RANKL-RANK-OPG Pathway in Charcot Diabetic Foot: Pathophysiology and Clinical-Therapeutic Implications
Abstract
:1. Introduction
2. RANKL-RANK-OPG Signaling Pathway in Bone Remodeling
3. Therapeutical Implications on RANKL-RANK-OPG Signaling Pathway
3.1. Denosumab
- Busch-Westbroek et al. conducted an observational study of 22 patients to evaluate the efficacy of Denosumab on CF. All patients were treated with no weight-bearing, weekly TCC changes, daily calcium supplementation (500 mg/colecalciferol 800 IU—international units), and subsequent radiographs every 4 weeks. A treatment group of 11 patients received a single subcutaneous dose of 60 mg of Denosumab. At 12 months, the patients in the treatment group showed a decrease in subchondral lysis, an improvement in subchondral bone resurfacing, and a decrease in soft tissue oedema, assessed on conventional radiographs of the affected foot. The TCC time was shorter on average in the treatment group in relation to a faster decrease in 2 °C temperature between the two feet [58].
- Shofler et al. enrolled seven patients in the acute phase of CF and followed them for one year (with biweekly visits). Patients received a single 60 mg subcutaneous dose of Denosumab and treatment with no weight-bearing and TCC. Efficacy was assessed as the subjects’ exit from the acute phase, defined by normalization of skin temperature by 2 °C relative to the contralateral foot. Patients responded to treatment at an average of 52 days after injection [59].
- Carvès et al. studied seven patients in the refractory CN stage that were treated with a single subcutaneous dose of 60 mg of denosumab (in case of concomitant osteoporosis, the injection was repeated after 6 months). The follow-up evaluation included clinical, biological examinations and imaging (radiographs and/or glucose analogue (18)F-fluorodeoxyglucose PET-CT). An imaging follow-up was available for five patients and, in four of them, structural damage remained stable on X-ray. PET-CT at baseline was available for all patients, six of whom had increased bone uptake. At the end of treatment, a significant decrease in contrast medium uptake was observed at the joints of the feet. Therefore, denosumab showed a metabolic/anti-inflammatory effect, as measured by 18FDG PET-CT, without adverse events or hypocalcaemia [57].
3.2. Bisphosphonates (BPs)
- In 2001, a randomized, double-blind, controlled trial of 39 diabetic patients by Jude et al. compared treatment with a single dose infusion of pamidronate 90 mg versus placebo; the treatment group showed a reduction in bone turnover (measured as a reduction in bone-specific alkaline phosphatase and dehydroxypyridinoline) and, most importantly, a reduction in symptoms related to diabetic neuropathy [65].
- In a retrospective study, Pakarinen et al. analyzed the medical records and radiographs of 36 feet (32 patients) with acute phase CF. Eighteen received treatment with pamidronate (30–60 mg i.v. once a week for 6 weeks) and a plaster cast without weight-bearing. No significant differences were found in the two groups at the last follow-up [66].
- In 2005, Pitocco et al. conducted a study of 20 patients in the acute phase of CNO. All patients received a TCC boot for the first 2 months and a pneumatic walker for the other 4 months, then 11 patients were treated with 70 mg alendronate by mouth once a week (test group), and nine control subjects were followed for 6 months. At six months, the authors reported the significant reduction of bone reabsorption markers with increased foot bone density compared with the control group (more evident in the distal phalanxes than in the midfoot) [67].
- In 2007, in a prospective study of seven patients, Moreno et al. found a rapid resolution of clinical symptoms, with a marked reduction in all markers of bone remodeling and radiological healing at final follow-up following treatment with three doses of pamidronate at 0, 2 and 4 months [68].
- With the same protocol (three pamidronate 90 mg administrations two months apart), Naqvi et al. showed satisfactory results in terms of resolution of symptoms and ability to walk with load in three cases of CF (two in the subacute phase and 1 in the acute phase) [69].
- In 2011, a randomized double-blind controlled trial (RCT) by Pakarinen et al. compared zolendronate (4 mg i.v. in three administrations over 3 months) and foot immobilization vs. placebo, in a population of 35 patients. The use of zolendronate has not shown efficacy in the clinical resolution of CNO; rather, patients in the treatment group required a greater number of immobilization days [70].
