.; Konstantopoulos, K. Fluid Shear Regulates the Kinetics and Receptor Specificity of Staphylococcus aureus Binding to Activated Platelets. J. Immunol. 2004, 173, 1258–1265. [Google Scholar] [CrossRef] [PubMed]
- Fournier, B. The function of TLR2 during staphylococcal diseases. Front. Cell Infect. Microbiol. 2013, 2, 167. [Google Scholar] [CrossRef] [PubMed]
- Ezzeroug Ezzraimi, A.; Hannachi, N.; Mariotti, A.; Rolain, J.M.; Camoin-Jau, L. Platelets and Escherichia coli: A Complex Interaction. Biomedicines 2022, 10, 1633. [Google Scholar] [CrossRef]
- Shimaoka, T.; Kume, N.; Minami, M.; Hayashida, K.; Sawamura, T.; Kita, T.; Yonehara, S. LOX-1 supports adhesion of Gram-positive and Gram-negative bacteria. J. Immunol. 2001, 166, 5108–5114. [Google Scholar] [CrossRef]
- Zheng, L.; Duan, Z.; Tang, D.; He, Y.; Chen, X.; Chen, Q.; Li, M. GP IIb/IIIa-Mediated Platelet Activation and Its Modulation of the Immune Response of Monocytes Against Candida albicans. Front. Cell Infect. Microbiol. 2021, 11, 783085. [Google Scholar] [CrossRef]
- Vautier, S.; de Gloria Sousa, M.; Brown, G.D. C-type lectins, fungi and Th17 responses. Cytokine Growth Factor Rev. 2010, 21, 405–412. [Google Scholar] [CrossRef]
- Saijo, S.; Iwakura, Y. Dectin-1 and Dectin-2 in innate immunity against fungi. Int. Immunol. 2011, 23, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Valle-Jiménez, X.; Ramírez-Cosmes, A.; Aquino-Domínguez, A.S.; Sánchez-Peña, F.; Bustos-Arriaga, J.; Romero-Tlalolini, M.L.Á.; Torres-Aguilar, H.; Serafín-López, J.; Aguilar Ruíz, S.R. Human platelets and megakaryocytes express defensin alpha 1. Platelets 2020, 31, 344–354. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.Q.; Yeaman, M.R.; Selsted, M.E. Antimicrobial peptides from human platelets. Infect. Immun. 2002, 70, 6524–6533. [Google Scholar] [CrossRef] [PubMed]
- Supernat, A.; Popęda, M.; Pastuszak, K.; Best, M.G.; Grešner, P.; Veld, S.I.; Siek, B.; Bednarz-Knoll, N.; Rondina, M.T.; Stokowy, T.; et al. Transcriptomic landscape of blood platelets in healthy donors. Sci. Rep. 2021, 11, 15679. [Google Scholar] [CrossRef]
- Norbnop, P.; Ingrungruanglert, P.; Israsena, N.; Suphapeetiporn, K.; Shotelersuk, V. Generation and characterization of HLA-universal platelets derived from induced pluripotent stem cells. Sci. Rep. 2020, 10, 8472. [Google Scholar] [CrossRef]
- Angénieux, C.; Dupuis, A.; Gachet, C.; de la Salle, H.; Maître, B. Cell surface expression of HLA I molecules as a marker of young platelets. J. Thromb. Haemost. 2019, 17, 1511–1521. [Google Scholar] [CrossRef]
- Chapman, L.M.; Aggrey, A.A.; Field, D.J.; Srivastava, K.; Ture, S.; Yui, K.; Topham, D.J.; Baldwin, W.M., 3rd; Morrell, C.N. Platelets present antigen in the context of MHC class I. J. Immunol. 2012, 189, 916–923. [Google Scholar] [CrossRef]
- Cui, G.; Liu, X.; Yao, J. The effect of costimulatory factors in the pathogenesis of chronic idiopathic thrombocytopenic purpura. J. Huazhong Univ. Sci. Technol. Med. Sci. 2003, 23, 352–355. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Peña, F.J.; Romero-Tlalolini, M.d.l.Á.; Torres-Aguilar, H.; Cruz-Hernández, D.S.; Baltiérrez-Hoyos, R.; Sánchez-Aparicio, S.R.; Aquino-Domínguez, A.S.; Aguilar-Ruiz, S.R. LL-37 Triggers Antimicrobial Activity in Human Platelets. Int. J. Mol. Sci. 2023, 24, 2816. https://doi.org/10.3390/ijms24032816
Sánchez-Peña FJ, Romero-Tlalolini MdlÁ, Torres-Aguilar H, Cruz-Hernández DS, Baltiérrez-Hoyos R, Sánchez-Aparicio SR, Aquino-Domínguez AS, Aguilar-Ruiz SR. LL-37 Triggers Antimicrobial Activity in Human Platelets. International Journal of Molecular Sciences. 2023; 24(3):2816. https://doi.org/10.3390/ijms24032816
Chicago/Turabian StyleSánchez-Peña, Francisco Javier, María de los Ángeles Romero-Tlalolini, Honorio Torres-Aguilar, Diego Sait Cruz-Hernández, Rafael Baltiérrez-Hoyos, Saraí Remedios Sánchez-Aparicio, Alba Soledad Aquino-Domínguez, and Sergio Roberto Aguilar-Ruiz. 2023. "LL-37 Triggers Antimicrobial Activity in Human Platelets" International Journal of Molecular Sciences 24, no. 3: 2816. https://doi.org/10.3390/ijms24032816
APA StyleSánchez-Peña, F. J., Romero-Tlalolini, M. d. l. Á., Torres-Aguilar, H., Cruz-Hernández, D. S., Baltiérrez-Hoyos, R., Sánchez-Aparicio, S. R., Aquino-Domínguez, A. S., & Aguilar-Ruiz, S. R. (2023). LL-37 Triggers Antimicrobial Activity in Human Platelets. International Journal of Molecular Sciences, 24(3), 2816. https://doi.org/10.3390/ijms24032816