The Functional Meaning of 5′UTR in Protein-Coding Genes
Abstract
:1. Introduction
2. Upstream Open Reading Frames
3. Head-to-Head Overlapping Genes Phenomenon
4. RNA Duplexes
5. Transcriptional Interference
6. 5’UTR Sequences as Potential miRNA and Protein Binding Sites
6.1. 5′UTRs and Interactions with miRNAs
6.2. 5′UTRs and Interactions with RNA Binding Proteins
7. 5’UTRs and Their Other Implications
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schuster, S.L.; Hsieh, A.C. The Untranslated Regions of MRNAs in Cancer. Trends Cancer 2019, 5, 245–262. [Google Scholar] [CrossRef]
- Mularoni, L.; Sabarinathan, R.; Deu-Pons, J.; Gonzalez-Perez, A.; López-Bigas, N. OncodriveFML: A General Framework to Identify Coding and Non-Coding Regions with Cancer Driver Mutations. Genome Biol. 2016, 17, 128. [Google Scholar] [CrossRef] [PubMed]
- Cottrell, K.A.; Chaudhari, H.G.; Cohen, B.A.; Djuranovic, S. PTRE-Seq Reveals Mechanism and Interactions of RNA Binding Proteins and MiRNAs. Nat. Commun. 2018, 9, 301. [Google Scholar] [CrossRef] [PubMed]
- Kutchko, K.M.; Sanders, W.; Ziehr, B.; Phillips, G.; Solem, A.; Halvorsen, M.; Weeks, K.M.; Moorman, N.; Laederach, A. Multiple Conformations Are a Conserved and Regulatory Feature of the RB1 5′ UTR. RNA 2015, 21, 1274–1285. [Google Scholar] [CrossRef] [PubMed]
- Marziali, F.; Dizanzo, M.P.; Cavatorta, A.L.; Gardiol, D. Differential Expression of DLG1 as a Common Trait in Different Human Diseases: An Encouraging Issue in Molecular Pathology. Biol. Chem. 2019, 400, 699–710. [Google Scholar] [CrossRef] [PubMed]
- Lammich, S.; Buell, D.; Zilow, S.; Ludwig, A.-K.; Nuscher, B.; Lichtenthaler, S.F.; Prinzen, C.; Fahrenholz, F.; Haass, C. Expression of the Anti-Amyloidogenic Secretase ADAM10 Is Suppressed by Its 5′-Untranslated Region. J. Biol. Chem. 2010, 285, 15753–15760. [Google Scholar] [CrossRef]
- Makalowska, I.; Lin, C.-F.; Makalowski, W. Overlapping Genes in Vertebrate Genomes. Comput. Biol. Chem. 2005, 29, 1–12. [Google Scholar] [CrossRef]
- Sanna, C.R.; Li, W.-H.; Zhang, L. Overlapping Genes in the Human and Mouse Genomes. BMC Genom. 2008, 9, 169. [Google Scholar] [CrossRef]
- Renz, P.F.; Valdivia-Francia, F.; Sendoel, A. Some like It Translated: Small ORFs in the 5′UTR. Exp. Cell Res. 2020, 396, 112229. [Google Scholar] [CrossRef]
- McGillivray, P.; Ault, R.; Pawashe, M.; Kitchen, R.; Balasubramanian, S.; Gerstein, M. A Comprehensive Catalog of Predicted Functional Upstream Open Reading Frames in Humans. Nucleic Acids Res. 2018, 46, 3326–3338. [Google Scholar] [CrossRef]
- Kearse, M.G.; Wilusz, J.E. Non-AUG Translation: A New Start for Protein Synthesis in Eukaryotes. Genes Dev. 2017, 31, 1717–1731. [Google Scholar] [CrossRef] [PubMed]
- Andreev, D.E.; Loughran, G.; Fedorova, A.D.; Mikhaylova, M.S.; Shatsky, I.N.; Baranov, P.V. Non-AUG Translation Initiation in Mammals. Genome Biol. 2022, 23, 111. [Google Scholar] [CrossRef] [PubMed]
- Carrara, M.; Sigurdardottir, A.; Bertolotti, A. Decoding the Selectivity of EIF2α Holophosphatases and PPP1R15A Inhibitors. Nat. Struct. Mol. Biol. 2017, 24, 708–716. [Google Scholar] [CrossRef] [PubMed]
- Young, S.K.; Willy, J.A.; Wu, C.; Sachs, M.S.; Wek, R.C. Ribosome Reinitiation Directs Gene-Specific Translation and Regulates the Integrated Stress Response. J. Biol. Chem. 2015, 290, 28257–28271. [Google Scholar] [CrossRef]
- Vattem, K.M.; Wek, R.C. Reinitiation Involving Upstream ORFs Regulates ATF4 MRNA Translation in Mammalian Cells. Proc. Natl. Acad. Sci. USA 2004, 101, 11269–11274. [Google Scholar] [CrossRef]
- Baird, T.D.; Palam, L.R.; Fusakio, M.E.; Willy, J.A.; Davis, C.M.; McClintick, J.N.; Anthony, T.G.; Wek, R.C. Selective MRNA Translation during EIF2 Phosphorylation Induces Expression of IBTKα. MBoC 2014, 25, 1686–1697. [Google Scholar] [CrossRef]
- Szamecz, B.; Rutkai, E.; Cuchalová, L.; Munzarová, V.; Herrmannová, A.; Nielsen, K.H.; Burela, L.; Hinnebusch, A.G.; Valášek, L. EIF3a Cooperates with Sequences 5′ of UORF1 to Promote Resumption of Scanning by Post-Termination Ribosomes for Reinitiation on GCN4 MRNA. Genes Dev. 2008, 22, 2414–2425. [Google Scholar] [CrossRef]
- Young, S.K.; Wek, R.C. Upstream Open Reading Frames Differentially Regulate Gene-Specific Translation in the Integrated Stress Response. J. Biol. Chem. 2016, 291, 16927–16935. [Google Scholar] [CrossRef]
- Chen, H.-H.; Yu, H.-I.; Yang, M.-H.; Tarn, W.-Y. DDX3 Activates CBC-EIF3–Mediated Translation of UORF-Containing Oncogenic MRNAs to Promote Metastasis in HNSCC. Cancer Res. 2018, 78, 4512–4523. [Google Scholar] [CrossRef]
- Juntawong, P.; Girke, T.; Bazin, J.; Bailey-Serres, J. Translational Dynamics Revealed by Genome-Wide Profiling of Ribosome Footprints in Arabidopsis. Proc. Natl. Acad. Sci. USA 2014, 111, E203–E212. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Song, W. Leaky Scanning and Reinitiation Regulate BACE1 Gene Expression. Mol. Cell. Biol. 2006, 26, 3353–3364. [Google Scholar] [CrossRef] [PubMed]
- Mihailovich, M.; Thermann, R.; Grohovaz, F.; Hentze, M.W.; Zacchetti, D. Complex Translational Regulation of BACE1 Involves Upstream AUGs and Stimulatory Elements within the 5′ Untranslated Region. Nucleic Acids Res. 2007, 35, 2975–2985. [Google Scholar] [CrossRef] [PubMed]