- A three-arm double-blind RCT between methylprednisone, zolendronate and placebo showed how the use of cortisone prolonged the time to remission compared to zolendronate and placebo. Inflammatory markers decreased in the three groups, but bone resorption increased in patients treated with methylprednisone, resulting in overall bone loss. Therefore, no benefit was observed in treatment with zolendronate for CF remission [71].
Author, Year | Partecipants | Treatment | Results |
---|---|---|---|
Jude et al., 2001 [65] | 39 | Pamidronate 90 mg (single dose) vs. Placebo | Reduction of symptoms related to diabetic neuropathy in treatment group |
Pakarinen et al., 2002 [66] | 32 | Pamidronate 30–60 mg (i.v., once a week for 6 weeks) | No differences between the two groups |
Pitocco et al., 2005 [67] | 20 |
| At 6 months, significant reduction of bone reabsorption markers with increased foot bone density compared with the control group (more evident in the distal phalanxes than in the midfoot) |
Moreno et al., 2007 [68] | 7 | Pamidronate 90 mg (i.v., 3 doses at 2 months-interval) | Rapid resolution of symptoms, marked reduction of bone remodeling and radiological healing at final follow-up |
Naqvi et al., 2008 [69] | 3 | Pamidronate 90 mg (i.v., doses at 2 months-interval) |
|
Pakarinen et al., 2011 [70] | 35 | Zolendronate 4 mg (i.v., 3 doses in 3 months) and foot immobilization vs. placebo |
|
Das et al., 2019 [71] | 36 | Methylprednisone vs. zolendronate vs. placebo |
|
3.3. Calcitonin
- In a 2006 randomized double-blind study (Table 3), a daily dose of 200 IU calcitonin nasal spray and oral calcium supplementation (treatment group) was compared with oral calcium supplementation alone (control group). Calcitonin treatment showed a good effect on bone turnover at 3 months, with a significant reduction in alkaline phosphatase, but not statistically significant results on diabetic neuropathy control. Foot skin temperature was reduced in both groups, with no significant differences between the two groups [73].
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jeffcoate, W.J.; Game, F.; Cavanagh, P.R. The Role of Proinflammatory Cytokines in the Cause of Neuropathic Osteoarthropathy (Acute Charcot Foot) in Diabetes. Lancet 2005, 366, 2058–2061. [Google Scholar] [CrossRef]
- Sanders, L.J. The Charcot Foot: Historical Perspective 1827–2003. Diabetes Metab. Res. Rev. 2004, 20 (Suppl. 1), S4–S8. [Google Scholar] [CrossRef] [PubMed]
- Mumoli, N.; Camaiti, A. Charcot Foot. CMAJ Can. Med. Assoc. J. 2012, 184, 1392. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R. A Short History of Neuropathic Arthropathy. Clin. Orthop. 1993, 296, 43–49. [Google Scholar] [CrossRef]
- Phillips, S.; Williams, A.L.; Peters, J.R. Neuropathic Arthropathy of the Spine in Diabetes. Diabetes Care 1995, 18, 867–869. [Google Scholar] [CrossRef] [PubMed]
- Berg, E.E. Charcot Arthropathy after Acetabular Fracture. J. Bone Jt. Surg. Br. 1997, 79, 742–745. [Google Scholar] [CrossRef]
- Patel, A.; Saini, A.K.; Edmonds, M.E.; Kavarthapu, V. Diabetic Neuropathic Arthropathy of the Knee: Two Case Reports and a Review of the Literature. Case Rep. Orthop. 2018, 2018, 9301496. [Google Scholar] [CrossRef]
- Lambert, A.P.; Close, C.F. Charcot Neuroarthropathy of the Wrist in Type 1 Diabetes. Diabetes Care 2005, 28, 984–985. [Google Scholar] [CrossRef]
- Shibata, T.; Tada, K.; Hashizume, C. The Results of Arthrodesis of the Ankle for Leprotic Neuroarthropathy. J. Bone Jt. Surg. Am. 1990, 72, 749–756. [Google Scholar] [CrossRef]
- Brodsky, J.W.; Rouse, A.M. Exostectomy for Symptomatic Bony Prominences in Diabetic Charcot Feet. Clin. Orthop. Relat. Res. 1993, 296, 21–26. [Google Scholar] [CrossRef]
- Marmolejo, V.S.; Arnold, J.F.; Ponticello, M.; Andersen, C.A. Charcot Foot: Clinical Clues, Diagnostic Strategies, and Treatment Principles. Am. Fam. Physician 2018, 97, 594–599. [Google Scholar] [PubMed]
- Milne, T.E.; Rogers, J.R.; Kinnear, E.M.; Martin, H.V.; Lazzarini, P.A.; Quinton, T.R.; Boyle, F.M. Developing an Evidence-Based Clinical Pathway for the Assessment, Diagnosis and Management of Acute Charcot Neuro-Arthropathy: A Systematic Review. J. Foot Ankle Res. 2013, 6, 30. [Google Scholar] [CrossRef] [PubMed]
- Grant-McDonald, L.; Grant, W. Bone Metabolism in Charcot. Clin. Podiatr. Med. Surg. 2022, 39, 543–557. [Google Scholar] [CrossRef]
- Rogers, L.C.; Bevilacqua, N.J. The Diagnosis of Charcot Foot. Clin. Podiatr. Med. Surg. 2008, 25, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Mascio, A.; Greco, T.; Maccauro, G.; Perisano, C. Lisfranc Complex Injuries Management and Treatment: Current Knowledge. Int. J. Physiol. Pathophysiol. Pharmacol. 2022, 14, 161–170. [Google Scholar]
- Greco, T.; Cianni, L.; De Mauro, D.; Dughiero, G.; Bocchi, M.B.; Cazzato, G.; Ragonesi, G.; Liuzza, F.; Maccauro, G.; Perisano, C. Foot Metastasis: Current Knowledge. Orthop. Rev. 2020, 12, 8671. [Google Scholar] [CrossRef]
- Perisano, C.; Greco, T.; Vitiello, R.; Maccauro, G.; Liuzza, F.; Tamburelli, F.C.; Forconi, F. Mueller-Weiss Disease: Review of the Literature. J. Biol. Regul. Homeost. Agents 2018, 32, 157–162. [Google Scholar] [PubMed]
- Cianni, L.; Bocchi, M.B.; Vitiello, R.; Greco, T.; De Marco, D.; Masci, G.; Maccauro, G.; Pitocco, D.; Perisano, C. Arthrodesis in the Charcot Foot: A Systematic Review. Orthop. Rev. 2020, 12, 8670. [Google Scholar] [CrossRef]
- Jeffcoate, W.J. Theories Concerning the Pathogenesis of the Acute Charcot Foot Suggest Future Therapy. Curr. Diabetes Rep. 2005, 5, 430–435. [Google Scholar] [CrossRef]
- Rosskopf, A.B.; Loupatatzis, C.; Pfirrmann, C.W.A.; Böni, T.; Berli, M.C. The Charcot Foot: A Pictorial Review. Insights Imaging 2019, 10, 77. [Google Scholar] [CrossRef]
- Pitocco, D.; Scavone, G.; Di Leo, M.; Vitiello, R.; Rizzi, A.; Tartaglione, L.; Costantini, F.; Flex, A.; Galli, M.; Caputo, S.; et al. Charcot Neuroarthropathy: From the Laboratory to the Bedside. Curr. Diabetes Rev. 2019, 16, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Castellano, D.; Sepulveda, J.M.; García-Escobar, I.; Rodriguez-Antolín, A.; Sundlöv, A.; Cortes-Funes, H. The Role of RANK-Ligand Inhibition in Cancer: The Story of Denosumab. Oncologist 2011, 16, 136–145. [Google Scholar] [CrossRef]
- Sisay, M.; Mengistu, G.; Edessa, D. The RANK/RANKL/OPG System in Tumorigenesis and Metastasis of Cancer Stem Cell: Potential Targets for Anticancer Therapy. OncoTargets Ther. 2017, 10, 3801–3810. [Google Scholar] [CrossRef]
- Ducy, P.; Schinke, T.; Karsenty, G. The Osteoblast: A Sophisticated Fibroblast under Central Surveillance. Science 2000, 289, 1501–1504. [Google Scholar] [CrossRef] [PubMed]
- Teitelbaum, S.L. Bone Resorption by Osteoclasts. Science 2000, 289, 1504–1508. [Google Scholar] [CrossRef] [PubMed]
- Rodan, G.A.; Martin, T.J. Role of Osteoblasts in Hormonal Control of Bone Resorption—A Hypothesis. Calcif. Tissue Int. 1981, 33, 349–351. [Google Scholar] [CrossRef]
- Boyce, B.F.; Xing, L. Functions of RANKL/RANK/OPG in Bone Modeling and Remodeling. Arch. Biochem. Biophys. 2008, 473, 139–146. [Google Scholar] [CrossRef]
- Nagy, V.; Penninger, J.M. The RANKL-RANK Story. Gerontology 2015, 61, 534–542. [Google Scholar] [CrossRef]
- Mp, Y.; Jg, Y. Osteoclastogenesis—Current Knowledge and Future Perspectives. J. Musculoskelet. Neuronal Interact. 2008, 8, 204–216. [Google Scholar]
- Udagawa, N.; Koide, M.; Nakamura, M.; Nakamichi, Y.; Yamashita, T.; Uehara, S.; Kobayashi, Y.; Furuya, Y.; Yasuda, H.; Fukuda, C.; et al. Osteoclast Differentiation by RANKL and OPG Signaling Pathways. J. Bone Miner. Metab. 2021, 39, 19–26. [Google Scholar] [CrossRef]
- Inoue, J.; Ishida, T.; Tsukamoto, N.; Kobayashi, N.; Naito, A.; Azuma, S.; Yamamoto, T. Tumor Necrosis Factor Receptor-Associated Factor (TRAF) Family: Adapter Proteins that Mediate Cytokine Signaling. Exp. Cell Res. 2000, 254, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Wada, T.; Nakashima, T.; Hiroshi, N.; Penninger, J.M. RANKL–RANK Signaling in Osteoclastogenesis and Bone Disease. Trends Mol. Med. 2006, 12, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Naito, A.; Azuma, S.; Tanaka, S.; Miyazaki, T.; Takaki, S.; Takatsu, K.; Nakao, K.; Nakamura, K.; Katsuki, M.; Yamamoto, T.; et al. Severe Osteopetrosis, Defective Interleukin-1 Signalling and Lymph Node Organogenesis in TRAF6-Deficient Mice. Genes Cells Devoted Mol. Cell. Mech. 1999, 4, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, M.; Sudo, T.; Maruyama, M.; Osada, H.; Tsujimoto, M. Activation of P38 Mitogen-Activated Protein Kinase is Crucial in Osteoclastogenesis Induced by Tumor Necrosis Factor. FEBS Lett. 2000, 486, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Grigoriadis, A.E.; Wang, Z.-Q.; Cecchini, M.G.; Hofstetter, W.; Felix, R.; Fleisch, H.A.; Wagner, E.F. C-Fos: A Key Regulator of Osteoclast-Macrophage Lineage Determination and Bone Remodeling. Science 1994, 266, 443–448. [Google Scholar] [CrossRef] [PubMed]
- Takayanagi, H.; Kim, S.; Koga, T.; Nishina, H.; Isshiki, M.; Yoshida, H.; Saiura, A.; Isobe, M.; Yokochi, T.; Inoue, J.; et al. Induction and Activation of the Transcription Factor NFATc1 (NFAT2) Integrate RANKL Signaling in Terminal Differentiation of Osteoclasts. Dev. Cell 2002, 3, 889–901. [Google Scholar] [CrossRef]
- Connors, J.C.; Hardy, M.A.; Kishman, L.L.; Botek, G.G.; Verdin, C.J.; Rao, N.M.; Kingsley, J.D. Charcot Pathogenesis: A Study of In Vivo Gene Expression. J. Foot Ankle Surg. Off. Publ. Am. Coll. Foot Ankle Surg. 2018, 57, 1067–1072. [Google Scholar] [CrossRef]
- Baumhauer, J.F.; O’Keefe, R.J.; Schon, L.C.; Pinzur, M.S. Cytokine-Induced Osteoclastic Bone Resorption in Charcot Arthropathy: An Immunohistochemical Study. Foot Ankle Int. 2006, 27, 797–800. [Google Scholar] [CrossRef]
- SaiPrathiba, A.; Senthil, G.; Juttada, U.; Selvaraj, B.; Kumpatla, S.; Viswanathan, V. RANKL Gene Polymorphism as a Potential Biomarker to Identify Acute Charcot Foot Among Indian Population With Type 2 Diabetes: A Preliminary Report. Int. J. Low. Extrem. Wounds 2019, 18, 287–293. [Google Scholar] [CrossRef]
- Mabilleau, G.; Petrova, N.L.; Edmonds, M.E.; Sabokbar, A. Increased Osteoclastic Activity in Acute Charcot’s Osteoarthropathy: The Role of Receptor Activator of Nuclear Factor-KappaB Ligand. Diabetologia 2008, 51, 1035–1040. [Google Scholar] [CrossRef]
- Tanaka, S.; Tanaka, Y. RANKL as a Therapeutic Target of Rheumatoid Arthritis. J. Bone Miner. Metab. 2021, 39, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Jeffcoate, W.J. Charcot Neuro-Osteoarthropathy. Diabetes Metab. Res. Rev. 2008, 24, S62–S65. [Google Scholar] [CrossRef]
- Rachner, T.D.; Khosla, S.; Hofbauer, L.C. New Horizons in Osteoporosis. Lancet 2011, 377, 1276–1287. [Google Scholar] [CrossRef]
- Luo, J.; Yang, Z.; Ma, Y.; Yue, Z.; Lin, H.; Qu, G.; Huang, J.; Dai, W.; Li, C.; Zheng, C.; et al. LGR4 is a Receptor for RANKL and Negatively Regulates Osteoclast Differentiation and Bone Resorption. Nat. Med. 2016, 22, 539–546. [Google Scholar] [CrossRef]
- Carrillo-López, N.; Martínez-Arias, L.; Fernández-Villabrille, S.; Ruiz-Torres, M.P.; Dusso, A.; Cannata-Andía, J.B.; Naves-Díaz, M.; Panizo, S.; On behalf of the European Renal Osteodystrophy (EUROD) Workgroup. Role of the RANK/RANKL/OPG and Wnt/β-Catenin Systems in CKD Bone and Cardiovascular Disorders. Calcif. Tissue Int. 2021, 108, 439–451. [Google Scholar] [CrossRef] [PubMed]
- Bruhn-Olszewska, B.; Korzon-Burakowska, A.; Węgrzyn, G.; Jakóbkiewicz-Banecka, J. Prevalence of Polymorphisms in OPG, RANKL and RANK as Potential Markers for Charcot Arthropathy Development. Sci. Rep. 2017, 7, 501. [Google Scholar] [CrossRef]
- Kloska, A.; Korzon-Burakowska, A.; Malinowska, M.; Bruhn-Olszewska, B.; Gabig-Cimińska, M.; Jakóbkiewicz-Banecka, J. The Role of Genetic Factors and Monocyte-to-Osteoclast Differentiation in the Pathogenesis of Charcot Neuroarthropathy. Diabetes Res. Clin. Pract. 2020, 166, 108337. [Google Scholar] [CrossRef] [PubMed]
- Caputo, G.M.; Ulbrecht, J.; Cavanagh, P.R.; Juliano, P. The Charcot Foot in Diabetes: Six Key Points. Am. Fam. Physician 1998, 57, 2705–2710. [Google Scholar]
- Schweitzer, M.; Rockhill, S. Conservative Management of Charcot Neuroarthropathy. Clin. Podiatr. Med. Surg. 2022, 39, 585–594. [Google Scholar] [CrossRef]
- Molines, L.; Darmon, P.; Raccah, D. Charcot’s Foot: Newest Findings on Its Pathophysiology, Diagnosis and Treatment. Diabetes Metab. 2010, 36, 251–255. [Google Scholar] [CrossRef]
- Guis, S.; Pellissier, J.F.; Arniaud, D.; Turck, F.; Witjas, T.; Roux, H.; Mattei, J.P. Healing of Charcot’s Joint by Pamidronate Infusion. J. Rheumatol. 1999, 26, 1843–1845. [Google Scholar] [PubMed]
- Durgia, H.; Sahoo, J.; Kamalanathan, S.; Palui, R.; Sridharan, K.; Raj, H. Role of Bisphosphonates in the Management of Acute Charcot Foot. World J. Diabetes 2018, 9, 115–126. [Google Scholar] [CrossRef]
- Baron, R.; Ferrari, S.; Russell, R.G.G. Denosumab and Bisphosphonates: Different Mechanisms of Action and Effects. Bone 2011, 48, 677–692. [Google Scholar] [CrossRef] [PubMed]
- Hanley, D.A.; Adachi, J.D.; Bell, A.; Brown, V. Denosumab: Mechanism of Action and Clinical Outcomes. Int. J. Clin. Pract. 2012, 66, 1139–1146. [Google Scholar] [CrossRef]
- Deeks, E.D. Denosumab: A Review in Postmenopausal Osteoporosis. Drugs Aging 2018, 35, 163–173. [Google Scholar] [CrossRef]
- Chiu, Y.G.; Ritchlin, C.T. Denosumab: Targeting the RANKL Pathway to Treat Rheumatoid Arthritis. Expert Opin. Biol. Ther. 2017, 17, 119–128. [Google Scholar] [CrossRef]
- Carvès, S.; Bourgeon-Ghittori, M.; Henry, J.; Belkhir, R.; Besson, F.L.; Levante, S.; Mariette, X.; Seror, R. Denosumab in Active Charcot Neuro-Osteoarthropathy of the Foot. Jt. Bone Spine 2021, 88, 105241. [Google Scholar] [CrossRef] [PubMed]
- Busch-Westbroek, T.E.; Delpeut, K.; Balm, R.; Bus, S.A.; Schepers, T.; Peters, E.J.; Smithuis, F.F.; Maas, M.; Nieuwdorp, M. Effect of Single Dose of RANKL Antibody Treatment on Acute Charcot Neuro-Osteoarthropathy of the Foot. Diabetes Care 2017, 41, e21–e22. [Google Scholar] [CrossRef] [PubMed]
- Shofler, D.; Hamedani, E.; Seun, J.; Sathananthan, A.; Katsaros, E.; Liggan, L.; Kang, S.; Pham, C. Investigating the Use of Denosumab in the Treatment of Acute Charcot Neuroarthropathy. J. Foot Ankle Surg. Off. Publ. Am. Coll. Foot Ankle Surg. 2021, 60, 354–357. [Google Scholar] [CrossRef] [PubMed]
- Reszka, A.A.; Rodan, G.A. Bisphosphonate Mechanism of Action. Curr. Rheumatol. Rep. 2003, 5, 65–74. [Google Scholar] [CrossRef]
- Lin, J.; Peng, Y.; Liu, Q.; Li, K.; Lv, G.; Seimbille, Y.; Huang, G.; Gao, F.; Qiu, L. Pharmacological Evaluation of Imidazole-Derived Bisphosphonates on Receptor Activator of Nuclear Factor-κB Ligand-Induced Osteoclast Differentiation and Function. Chem. Biol. Drug Des. 2021, 97, 121–133. [Google Scholar] [CrossRef]
- Pazianas, M.; Miller, P.; Blumentals, W.A.; Bernal, M.; Kothawala, P. A Review of the Literature on Osteonecrosis of the Jaw in Patients with Osteoporosis Treated with Oral Bisphosphonates: Prevalence, Risk Factors, and Clinical Characteristics. Clin. Ther. 2007, 29, 1548–1558. [Google Scholar] [CrossRef]
- Richard, J.-L.; Almasri, M.; Schuldiner, S. Treatment of Acute Charcot Foot with Bisphosphonates: A Systematic Review of the Literature. Diabetologia 2012, 55, 1258–1264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Game, F.L.; Catlow, R.; Jones, G.R.; Edmonds, M.E.; Jude, E.B.; Rayman, G.; Jeffcoate, W.J. Audit of Acute Charcot’s Disease in the UK: The CDUK Study. