Structural and Biochemical Analyses of the Butanol Dehydrogenase from Fusobacterium nucleatum
Abstract
:1. Introduction
2. Results
2.1. Biochemical Analysis of FnYqdH
2.2. Overall Structure of FnYqdH
2.3. Substrate- and Cofactor-Binding Site of FnYqdH
2.4. Comparison of FnYqdH with Structural Homolog Proteins
3. Discussion
4. Materials and Methods
4.1. Cloning, Expression, and Purification
4.2. Enzyme Activity Assays
4.3. Standard Curve of NADH and NADPH
4.4. Metal Substitution
4.5. Substrate Spectrum
4.6. Crystallization and Data Collection
4.7. Structure Determination and Refinement
4.8. Size-Exclusion Chromatography
4.9. Labeling and MST Measurements
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geirnaert, A.; Calatayud, M.; Grootaert, C.; Laukens, D.; Devriese, S.; Smagghe, G.; De Vos, M.; Boon, N.; Van de Wiele, T. Butyrate-producing bacteria supplemented in vitro to Crohn’s disease patient microbiota increased butyrate production and enhanced intestinal epithelial barrier integrity. Sci. Rep. 2017, 7, 11450. [Google Scholar] [CrossRef] [PubMed]
- Bordonaro, M.; Lazarova, D.L.; Sartorelli, A.C. Butyrate and Wnt signaling: A possible solution to the puzzle of dietary fiber and colon cancer risk? Cell Cycle 2008, 7, 1178–1183. [Google Scholar] [CrossRef] [PubMed]
- Vital, M.; Howe, A.C.; Tiedje, J.M. Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data. mBio 2014, 5, e00889. [Google Scholar] [CrossRef]
- Pryde, S.E.; Duncan, S.H.; Hold, G.L.; Stewart, C.S.; Flint, H.J. The microbiology of butyrate formation in the human colon. FEMS Microbiol. Lett. 2002, 217, 133–139. [Google Scholar] [CrossRef]
- Anand, S.; Kaur, H.; Mande, S.S. Comparative In silico Analysis of Butyrate Production Pathways in Gut Commensals and Pathogens. Front. Microbiol. 2016, 7, 1945. [Google Scholar] [CrossRef]
- Louis, P.; Flint, H.J. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol. Lett. 2009, 294, 1–8. [Google Scholar] [CrossRef]
- Chowdhury, N.P.; Mowafy, A.M.; Demmer, J.K.; Upadhyay, V.; Koelzer, S.; Jayamani, E.; Kahnt, J.; Hornung, M.; Demmer, U.; Ermler, U.; et al. Studies on the mechanism of electron bifurcation catalyzed by electron transferring flavoprotein (Etf) and butyryl-CoA dehydrogenase (Bcd) of Acidaminococcus fermentans. J. Biol. Chem. 2014, 289, 5145–5157. [Google Scholar] [CrossRef] [PubMed]
- Louis, P.; Flint, H.J. Development of a semiquantitative degenerate real-time pcr-based assay for estimation of numbers of butyryl-coenzyme A (CoA) CoA transferase genes in complex bacterial samples. Appl. Environ. Microbiol. 2007, 73, 2009–2012. [Google Scholar] [CrossRef]
- Vital, M.; Penton, C.R.; Wang, Q.; Young, V.B.; Antonopoulos, D.A.; Sogin, M.L.; Morrison, H.G.; Raffals, L.; Chang, E.B.; Huffnagle, G.B.; et al. A gene-targeted approach to investigate the intestinal butyrate-producing bacterial community. Microbiome 2013, 1, 8. [Google Scholar] [CrossRef] [PubMed]
- Brennan, C.A.; Garrett, W.S. Fusobacterium nucleatum—Symbiont, opportunist and oncobacterium. Nat. Rev. Microbiol. 2019, 17, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Kistler, J.O.; Booth, V.; Bradshaw, D.J.; Wade, W.G. Bacterial community development in experimental gingivitis. PLoS ONE 2013, 8, e71227. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.Y.; Zhang, Q.; Li, J.L.; Yang, S.H.; Shi, Q. Progression of periodontal inflammation in adolescents is associated with increased number of Porphyromonas gingivalis, Prevotella intermedia, Tannerella forsythensis, and Fusobacterium nucleatum. Int. J. Paediatr. Dent. 2014, 24, 226–233. [Google Scholar] [CrossRef]
- Shang, F.M.; Liu, H.L. Fusobacterium nucleatum and colorectal cancer: A review. World. J. Gastrointest. Oncol. 2018, 10, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Li, Q.; Fu, X. Fusobacterium nucleatum Contributes to the Carcinogenesis of Colorectal Cancer by Inducing Inflammation and Suppressing Host Immunity. Transl. Oncol. 2019, 12, 846–851. [Google Scholar] [CrossRef]
- Al-Shorgani, N.K.N.; Shukor, H.; Abdeshahian, P.; Kalil, M.S.; Yusoff, W.M.W.; Hamid, A.A. Enhanced butanol production by optimization of medium parameters using Clostridium acetobutylicum YM1. Saudi. J. Biol. Sci. 2018, 25, 1308–1321. [Google Scholar] [CrossRef]
- Wang, L.; Chauliac, D.; Moritz, B.E.; Zhang, G.; Ingram, L.O.; Shanmugam, K.T. Metabolic engineering of Escherichia coli for the production of butyric acid at high titer and productivity. Biotechnol. Biofuels 2019, 12, 62. [Google Scholar] [CrossRef]
- Rajagopalan, G.; He, J.; Yang, K.-L. A Highly Efficient NADH-dependent Butanol Dehydrogenase from High-butanol-producing Clostridium sp. BOH3. BioEnergy Res. 2012, 6, 240–251. [Google Scholar] [CrossRef]
- Lee, J.; Jang, Y.S.; Choi, S.J.; Im, J.A.; Song, H.; Cho, J.H.; Seung do, Y.; Papoutsakis, E.T.; Bennett, G.N.; Lee, S.Y. Metabolic engineering of Clostridium acetobutylicum ATCC 824 for isopropanol-butanol-ethanol fermentation. Appl. Environ. Microbiol. 2012, 78, 1416–1423. [Google Scholar] [CrossRef]
- Hiu, S.F.; Zhu, C.X.; Yan, R.T.; Chen, J.S. Butanol-Ethanol Dehydrogenase and Butanol-Ethanol-Isopropanol Dehydrogenase: Different Alcohol Dehydrogenases in Two Strains of Clostridium beijerinckii (Clostridium butylicum). Appl. Environ. Microbiol. 1987, 53, 697–703. [Google Scholar] [CrossRef]
- Kapatral, V.; Anderson, I.; Ivanova, N.; Reznik, G.; Los, T.; Lykidis, A.; Bhattacharyya, A.; Bartman, A.; Gardner, W.; Grechkin, G.; et al. Genome sequence and analysis of the oral bacterium Fusobacterium nucleatum strain ATCC 25586. J. Bacteriol. 2002, 184, 2005–2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walter, K.A.; Bennett, G.N.; Papoutsakis, E.T. Molecular characterization of two Clostridium acetobutylicum ATCC 824 butanol dehydrogenase isozyme genes. J. Bacteriol. 1992, 174, 7149–7158. [Google Scholar] [CrossRef] [PubMed]
- Riordan, J.F. The role of metals in enzyme activity. Ann. Clin. Lab. Sci. 1977, 7, 119–129. [Google Scholar] [PubMed]
- Sulzenbacher, G.; Alvarez, K.; Van Den Heuvel, R.H.; Versluis, C.; Spinelli, S.; Campanacci, V.; Valencia, C.; Cambillau, C.; Eklund, H.; Tegoni, M. Crystal structure of E. coli alcohol dehydrogenase YqhD: Evidence of a covalently modified NADP coenzyme. J. Mol. Biol. 2004, 342, 489–502. [Google Scholar] [CrossRef] [PubMed]
- Plapp, B.V.; Savarimuthu, B.R.; Ferraro, D.J.; Rubach, J.K.; Brown, E.N.; Ramaswamy, S. Horse Liver Alcohol Dehydrogenase: Zinc Coordination and Catalysis. Biochemistry 2017, 56, 3632–3646. [Google Scholar] [CrossRef]
- Morgan, B.; Lahav, O. The effect of pH on the kinetics of spontaneous Fe(II) oxidation by O2 in aqueous solution--basic principles and a simple heuristic description. Chemosphere 2007, 68, 2080–2084. [Google Scholar] [CrossRef]
- Larson, S.B.; Jones, J.A.; McPherson, A. The structure of an iron-containing alcohol dehydrogenase from a hyperthermophilic archaeon in two chemical states. Acta Crystallogr. F. Struct. Biol. Commun. 2019, 75 Pt 4, 217–226. [Google Scholar] [CrossRef]
- Lu, H.; Yu, S.; Qin, F.; Ning, W.; Ma, X.; Tian, K.; Li, Z.; Zhou, K. A secretion-based dual fluorescence assay for high-throughput screening of alcohol dehydrogenases. Biotechnol. Bioeng. 2021, 118, 1624–1635. [Google Scholar] [CrossRef]
- Green, E.M. Fermentative production of butanol—The industrial perspective. Curr. Opin. Biotechnol. 2011, 22, 337–343. [Google Scholar] [CrossRef]
- Nair, P.; Meenakshi, H.N. Review on the synthesis, performance and trends of butanol: A cleaner fuel additive for gasoline. Int. J. Ambient Energy 2021, 43, 4207–4223. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, J.; Wang, X.; Sun, X. Optimization of butanol production from corn straw hydrolysate by Clostridium acetobutylicum using response surface method. Chin. Sci. Bull. 2011, 56, 1422–1428. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Zhang, C.; Yang, K.L.; He, J. Unique genetic cassettes in a Thermoanaerobacterium contribute to simultaneous conversion of cellulose and monosugars into butanol. Sci. Adv. 2018, 4, e1701475. [Google Scholar] [CrossRef] [PubMed]
- Gregory, A.L.; Pensinger, D.A.; Hryckowian, A.J. A short chain fatty acid-centric view of Clostridioides difficile pathogenesis. PLoS Pathog. 2021, 17, e1009959. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.Y.; Wang, M.C. Clostridium perfringens bacteremia associated with colorectal cancer in an elderly woman. Turk. J. Gastroenterol. 2020, 31, 960–961. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Furumichi, M.; Sato, Y.; Kawashima, M.; Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023, 51, D587–D592. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.; Mikkelsen, M.J. Identification and overexpression of a bifunctional aldehyde/alcohol dehydrogenase responsible for ethanol production in Thermoanaerobacter mathranii. J. Mol. Microbiol. Biotechnol. 2010, 19, 123–133. [Google Scholar] [CrossRef]
- Pei, J.; Zhou, Q.; Jiang, Y.; Le, Y.; Li, H.; Shao, W.; Wiegel, J. Thermoanaerobacter spp. control ethanol pathway via transcriptional regulation and versatility of key enzymes. Metab. Eng. 2010, 12, 420–428. [Google Scholar] [CrossRef]
- Biswas, R.; Zheng, T.; Olson, D.G.; Lynd, L.R.; Guss, A.M. Elimination of hydrogenase active site assembly blocks H2 production and increases ethanol yield in Clostridium thermocellum. Biotechnol. Biofuels 2015, 8, 20. [Google Scholar] [CrossRef]
- Zheng, T.; Olson, D.G.; Tian, L.; Bomble, Y.J.; Himmel, M.E.; Lo, J.; Hon, S.; Shaw, A.J.; van Dijken, J.P.; Lynd, L.R. Cofactor specificity of the bifunctional alcohol and aldehyde dehydrogenase (AdhE) in wild-type and mutant Clostridium thermocellum and Thermoanaerobacterium saccharolyticum. J. Bacteriol. 2015, 197, 2610–2619. [Google Scholar] [CrossRef]
- Cho, C.; Hong, S.; Moon, H.G.; Jang, Y.S.; Kim, D.; Lee, S.Y. Engineering Clostridial Aldehyde/Alcohol Dehydrogenase for Selective Butanol Production. mBio 2019, 10, e02683–e02718. [Google Scholar] [CrossRef]
- Rellos, P.; Ma, J.; Scopes, R.K. Alteration of Substrate Specificity of Zymomonas mobilis Alcohol Dehydrogenase-2 Usingin VitroRandom Mutagenesis. Protein Expr. Purif. 1997, 9, 83–90. [Google Scholar] [CrossRef]
- Kleifeld, O.; Frenkel, A.; Martin, J.M.; Sagi, I. Active site electronic structure and dynamics during metalloenzyme catalysis. Nat. Struct. Biol. 2003, 10, 98–103. [Google Scholar] [CrossRef]
- Bai, X.; Lan, J.; He, S.; Bu, T.; Zhang, J.; Wang, L.; Quan, C.; Nam, K.H.; Ha, N.-C.; Xu, Y. NADH-dependent butanol dehydrogenase from Fusobacterium nucleatum: Purification, crystallization, and X-ray crystallographic analysis. Biodesign 2022, 10, 29–33. [Google Scholar] [CrossRef]
- Otwinowski, Z.; Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods. Enzymol. 1997, 276, 307–326. [Google Scholar] [PubMed]
- Wang, Z.; Pan, Q.; Yang, L.; Zhou, H.; Xu, C.; Yu, F.; Wang, Q.; Huang, S.; He, J. Automatic crystal centring procedure at the SSRF macromolecular crystallography beamline. J. Synchrotron. Radiat. 2016, 23 Pt 6, 1323–1332. [Google Scholar] [CrossRef] [PubMed]
- Adams, P.D.; Afonine, P.V.; Bunkoczi, G.; Chen, V.B.; Echols, N.; Headd, J.J.; Hung, L.W.; Jain, S.; Kapral, G.J.; Grosse Kunstleve, R.W.; et al. The Phenix software for automated determination of macromolecular structures. Methods 2011, 55, 94–106. [Google Scholar] [CrossRef]
- Scapin, G. Molecular replacement then and now. Acta. Crystallogr. D Biol. Crystallogr. 2013, 69 Pt 11, 2266–2275. [Google Scholar] [CrossRef]
- Emsley, P.; Lohkamp, B.; Scott, W.G.; Cowtan, K. Features and development of Coot. Acta. Crystallogr. D Biol. Crystallogr. 2010, 66 Pt 4, 486–501. [Google Scholar] [CrossRef]
- Rigsby, R.E.; Parker, A.B. Using the PyMOL application to reinforce visual understanding of protein structure. Biochem. Mol. Biol. Educ. 2016, 44, 433–437. [Google Scholar] [CrossRef]
- Chen, V.B.; Arendall, W.B., 3rd; Headd, J.J.; Keedy, D.A.; Immormino, R.M.; Kapral, G.J.; Murray, L.W.; Richardson, J.S.; Richardson, D.C. MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 2010, 66 Pt 1, 12–21. [Google Scholar] [CrossRef]
- Holm, L.; Rosenstrom, P. Dali server: Conservation mapping in 3D. Nucleic. Acids. Res. 2010, 38, W545–W549. [Google Scholar] [CrossRef]
- Beckmann, L.; Edel, K.H.; Batistic, O.; Kudla, J. A calcium sensor—Protein kinase signaling module diversified in plants and is retained in all lineages of Bikonta species. Sci. Rep. 2016, 6, 31645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Data Collection | FnYqdH | FnYqdH-NAD-Co2+ |
---|---|---|
Beamline | Beamline 5C at PLS | Beamline 17B at SSRF |
Resolution range (Å) | 37.78–1.98 (2.05–1.98) | 35.53–2.72 (2.82–2.72) |
Space group | I222 | I222 |
Total/unique reflections | 39065 (3723) | 14920 (1334) |
a, b, c (Å) | 64.77, 78.85, 215.22 | 64.426, 79.351, 212.932 |
α, β, γ (o) | 90.00, 90.00, 90.00 | 90.00, 90.00, 90.00 |
CC1/2 | 0.975 (0.883) | 0.929 (0.531) |
CC* | 0.994 (0.968) | 0.981 (0.833) |
Completeness (%) | 99.58 (97.21) | 98.64 (87.87) |
Multiplicity | 6.6 (6.0) | 12.4 (10.3) |
Average I/σ(I) | 15.26 (1.8) | 11.88 (1.6) |
Refinement | ||
Rwork/Rfree (%) | 17.7/20.9 | 20.5/26.0 |
No. of non-hydrogen atoms | 3342 | 3121 |
Protein residues | 384 | 384 |
B-factor (Å2) | 29.01 | 59.10 |
Protein | 28.199 | 58.71 |
NADH | 94.57 | |
Co2+ | 117.00 | |
Water | 36.97 | 50.00 |
R.m.s.d. from ideal | ||
RMS (Bond) | 0.008 | 0.009 |
RMS (Angles) | 0.81 | 1.61 |
Ramachandran plot (%) | ||
Favored regions | 98.69 | 93.72 |
Allowed regions | 1.31 | 6.02 |
Disallowed regions | 0.00 | 0.26 |
PDB code | 6L1K | 8I29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, X.; Lan, J.; He, S.; Bu, T.; Zhang, J.; Wang, L.; Jin, X.; Mao, Y.; Guan, W.; Zhang, L.; et al. Structural and Biochemical Analyses of the Butanol Dehydrogenase from Fusobacterium nucleatum. Int. J. Mol. Sci. 2023, 24, 2994. https://doi.org/10.3390/ijms24032994
Bai X, Lan J, He S, Bu T, Zhang J, Wang L, Jin X, Mao Y, Guan W, Zhang L, et al. Structural and Biochemical Analyses of the Butanol Dehydrogenase from Fusobacterium nucleatum. International Journal of Molecular Sciences. 2023; 24(3):2994. https://doi.org/10.3390/ijms24032994
Chicago/Turabian StyleBai, Xue, Jing Lan, Shanru He, Tingting Bu, Jie Zhang, Lulu Wang, Xiaoling Jin, Yuanchao Mao, Wanting Guan, Liying Zhang, and et al. 2023. "Structural and Biochemical Analyses of the Butanol Dehydrogenase from Fusobacterium nucleatum" International Journal of Molecular Sciences 24, no. 3: 2994. https://doi.org/10.3390/ijms24032994
APA StyleBai, X., Lan, J., He, S., Bu, T., Zhang, J., Wang, L., Jin, X., Mao, Y., Guan, W., Zhang, L., Lu, M., Piao, H., Jo, I., Quan, C., Nam, K. H., & Xu, Y. (2023). Structural and Biochemical Analyses of the Butanol Dehydrogenase from Fusobacterium nucleatum. International Journal of Molecular Sciences, 24(3), 2994. https://doi.org/10.3390/ijms24032994