- Libre, C.; Seissler, T.; Guerrero, S.; Batisse, J.; Verriez, C.; Stupfler, B.; Gilmer, O.; Weber, M.M.; Cimarelli, A.; Etienne, L.; et al. A Conserved UORF Impacts APOBEC3G Translation and Is Essential for Translational Inhibition by the HIV-1 Vif Protein. Biomedicines 2022, 10, 13. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, H.; Miyaki, S.; Onouchi, H.; Motomura, T.; Idesako, N.; Takahashi, A.; Murase, M.; Fukuyoshi, S.; Endo, T.; Satou, K.; et al. Exhaustive Identification of Conserved Upstream Open Reading Frames with Potential Translational Regulatory Functions from Animal Genomes. Sci. Rep. 2020, 10, 16289. [Google Scholar] [CrossRef]
- Kozak, M. New Ways of Initiating Translation in Eukaryotes? Mol. Cell. Biol. 2001, 21, 1899–1907. [Google Scholar] [CrossRef]
- Rajkowitsch, L.; Vilela, C.; Berthelot, K.; Ramirez, C.V.; McCarthy, J.E.G. Reinitiation and Recycling Are Distinct Processes Occurring Downstream of Translation Termination in Yeast. J. Mol. Biol. 2004, 335, 71–85. [Google Scholar] [CrossRef]
- Capell, A.; Fellerer, K.; Haass, C. Progranulin Transcripts with Short and Long 5′ Untranslated Regions (UTRs) Are Differentially Expressed via Posttranscriptional and Translational Repression. J. Biol. Chem. 2014, 289, 25879–25889. [Google Scholar] [CrossRef]
- Sendoel, A.; Dunn, J.G.; Rodriguez, E.H.; Naik, S.; Gomez, N.C.; Hurwitz, B.; Levorse, J.; Dill, B.D.; Schramek, D.; Molina, H.; et al. Translation from Unconventional 5′ Start Sites Drives Tumour Initiation. Nature 2017, 541, 494–499. [Google Scholar] [CrossRef]
- Riedl, L.; Mackenzie, I.R.; Förstl, H.; Kurz, A.; Diehl-Schmid, J. Frontotemporal Lobar Degeneration: Current Perspectives. Neuropsychiatr. Dis. Treat. 2014, 10, 297–310. [Google Scholar] [CrossRef]
- Cavatorta, A.L.; Facciuto, F.; Valdano, M.B.; Marziali, F.; Giri, A.A.; Banks, L.; Gardiol, D. Regulation of Translational Efficiency by Different Splice Variants of the Disc Large 1 Oncosuppressor 5′-UTR. FEBS J. 2011, 278, 2596–2608. [Google Scholar] [CrossRef]
- Marziali, F.; Cavatorta, A.L.; Valdano, M.B.; Facciuto, F.; Gardiol, D. Transcriptional and Translational Mechanisms Contribute to Regulate the Expression of Discs Large 1 Protein during Different Biological Processes. Biol. Chem. 2015, 396, 893–902. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, Y.; Lu, J. Function and Evolution of Upstream ORFs in Eukaryotes. Trends Biochem. Sci. 2019, 44, 782–794. [Google Scholar] [CrossRef] [PubMed]
- Thakur, A.; Hinnebusch, A.G. EIF1 Loop 2 Interactions with Met-TRNAi Control the Accuracy of Start Codon Selection by the Scanning Preinitiation Complex. Proc. Natl. Acad. Sci. USA 2018, 115, E4159–E4168. [Google Scholar] [CrossRef] [PubMed]
- Jackson, R.J.; Hellen, C.U.T.; Pestova, T.V. The Mechanism of Eukaryotic Translation Initiation and Principles of Its Regulation. Nat. Rev. Mol. Cell. Biol. 2010, 11, 113–127. [Google Scholar] [CrossRef]
- Thakur, A.; Gaikwad, S.; Vijjamarri, A.K.; Hinnebusch, A.G. EIF2α Interactions with MRNA Control Accurate Start Codon Selection by the Translation Preinitiation Complex. Nucleic Acids Res. 2020, 48, 10280–10296. [Google Scholar] [CrossRef]
- Ramakrishnan, V. Ribosome Structure and the Mechanism of Translation. Cell 2002, 108, 557–572. [Google Scholar] [CrossRef]
- Chia, M.; Tresenrider, A.; Chen, J.; Spedale, G.; Jorgensen, V.; Ünal, E.; van Werven, F.J. Transcription of a 5′ Extended MRNA Isoform Directs Dynamic Chromatin Changes and Interference of a Downstream Promoter. eLife 2022, 6, e27420. [Google Scholar] [CrossRef]
- Meyer, R.E.; Chuong, H.H.; Hild, M.; Hansen, C.L.; Kinter, M.; Dawson, D.S. Ipl1/Aurora-B Is Necessary for Kinetochore Restructuring in Meiosis I in Saccharomyces Cerevisiae. MBoC 2015, 26, 2986–3000. [Google Scholar] [CrossRef]
- Mehta, A.; Trotta, C.R.; Peltz, S.W. Derepression of the Her-2 UORF Is Mediated by a Novel Post-Transcriptional Control Mechanism in Cancer Cells. Genes Dev. 2006, 20, 939–953. [Google Scholar] [CrossRef]
- Ito, K.; Chiba, S. Arrest Peptides: Cis-Acting Modulators of Translation. Annu. Rev. Biochem. 2013, 82, 171–202. [Google Scholar] [CrossRef]
- Ramu, H.; Vázquez-Laslop, N.; Klepacki, D.; Dai, Q.; Piccirilli, J.; Micura, R.; Mankin, A.S. Nascent Peptide in the Ribosome Exit Tunnel Affects Functional Properties of the A-Site of the Peptidyl Transferase Center. Mol. Cell 2011, 41, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Ramani, A.K.; Nelson, A.C.; Kapranov, P.; Bell, I.; Gingeras, T.R.; Fraser, A.G. High Resolution Transcriptome Maps for Wild-Type and Nonsense-Mediated Decay-Defective Caenorhabditis Elegans. Genome Biol. 2009, 10, R101. [Google Scholar] [CrossRef] [PubMed]
- Yi, Z.; Sanjeev, M.; Singh, G. The Branched Nature of the Nonsense-Mediated MRNA Decay Pathway. Trends Genet. 2021, 37, 143–159. [Google Scholar] [CrossRef] [PubMed]
- Jaquet, V.; Wallerich, S.; Voegeli, S.; Túrós, D.; Viloria, E.C.; Becskei, A. Determinants of the Temperature Adaptation of MRNA Degradation. Nucleic Acids Res. 2022, 50, 1092–1110. [Google Scholar] [CrossRef]
- Ye, Y.; Liang, Y.; Yu, Q.; Hu, L.; Li, H.; Zhang, Z.; Xu, X. Analysis of Human Upstream Open Reading Frames and Impact on Gene Expression. Hum. Genet. 2015, 134, 605–612. [Google Scholar] [CrossRef]
- Schulz, J.; Mah, N.; Neuenschwander, M.; Kischka, T.; Ratei, R.; Schlag, P.M.; Castaños-Vélez, E.; Fichtner, I.; Tunn, P.-U.; Denkert, C.; et al. Loss-of-Function UORF Mutations in Human Malignancies. Sci. Rep. 2018, 8, 2395. [Google Scholar] [CrossRef]
- Calvo, S.E.; Pagliarini, D.J.; Mootha, V.K. Upstream Open Reading Frames Cause Widespread Reduction of Protein Expression and Are Polymorphic among Humans. Proc. Natl. Acad. Sci. USA 2009, 106, 7507–7512. [Google Scholar] [CrossRef]
- Poulat, F.; Desclozeaux, M.; Tuffery, S.; Jay, P.; Boizet, B.; Berta, P. Mutation in the 5′ Noncoding Region of the SRY Gene in an XY Sex-Reversed Patient. Hum. Mutat. 1998, 11, S192–S194. [Google Scholar] [CrossRef]
- Kondo, S.; Schutte, B.C.; Richardson, R.J.; Bjork, B.C.; Knight, A.S.; Watanabe, Y.; Howard, E.; de Lima, R.L.L.F.; Daack-Hirsch, S.; Sander, A.; et al. Mutations in IRF6 Cause Van Der Woude and Popliteal Pterygium Syndromes. Nat. Genet. 2002, 32, 285–289. [Google Scholar] [CrossRef]
- Tassin, J.; Dürr, A.; Bonnet, A.M.; Gil, R.; Vidailhet, M.; Lücking, C.B.; Goas, J.Y.; Durif, F.; Abada, M.; Echenne, B.; et al. Levodopa-Responsive Dystonia. GTP Cyclohydrolase I or Parkin Mutations? Brain 2000, 123 Pt 6, 1112–1121. [Google Scholar] [CrossRef]
- Matthes, T.; Aguilar-Martinez, P.; Pizzi-Bosman, L.; Darbellay, R.; Rubbia-Brandt, L.; Giostra, E.; Michel, M.; Ganz, T.; Beris, P. Severe Hemochromatosis in a Portuguese Family Associated with a New Mutation in the 5′-UTR of the HAMP Gene. Blood 2004, 104, 2181–2183. [Google Scholar] [CrossRef]
- Liu, L.; Dilworth, D.; Gao, L.; Monzon, J.; Summers, A.; Lassam, N.; Hogg, D. Mutation of the CDKN2A 5′ UTR Creates an Aberrant Initiation Codon and Predisposes to Melanoma. Nat. Genet. 1999, 21, 128–132. [Google Scholar] [CrossRef] [PubMed]
- Beffagna, G.; Occhi, G.; Nava, A.; Vitiello, L.; Ditadi, A.; Basso, C.; Bauce, B.; Carraro, G.; Thiene, G.; Towbin, J.A.; et al. Regulatory Mutations in Transforming Growth Factor-Beta3 Gene Cause Arrhythmogenic Right Ventricular Cardiomyopathy Type 1. Cardiovasc. Res. 2005, 65, 366–373. [Google Scholar] [CrossRef] [PubMed]
- Boivin, M.; Deng, J.; Pfister, V.; Grandgirard, E.; Oulad-Abdelghani, M.; Morlet, B.; Ruffenach, F.; Negroni, L.; Koebel, P.; Jacob, H.; et al. Translation of GGC Repeat Expansions into a Toxic Polyglycine Protein in NIID Defines a Novel Class of Human Genetic Disorders: The PolyG Diseases. Neuron 2021, 109, 1825–1835.e5. [Google Scholar] [CrossRef] [PubMed]
- Occhi, G.; Regazzo, D.; Trivellin, G.; Boaretto, F.; Ciato, D.; Bobisse, S.; Ferasin, S.; Cetani, F.; Pardi, E.; Korbonits, M.; et al. A Novel Mutation in the Upstream Open Reading Frame of the CDKN1B Gene Causes a MEN4 Phenotype. PLoS Genet. 2013, 9, e1003350. [Google Scholar] [CrossRef]
- Wethmar, K.; Bégay, V.; Smink, J.J.; Zaragoza, K.; Wiesenthal, V.; Dörken, B.; Calkhoven, C.F.; Leutz, A. C/EBPbetaDeltauORF Mice—A Genetic Model for UORF-Mediated Translational Control in Mammals. Genes Dev. 2010, 24, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Huang, N.; Li, F.; Zhang, M.; Zhou, H.; Chen, Z.; Ma, X.; Yang, L.; Wu, X.; Zhong, J.; Xiao, F.; et al. An Upstream Open Reading Frame in Phosphatase and Tensin Homolog Encodes a Circuit Breaker of Lactate Metabolism. Cell Metab. 2021, 33, 128–144. [Google Scholar] [CrossRef] [PubMed]
- Jayaram, D.R.; Frost, S.; Argov, C.; Liju, V.B.; Anto, N.P.; Muraleedharan, A.; Ben-Ari, A.; Sinay, R.; Smoly, I.; Novoplansky, O.; et al. Unraveling the Hidden Role of a UORF-Encoded Peptide as a Kinase Inhibitor of PKCs. Proc. Natl. Acad. Sci. USA 2021, 118, e2018899118. [Google Scholar] [CrossRef]
- Dever, T.E.; Ivanov, I.P.; Sachs, M.S. Conserved Upstream Open Reading Frame Nascent Peptides That Control Translation. Annu. Rev. Genet. 2020, 54, 237–264. [Google Scholar] [CrossRef]
- Bovre, K.; Szybalski, W. Patterns of Convergent and Overlapping Transcription within the B2 Region of Coliphage Lambda. Virology 1969, 38, 614–626. [Google Scholar] [CrossRef]
- Johnson, Z.I.; Chisholm, S.W. Properties of Overlapping Genes Are Conserved across Microbial Genomes. Genome Res. 2004, 14, 2268–2272. [Google Scholar] [CrossRef] [PubMed]
- Osato, N.; Yamada, H.; Satoh, K.; Ooka, H.; Yamamoto, M.; Suzuki, K.; Kawai, J.; Carninci, P.; Ohtomo, Y.; Murakami, K.; et al. Antisense Transcripts with Rice Full-Length CDNAs. Genome Biol. 2003, 5, R5. [Google Scholar] [CrossRef] [PubMed]
- David, L.; Huber, W.; Granovskaia, M.; Toedling, J.; Palm, C.J.; Bofkin, L.; Jones, T.; Davis, R.W.; Steinmetz, L.M. A High-Resolution Map of Transcription in the Yeast Genome. Proc. Natl. Acad. Sci. USA 2006, 103, 5320–5325. [Google Scholar] [CrossRef] [PubMed]
- Misener, S.R.; Walker, V.K. Extraordinarily High Density of Unrelated Genes Showing Overlapping and Intraintronic Transcription Units11Sequence Data from This Article Have Been Deposited with the GenBank Data Library under Accession Nos. AF098020 and AF170829. Biochim. Biophys. Acta (BBA) Gene Struct. Expr. 2000, 1492, 269–270. [Google Scholar] [CrossRef]
- Båtshake, B.; Sundelin, J. The Mouse Genes for the EP1Prostanoid Receptor and the PKN Protein Kinase Overlap. Biochem. Biophys. Res. Commun. 1996, 227, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Kennerson, M.L.; Nassif, N.T.; Dawkins, J.L.; Dekroon, R.M.; Yang, J.G.; Nicholson, G.A. The Charcot–Marie–Tooth Binary Repeat Contains a Gene Transcribed from the Opposite Strand of a Partially Duplicated Region of TheCOX10Gene. Genomics 1997, 46, 61–69. [Google Scholar] [CrossRef]
- Veeramachaneni, V.; Makalowski, W.; Galdzicki, M.; Sood, R.; Makalowska, I. Mammalian Overlapping Genes: The Comparative Perspective. Genome Res. 2004, 14, 280–286. [Google Scholar] [CrossRef]
- Chen, C.-H.; Pan, C.-Y.; Lin, W. Overlapping Protein-Coding Genes in Human Genome and Their Coincidental Expression in Tissues. Sci. Rep. 2019, 9, 13377. [Google Scholar] [CrossRef]
- Ho, M.-R.; Tsai, K.-W.; Lin, W. A Unified Framework of Overlapping Genes: Towards the Origination and Endogenic Regulation. Genomics 2012, 100, 231–239. [Google Scholar] [CrossRef]
- Rosikiewicz, W.; Sikora, J.; Skrzypczak, T.; Kubiak, M.R.; Makałowska, I. Promoter Switching in Response to Changing Environment and Elevated Expression of Protein-Coding Genes Overlapping at Their 5′ Ends. Sci. Rep. 2021, 11, 8984. [Google Scholar] [CrossRef]
- Zhou, C.; Blumberg, B. Overlapping Gene Structure of Human VLCAD and DLG4. Gene 2003, 305, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.; Zhu, C.; Lu, G.; Guo, Y.; Zhou, Y.; Zhang, Z.; Zhao, Y.; Li, W.; Lu, Y.; Tang, W.; et al. Strand-Specific RNA-Seq Reveals Widespread Occurrence of Novel Cis-Natural Antisense Transcripts in Rice. BMC Genom. 2012, 13, 721. [Google Scholar] [CrossRef] [PubMed]
- Ling, M.H.; Ban, Y.; Wen, H.; Wang, S.M.; Ge, S.X. Conserved Expression of Natural Antisense Transcripts in Mammals. BMC Genom. 2013, 14, 243. [Google Scholar] [CrossRef] [PubMed]
- Engström, P.G.; Suzuki, H.; Ninomiya, N.; Akalin, A.; Sessa, L.; Lavorgna, G.; Brozzi, A.; Luzi, L.; Tan, S.L.; Yang, L.; et al. Complex Loci in Human and Mouse Genomes. PLoS Genet. 2006, 2, e47. [Google Scholar] [CrossRef] [PubMed]
- Soldà, G.; Suyama, M.; Pelucchi, P.; Boi, S.; Guffanti, A.; Rizzi, E.; Bork, P.; Tenchini, M.L.; Ciccarelli, F.D. Non-Random Retention of Protein-Coding Overlapping Genes in Metazoa. BMC Genom. 2008, 9, 174. [Google Scholar] [CrossRef]
- Trinklein, N.D.; Aldred, S.F.; Hartman, S.J.; Schroeder, D.I.; Otillar, R.P.; Myers, R.M. An Abundance of Bidirectional Promoters in the Human Genome. Genome Res. 2004, 14, 62–66. [Google Scholar] [CrossRef]
- Conley, A.B.; King Jordan, I. Epigenetic Regulation of Human Cis -Natural Antisense Transcripts. Nucleic Acids Res. 2012, 40, 1438–1445. [Google Scholar] [CrossRef]
- Rosikiewicz, W.; Suzuki, Y.; Makałowska, I. OverGeneDB: A Database of 5′ End Protein Coding Overlapping Genes in Human and Mouse Genomes. Nucleic Acids Res. 2018, 46, D186–D193. [Google Scholar] [CrossRef]
- Shearwin, K.E.; Callen, B.P.; Egan, J.B. Transcriptional Interference—A Crash Course. Trends Genet. 2005, 21, 339–345. [Google Scholar] [CrossRef]
- Faghihi, M.A.; Wahlestedt, C. Regulatory Roles of Natural Antisense Transcripts. Nat. Rev. Mol. Cell Biol. 2009, 10, 637–643. [Google Scholar] [CrossRef]
- Beltran, M.; Puig, I.; Peña, C.; García, J.M.; Álvarez, A.B.; Peña, R.; Bonilla, F.; de Herreros, A.G. A Natural Antisense Transcript Regulates Zeb2/Sip1 Gene Expression during Snail1-Induced Epithelial–Mesenchymal Transition. Genes Dev. 2008, 22, 756–769. [Google Scholar] [CrossRef] [PubMed]
- Faghihi, M.A.; Modarresi, F.; Khalil, A.M.; Wood, D.E.; Sahagan, B.G.; Morgan, T.E.; Finch, C.E.; St. Laurent, G., III; Kenny, P.J.; Wahlestedt, C. Expression of a Noncoding RNA Is Elevated in Alzheimer’s Disease and Drives Rapid Feed-Forward Regulation of β-Secretase. Nat. Med. 2008, 14, 723–730. [Google Scholar] [CrossRef] [PubMed]
- Pouladi, N.; Kouhsari, S.M.; Feizi, M.H.; Gavgani, R.R.; Azarfam, P. Overlapping Region of P53/Wrap53 Transcripts: Mutational Analysis and Sequence Similarity with MicroRNA-4732-5p. Asian Pac. J. Cancer Prev. 2013, 14, 3503–3507. [Google Scholar] [CrossRef] [PubMed]
- Ebralidze, A.K.; Guibal, F.C.; Steidl, U.; Zhang, P.; Lee, S.; Bartholdy, B.; Jorda, M.A.; Petkova, V.; Rosenbauer, F.; Huang, G.; et al. PU.1 Expression Is Modulated by the Balance of Functional Sense and Antisense RNAs Regulated by a Shared Cis-Regulatory Element. Genes Dev. 2008, 22, 2085–2092. [Google Scholar] [CrossRef] [PubMed]
- Kudla, G.; Murray, A.W.; Tollervey, D.; Plotkin, J.B. Coding-Sequence Determinants of Gene Expression in Escherichia Coli. Science 2009, 324, 255–258. [Google Scholar] [CrossRef]
- Werner, A.; Cockell, S.; Falconer, J.; Carlile, M.; Alnumeir, S.; Robinson, J. Contribution of Natural Antisense Transcription to an Endogenous SiRNA Signature in Human Cells. BMC Genom. 2014, 15, 19. [Google Scholar] [CrossRef]
- Sinturel, F.; Bréchemier-Baey, D.; Kiledjian, M.; Condon, C.; Bénard, L. Activation of 5′-3′ exoribonuclease Xrn1 by cofactor Dcs1 is essential for mitochondrial function in yeast. Proc. Natl. Acad. Sci. USA 2012, 109, 8264–8269. [Google Scholar] [CrossRef]
- Mahmoudi, S.; Henriksson, S.; Corcoran, M.; Méndez-Vidal, C.; Wiman, K.G.; Farnebo, M. Wrap53, a Natural P53 Antisense Transcript Required for P53 Induction upon DNA Damage. Mol. Cell 2009, 33, 462–471. [Google Scholar] [CrossRef]
- Vilborg, A.; Wilhelm, M.T.; Wiman, K.G. Regulation of Tumor Suppressor P53 at the RNA Level. J. Mol. Med. 2010, 88, 645–652. [Google Scholar] [CrossRef]
- Farnebo, M.; Bykov, V.J.N.; Wiman, K.G. The P53 Tumor Suppressor: A Master Regulator of Diverse Cellular Processes and Therapeutic Target in Cancer. Biochem. Biophys. Res. Commun. 2010, 396, 85–89. [Google Scholar] [CrossRef]
- Tycowski, K.T.; Shu, M.-D.; Kukoyi, A.; Steitz, J.A. A Conserved WD40 Protein Binds the Cajal Body Localization Signal of ScaRNP Particles. Mol. Cell 2009, 34, 47. [Google Scholar] [CrossRef]
- Farnebo, M. Wrap53, a Novel Regulator of P53. Cell Cycle 2009, 8, 2343–2346. [Google Scholar] [CrossRef] [PubMed]
- Venteicher, A.S.; Abreu, E.B.; Meng, Z.; McCann, K.E.; Terns, R.M.; Veenstra, T.D.; Terns, M.P.; Artandi, S.E. A Human Telomerase Holoenzyme Protein Required for Cajal Body Localization and Telomere Synthesis. Science 2009, 323, 644–648. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudi, S.; Henriksson, S.; Farnebo, L.; Roberg, K.; Farnebo, M. WRAP53 Promotes Cancer Cell Survival and Is a Potential Target for Cancer Therapy. Cell Death Dis. 2011, 2, e114. [Google Scholar] [CrossRef]
- Sun, C.; Luo, X.; Gou, Y.; Hu, L.; Wang, K.; Li, C.; Xiang, Z.; Zhang, P.; Kong, X.; Zhang, C.; et al. TCAB1: A Potential Target for Diagnosis and Therapy of Head and Neck Carcinomas. Mol. Cancer 2014, 13, 180. [Google Scholar] [CrossRef]
- Rao, X.; Huang, D.; Sui, X.; Liu, G.; Song, X.; Xie, J.; Huang, D. Overexpression of WRAP53 Is Associated with Development and Progression of Esophageal Squamous Cell Carcinoma. PLoS ONE 2014, 9, e91670. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Yang, C.; Chen, J.; Song, X.; Li, Z.; Duan, M.; Li, J.; Hu, X.; Wu, K.; Yan, G.; et al. Overexpression of WDR79 in Non-small Cell Lung Cancer Is Linked to Tumour Progression. J. Cell. Mol. Med. 2016, 20, 698–709. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Sun, W.; Jiang, X.; Bai, R.; Luo, Y.; Gao, Y.; Li, S.; Huang, Z.; Gong, Y.; Xie, C. Differential Effects of WRAP53 Transcript Variants on the Biological Behaviours of Human Non-Small Cell Lung Cancer Cells; Research Square: Durham, NC, USA, 2021. [Google Scholar]
- Pouladi, N.; Abdolahi, S.; Farajzadeh, D.; Hosseinpour Feizi, M.A. Haplotype and Linkage Disequilibrium of TP53-WRAP53 Locus in Iranian-Azeri Women with Breast Cancer. PLoS ONE 2019, 14, e0220727. [Google Scholar] [CrossRef]
- Salato, V.K.; Rediske, N.W.; Zhang, C.; Hastings, M.L.; Munroe, S. An Exonic Splicing Enhancer within a Bidirectional Coding Sequence Regulates Alternative Splicing of an Antisense MRNA. RNA Biol. 2010, 7, 179–190. [Google Scholar] [CrossRef]
- Su, W.-Y.; Li, J.-T.; Cui, Y.; Hong, J.; Du, W.; Wang, Y.-C.; Lin, Y.-W.; Xiong, H.; Wang, J.-L.; Kong, X.; et al. Bidirectional Regulation between WDR83 and Its Natural Antisense Transcript DHPS in Gastric Cancer. Cell Res. 2012, 22, 1374–1389. [Google Scholar] [CrossRef] [Green Version]
- Sinturel, F.; Navickas, A.; Wery, M.; Descrimes, M.; Morillon, A.; Torchet, C.; Benard, L. Cytoplasmic Control of Sense-Antisense MRNA Pairs. Cell Rep. 2015, 12, 1853–1864. [Google Scholar] [CrossRef] [PubMed]
- Borsani, O.; Zhu, J.; Verslues, P.E.; Sunkar, R.; Zhu, J.-K. Endogenous SiRNAs Derived from a Pair of Natural Cis-Antisense Transcripts Regulate Salt Tolerance in Arabidopsis. Cell 2005, 123, 1279–1291. [Google Scholar] [CrossRef] [PubMed]
- Sharma, E.; Sterne-Weiler, T.; O’Hanlon, D.; Blencowe, B.J. Global Mapping of Human RNA-RNA Interactions. Mol. Cell 2016, 62, 618–626. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Gong, J.; Zhang, Q.C. PARIS: Psoralen Analysis of RNA Interactions and Structures with High Throughput and Resolution. Methods Mol. Biol. 2018, 1649, 59–84. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Li, K.; Bai, J.; Velema, W.A.; Yu, C.; van Damme, R.; Lee, W.H.; Corpuz, M.L.; Chen, J.-F.; Lu, Z. Optimized Photochemistry Enables Efficient Analysis of Dynamic RNA Structuromes and Interactomes in Genetic and Infectious Diseases. Nat. Commun. 2021, 12, 2344. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Zhang, Q.C.; Lee, B.; Flynn, R.A.; Smith, M.A.; Robinson, J.T.; Davidovich, C.; Gooding, A.R.; Goodrich, K.J.; Mattick, J.S.; et al. RNA Duplex Map in Living Cells Reveals Higher Order Transcriptome Structure. Cell 2016, 165, 1267–1279. [Google Scholar] [CrossRef]
- Aw, J.G.A.; Shen, Y.; Wilm, A.; Sun, M.; Lim, X.N.; Boon, K.-L.; Tapsin, S.; Chan, Y.-S.; Tan, C.-P.; Sim, A.Y.L.; et al. In Vivo Mapping of Eukaryotic RNA Interactomes Reveals Principles of Higher-Order Organization and Regulation. Mol. Cell 2016, 62, 603–617. [Google Scholar] [CrossRef]
- Palmer, A.C.; Egan, J.B.; Shearwin, K.E. Transcriptional Interference by RNA Polymerase Pausing and Dislodgement of Transcription Factors. Transcription 2011, 2, 9–14. [Google Scholar] [CrossRef]
- Crampton, N.; Bonass, W.A.; Kirkham, J.; Rivetti, C.; Thomson, N.H. Collision Events between RNA Polymerases in Convergent Transcription Studied by Atomic Force Microscopy. Nucleic Acids Res. 2006, 34, 5416–5425. [Google Scholar] [CrossRef]
- Prescott, E.M.; Proudfoot, N.J. Transcriptional Collision between Convergent Genes in Budding Yeast. Proc. Natl. Acad. Sci. USA 2002, 99, 8796–8801. [Google Scholar] [CrossRef] [Green Version]
- Petruk, S.; Sedkov, Y.; Riley, K.M.; Hodgson, J.; Schweisguth, F.; Hirose, S.; Jaynes, J.B.; Brock, H.W.; Mazo, A. Transcription of Bxd Noncoding RNAs Promoted by Trithorax Represses Ubx in Cis by Transcriptional Interference. Cell 2006, 127, 1209–1221. [Google Scholar] [CrossRef] [PubMed]
- Conte, C.; Dastugue, B.; Vaury, C. Promoter Competition as a Mechanism of Transcriptional Interference Mediated by Retrotransposons. EMBO J. 2002, 21, 3908–3916. [Google Scholar] [CrossRef] [PubMed]
- Osato, N.; Suzuki, Y.; Ikeo, K.; Gojobori, T. Transcriptional Interferences in Cis Natural Antisense Transcripts of Humans and Mice. Genetics 2007, 176, 1299–1306. [Google Scholar] [CrossRef] [PubMed]
- Wight, M.; Werner, A. The Functions of Natural Antisense Transcripts. Essays Biochem. 2013, 54, 91–101. [Google Scholar] [CrossRef]
- Palmer, A.C.; Ahlgren-Berg, A.; Egan, J.B.; Dodd, I.B.; Shearwin, K.E. Potent Transcriptional Interference by Pausing of RNA Polymerases over a Downstream Promoter. Mol. Cell 2009, 34, 545–555. [Google Scholar] [CrossRef]
- Shuman, S. Transcriptional Interference at Tandem LncRNA and Protein-Coding Genes: An Emerging Theme in Regulation of Cellular Nutrient Homeostasis. Nucleic Acids Res. 2020, 48, 8243–8254. [Google Scholar] [CrossRef]
- Brar, G.A.; Yassour, M.; Friedman, N.; Regev, A.; Ingolia, N.T.; Weissman, J.S. High-Resolution View of the Yeast Meiotic Program Revealed by Ribosome Profiling. Science 2012, 335, 552–557. [Google Scholar] [CrossRef]
- Liu, Y.; Stuparevic, I.; Xie, B.; Becker, E.; Law, M.J.; Primig, M. The Conserved Histone Deacetylase Rpd3 and the DNA Binding Regulator Ume6 Repress BOI1′s Meiotic Transcript Isoform during Vegetative Growth in Saccharomyces Cerevisiae. Mol. Microbiol. 2015, 96, 861–874. [Google Scholar] [CrossRef]
- Tien, J.F.; Fong, K.K.; Umbreit, N.T.; Payen, C.; Zelter, A.; Asbury, C.L.; Dunham, M.J.; Davis, T.N. Coupling Unbiased Mutagenesis to High-Throughput DNA Sequencing Uncovers Functional Domains in the Ndc80 Kinetochore Protein of Saccharomyces Cerevisiae. Genetics 2013, 195, 159–170. [Google Scholar] [CrossRef]
- Miyazaki, K.; Inoue, S.; Yamada, K.; Watanabe, M.; Liu, Q.; Watanabe, T.; Adachi, M.T.; Tanaka, Y.; Kitajima, S. Differential Usage of Alternate Promoters of the Human Stress Response Gene ATF3 in Stress Response and Cancer Cells. Nucleic Acids Res. 2009, 37, 1438–1451. [Google Scholar] [CrossRef] [Green Version]
- Saliminejad, K.; Khorshid, H.R.K.; Soleymani Fard, S.; Ghaffari, S.H. An Overview of MicroRNAs: Biology, Functions, Therapeutics, and Analysis Methods. J. Cell. Physiol. 2019, 234, 5451–5465. [Google Scholar] [CrossRef] [PubMed]
- Hill, M.; Tran, N. MiRNA Interplay: Mechanisms and Consequences in Cancer. Dis. Model Mech. 2021, 14, dmm047662. [Google Scholar] [CrossRef] [PubMed]
- Michlewski, G.; Cáceres, J.F. Post-Transcriptional Control of MiRNA Biogenesis. RNA 2019, 25, 1–16. [Google Scholar] [CrossRef]
- Libri, V.; Helwak, A.; Miesen, P.; Santhakumar, D.; Borger, J.G.; Kudla, G.; Grey, F.; Tollervey, D.; Buck, A.H. Murine Cytomegalovirus Encodes a MiR-27 Inhibitor Disguised as a Target. Proc. Natl. Acad. Sci. USA 2012, 109, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Ha, M.; Kim, V.N. Regulation of MicroRNA Biogenesis. Nat. Rev. Mol. Cell. Biol. 2014, 15, 509–524. [Google Scholar] [CrossRef]
- Sundaram, G.M.; Common, J.E.A.; Gopal, F.E.; Srikanta, S.; Lakshman, K.; Lunny, D.P.; Lim, T.C.; Tanavde, V.; Lane, E.B.; Sampath, P. “See-Saw” Expression of MicroRNA-198 and FSTL1 from a Single Transcript in Wound Healing. Nature 2013, 495, 103–106. [Google Scholar] [CrossRef] [PubMed]
- Navarro, E.; Mallén, A.; Hueso, M. Dynamic Variations of 3′UTR Length Reprogram the MRNA Regulatory Landscape. Biomedicines 2021, 9, 1560. [Google Scholar] [CrossRef]
- Da Sacco, L.; Masotti, A. Recent Insights and Novel Bioinformatics Tools to Understand the Role of MicroRNAs Binding to 5′ Untranslated Region. Int. J. Mol. Sci. 2012, 14, 480–495. [Google Scholar] [CrossRef]
- Gu, W.; Xu, Y.; Xie, X.; Wang, T.; Ko, J.-H.; Zhou, T. The Role of RNA Structure at 5′ Untranslated Region in MicroRNA-Mediated Gene Regulation. RNA 2014, 20, 1369–1375. [Google Scholar] [CrossRef]
- Ørom, U.A.; Nielsen, F.C.; Lund, A.H. MicroRNA-10a Binds the 5′UTR of Ribosomal Protein MRNAs and Enhances Their Translation. Mol. Cell 2008, 30, 460–471. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, W.; Liu, Y.; Liu, T.; Li, C.; Wang, L. Oncogenic Role of MicroRNA-532-5p in Human Colorectal Cancer via Targeting of the 5′UTR of RUNX3. Oncol. Lett. 2018, 15, 7215–7220. [Google Scholar] [CrossRef] [PubMed]
- Kunden, R.D.; Khan, J.Q.; Ghezelbash, S.; Wilson, J.A. The Role of the Liver-Specific MicroRNA, MiRNA-122 in the HCV Replication Cycle. Int. J. Mol. Sci. 2020, 21, 5677. [Google Scholar] [CrossRef] [PubMed]
- Baldassarre, A.; Paolini, A.; Bruno, S.P.; Felli, C.; Tozzi, A.E.; Masotti, A. Potential Use of Noncoding RNAs and Innovative Therapeutic Strategies to Target the 5′UTR of SARS-CoV-2. Epigenomics 2020, 12, 1349–1361. [Google Scholar] [CrossRef]
- Ying, H.; Ebrahimi, M.; Keivan, M.; Khoshnam, S.E.; Salahi, S.; Farzaneh, M. miRNAs; a Novel Strategy for the Treatment of COVID-19. Cell Biol. Int. 2021, 45, 2045–2053. [Google Scholar] [CrossRef]
- Li, Z.; Wang, X.; Jia, R. Poly(RC) Binding Protein 1 Represses the Translation of STAT3 through 5′ UTR. Curr. Gene Ther. 2022, 22, 397–405. [Google Scholar] [CrossRef]
- Popovitchenko, T.; Park, Y.; Page, N.F.; Luo, X.; Krsnik, Z.; Liu, Y.; Salamon, I.; Stephenson, J.D.; Kraushar, M.L.; Volk, N.L.; et al. Translational Derepression of Elavl4 Isoforms at Their Alternative 5′ UTRs Determines Neuronal Development. Nat. Commun. 2020, 11, 1674. [Google Scholar] [CrossRef] [PubMed]
- Aeschimann, F.; Kumari, P.; Bartake, H.; Gaidatzis, D.; Xu, L.; Ciosk, R.; Großhans, H. LIN41 Post-Transcriptionally Silences MRNAs by Two Distinct and Position-Dependent Mechanisms. Mol. Cell 2017, 65, 476–489.e4. [Google Scholar] [CrossRef]
- Kühn, L.C. Iron Regulatory Proteins and Their Role in Controlling Iron Metabolism. Metallomics 2015, 7, 232–243. [Google Scholar] [CrossRef]
- Beckmann, K.; Grskovic, M.; Gebauer, F.; Hentze, M.W. A Dual Inhibitory Mechanism Restricts Msl-2 MRNA Translation for Dosage Compensation in Drosophila. Cell 2005, 122, 529–540. [Google Scholar] [CrossRef]
- Merrick, W.C. Cap-Dependent and Cap-Independent Translation in Eukaryotic Systems. Gene 2004, 332, 1–11. [Google Scholar] [CrossRef]
- Godet, A.-C.; David, F.; Hantelys, F.; Tatin, F.; Lacazette, E.; Garmy-Susini, B.; Prats, A.-C. IRES Trans-Acting Factors, Key Actors of the Stress Response. Int. J. Mol. Sci. 2019, 20, 924. [Google Scholar] [CrossRef]
- Marques, R.; Lacerda, R.; Romão, L. Internal Ribosome Entry Site (IRES)-Mediated Translation and Its Potential for Novel MRNA-Based Therapy Development. Biomedicines 2022, 10, 1865. [Google Scholar] [CrossRef] [PubMed]
- Hudder, A.; Werner, R. Analysis of a Charcot-Marie-Tooth Disease Mutation Reveals an Essential Internal Ribosome Entry Site Element in the Connexin-32 Gene. J. Biol. Chem. 2000, 275, 34586–34591. [Google Scholar] [CrossRef] [PubMed]
- Chappell, S.A.; LeQuesne, J.P.; Paulin, F.E.; deSchoolmeester, M.L.; Stoneley, M.; Soutar, R.L.; Ralston, S.H.; Helfrich, M.H.; Willis, A.E. A Mutation in the C-Myc-IRES Leads to Enhanced Internal Ribosome Entry in Multiple Myeloma: A Novel Mechanism of Oncogene de-Regulation. Oncogene 2000, 19, 4437–4440. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.R.; Mitchell, S.A.; Spriggs, K.A.; Ostrowski, J.; Bomsztyk, K.; Ostarek, D.; Willis, A.E. Members of the Poly (RC) Binding Protein Family Stimulate the Activity of the c-Myc Internal Ribosome Entry Segment In Vitro and In Vivo. Oncogene 2003, 22, 8012–8020. [Google Scholar] [CrossRef] [PubMed]
- Pandey, P.R.; Sarwade, R.D.; Khalique, A.; Seshadri, V. Interaction of HuDA and PABP at 5′UTR of Mouse Insulin2 Regulates Insulin Biosynthesis. PLoS ONE 2018, 13, e0194482. [Google Scholar] [CrossRef]
- Cazzola, M. Role of Ferritin and Ferroportin Genes in Unexplained Hyperferritinaemia. Best Pract. Res. Clin. Haematol. 2005, 18, 251–263. [Google Scholar] [CrossRef]
- Vanita, V.; Hejtmancik, J.F.; Hennies, H.C.; Guleria, K.; Nürnberg, P.; Singh, D.; Sperling, K.; Singh, J.R. Sutural Cataract Associated with a Mutation in the Ferritin Light Chain Gene (FTL) in a Family of Indian Origin. Mol. Vis. 2006, 12, 93–99. [Google Scholar]
- Denk, S.; Schmidt, S.; Schurr, Y.; Schwarz, G.; Schote, F.; Diefenbacher, M.; Armendariz, C.; Dejure, F.; Eilers, M.; Wiegering, A. CIP2A Regulates MYC Translation (via Its 5′UTR) in Colorectal Cancer. Int. J. Color. Dis. 2021, 36, 911–918. [Google Scholar] [CrossRef]
- Katsuda, Y.; Sato, S.; Inoue, M.; Tsugawa, H.; Kamura, T.; Kida, T.; Matsumoto, R.; Asamitsu, S.; Shioda, N.; Shiroto, S.; et al. Small Molecule-Based Detection of Non-Canonical RNA G-Quadruplex Structures That Modulate Protein Translation. Nucleic Acids Res. 2022, 50, 8143–8153. [Google Scholar] [CrossRef]
- Kwok, C.K.; Sahakyan, A.B.; Balasubramanian, S. Structural Analysis Using SHALiPE to Reveal RNA G-Quadruplex Formation in Human Precursor MicroRNA. Angew. Chem. 2016, 128, 9104–9107. [Google Scholar] [CrossRef]
- Fernandez-Millan, P.; Autour, A.; Ennifar, E.; Westhof, E.; Ryckelynck, M. Crystal Structure and Fluorescence Properties of the ISpinach Aptamer in Complex with DFHBI. RNA 2017, 23, 1788–1795. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Li, G.; Liu, H.; Leung, C.-H.; Ma, D.-L. G-Quadruplex-Based Detection of Glyphosate in Complex Biological Systems by a Time-Resolved Luminescent Assay. Sens. Actuators B Chem. 2020, 320, 128393. [Google Scholar] [CrossRef]
- Guo, S.; Lu, H. Conjunction of Potential G-Quadruplex and Adjacent Cis-Elements in the 5′ UTR of Hepatocyte Nuclear Factor 4-Alpha Strongly Inhibit Protein Expression. Sci. Rep. 2017, 7, 17444. [Google Scholar] [CrossRef] [PubMed]
- Bugaut, A.; Balasubramanian, S. 5′-UTR RNA G-Quadruplexes: Translation Regulation and Targeting. Nucleic Acids Res. 2012, 40, 4727–4741. [Google Scholar] [CrossRef]
- Chen, X.; Yuan, J.; Xue, G.; Campanario, S.; Wang, D.; Wang, W.; Mou, X.; Liew, S.W.; Umar, M.I.; Isern, J.; et al. Translational Control by DHX36 Binding to 5′UTR G-Quadruplex Is Essential for Muscle Stem-Cell Regenerative Functions. Nat. Commun. 2021, 12, 5043. [Google Scholar] [CrossRef]
- Landry, J.-R.; Mager, D.L.; Wilhelm, B.T. Complex Controls: The Role of Alternative Promoters in Mammalian Genomes. Trends Genet. 2003, 19, 640–648. [Google Scholar] [CrossRef]
- Hughes, T.A. Regulation of Gene Expression by Alternative Untranslated Regions. Trends Genet. 2006, 22, 119–122. [Google Scholar] [CrossRef]
- Thorsen, K.; Schepeler, T.; Øster, B.; Rasmussen, M.H.; Vang, S.; Wang, K.; Hansen, K.Q.; Lamy, P.; Pedersen, J.S.; Eller, A.; et al. Tumor-Specific Usage of Alternative Transcription Start Sites in Colorectal Cancer Identified by Genome-Wide Exon Array Analysis. BMC Genom. 2011, 12, 505. [Google Scholar] [CrossRef]
- Araujo, P.R.; Yoon, K.; Ko, D.; Smith, A.D.; Qiao, M.; Suresh, U.; Burns, S.C.; Penalva, L.O.F. Before It Gets Started: Regulating Translation at the 5′ UTR. Comp. Funct. Genom. 2012, 2012, 475731. [Google Scholar] [CrossRef]
- Chen, J.; Tresenrider, A.; Chia, M.; McSwiggen, D.T.; Spedale, G.; Jorgensen, V.; Liao, H.; van Werven, F.J.; Ünal, E. Kinetochore Inactivation by Expression of a Repressive MRNA. eLife 2017, 6, e27417. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.T.; Sandberg, R.; Luo, S.; Khrebtukova, I.; Zhang, L.; Mayr, C.; Kingsmore, S.F.; Schroth, G.P.; Burge, C.B. Alternative Isoform Regulation in Human Tissue Transcriptomes. Nature 2008, 456, 470–476. [Google Scholar] [CrossRef]
- Nakanishi, T.; Bailey-Dell, K.J.; Hassel, B.A.; Shiozawa, K.; Sullivan, D.M.; Turner, J.; Ross, D.D. Novel 5′ Untranslated Region Variants of BCRP MRNA Are Differentially Expressed in Drug-Selected Cancer Cells and in Normal Human Tissues: Implications for Drug Resistance, Tissue-Specific Expression, and Alternative Promoter Usage. Cancer Res. 2006, 66, 5007–5011. [Google Scholar] [CrossRef] [PubMed]
- Marcel, V.; Hainaut, P. P53 Isoforms—A Conspiracy to Kidnap P53 Tumor Suppressor Activity? Cell. Mol. Life Sci. 2008, 66, 391. [Google Scholar] [CrossRef] [PubMed]
- Davuluri, R.V.; Suzuki, Y.; Sugano, S.; Plass, C.; Huang, T.H.-M. The Functional Consequences of Alternative Promoter Use in Mammalian Genomes. Trends Genet. 2008, 24, 167–177. [Google Scholar] [CrossRef]
- Smith, L. Post-Transcriptional Regulation of Gene Expression by Alternative 5′-Untranslated Regions in Carcinogenesis. Biochem. Soc. Trans. 2008, 36, 708–711. [Google Scholar] [CrossRef]
- Sobczak, K.; Krzyzosiak, W.J. Structural Determinants of BRCA1 Translational Regulation. J. Biol. Chem. 2002, 277, 17349–17358. [Google Scholar] [CrossRef]
- Hughes, T.A.; Brady, H.J.M. Regulation of Axin2 Expression at the Levels of Transcription, Translation and Protein Stability in Lung and Colon Cancer. Cancer Lett. 2006, 233, 338–347. [Google Scholar] [CrossRef]
- Wang, J.; Lu, C.; Min, D.; Wang, Z.; Ma, X. A Mutation in the 5′ Untranslated Region of the BRCA1 Gene in Sporadic Breast Cancer Causes Downregulation of Translation Efficiency. J. Int. Med. Res. 2007, 35, 564–573. [Google Scholar] [CrossRef]
- Chen, L.; Manautou, J.E.; Rasmussen, T.P.; Zhong, X. Development of Precision Medicine Approaches Based on Inter-Individual Variability of BCRP/ABCG2. Acta Pharm. Sin. B 2019, 9, 659–674. [Google Scholar] [CrossRef]
- Damiani, D.; Tiribelli, M.; Michelutti, A.; Geromin, A.; Cavallin, M.; Fabbro, D.; Pianta, A.; Malagola, M.; Damante, G.; Russo, D.; et al. Fludarabine-Based Induction Therapy Does Not Overcome the Negative Effect of ABCG2 (BCRP) over-Expression in Adult Acute Myeloid Leukemia Patients. Leuk. Res. 2010, 34, 942–945. [Google Scholar] [CrossRef] [PubMed]
- Campbell, P.K.; Zong, Y.; Yang, S.; Zhou, S.; Rubnitz, J.E.; Sorrentino, B.P. Identification of a Novel, Tissue-Specific ABCG2 Promoter Expressed in Pediatric Acute Megakaryoblastic Leukemia. Leuk. Res. 2011, 35, 1321–1329. [Google Scholar] [CrossRef]
- Smith, L.; Brannan, R.A.; Hanby, A.M.; Shaaban, A.M.; Verghese, E.T.; Peter, M.B.; Pollock, S.; Satheesha, S.; Szynkiewicz, M.; Speirs, V.; et al. Differential Regulation of Oestrogen Receptor β Isoforms by 5′ Untranslated Regions in Cancer. J. Cell. Mol. Med. 2010, 14, 2172–2184. [Google Scholar] [CrossRef] [PubMed]
- Pelzer, A.E.; Bektic, J.; Haag, P.; Berger, A.P.; Pycha, A.; Schäfer, G.; Rogatsch, H.; Horninger, W.; Bartsch, G.; Klocker, H. The Expression of Transcription Factor Activating Transcription Factor 3 in the Human Prostate and Its Regulation by Androgen in Prostate Cancer. J. Urol. 2006, 175, 1517–1522. [Google Scholar] [CrossRef] [PubMed]
Regulatory Elements | Gene | Disease | References |
---|---|---|---|
De-regulation of uORFs | BACE1 | Alzheimer’s disease | [21,22] |
ATF4 | Head and neck squamous carcinomas | [19] | |
Her-2 | Breast cancer | [39] | |
SOX2 | Squamous cell carcinoma (SCC) | [28] | |
CDKN2A | Melanoma | [52] | |
SRY | Gonadal dysgenesis | [47,48] | |
IRF6 | Van der Woude and Popliteal Pterygium Syndromes | [49] | |
GCH1 | Levodopa-responsive dystonia | [50] | |
HAMP | Hereditary hemochromatosis | [51] | |
N2C | Neuronal intranuclear inclusion disease (NIID) | [54] | |
CDKN1B | Pituitary adenoma, Pancreatic cancer | [55] | |
CEBPB | Acute myeloid, Breast cancer | [56] | |
EPHB1 | Breast cancer, Colon cancer | [46] | |
MAP2K6 | Colon adenocarcinoma | [46] | |
TGF-β3 | Arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC) | [53] | |
DLG1 | High risk of human papillomavirus (HPV) | [5,30] | |
Length of 5′UTR | BRCA1 | Hereditary breast-ovarian cancer syndrome | [159,168] |
BCRP | Breast cancer | [164] | |
Acute myeloid leukemia (AML) | [173] | ||
ERβ | Breast and lung cancer | [167,174] | |
GRN | Progressive brain diseases | [27] | |
ATF3 | Prostate cancer | [121] | |
IRES | Connexin-32 | X-linked Charcot–Marie–Tooth disease (CMTX) | [144] |
c-Myc | Multiple myeloma patients | [145,146] | |
miRNA and protein binding sites | RUNX3 | Colorectal cancer | [132] |
STAT3 | Several types of tumors | [136] | |
ELAVL4 | Neurological disorders | [137] | |
Secondary and stem-loop structures | L-ferritin | Hereditary hyperferritinemia/cataract syndrome (HHCS) | [148,149] |
MYC | Colorectal cancer | [150] | |
HNF4α | Liver cancer | [155,156] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryczek, N.; Łyś, A.; Makałowska, I. The Functional Meaning of 5′UTR in Protein-Coding Genes. Int. J. Mol. Sci. 2023, 24, 2976. https://doi.org/10.3390/ijms24032976
Ryczek N, Łyś A, Makałowska I. The Functional Meaning of 5′UTR in Protein-Coding Genes. International Journal of Molecular Sciences. 2023; 24(3):2976. https://doi.org/10.3390/ijms24032976
Chicago/Turabian StyleRyczek, Natalia, Aneta Łyś, and Izabela Makałowska. 2023. "The Functional Meaning of 5′UTR in Protein-Coding Genes" International Journal of Molecular Sciences 24, no. 3: 2976. https://doi.org/10.3390/ijms24032976
APA StyleRyczek, N., Łyś, A., & Makałowska, I. (2023). The Functional Meaning of 5′UTR in Protein-Coding Genes. International Journal of Molecular Sciences, 24(3), 2976. https://doi.org/10.3390/ijms24032976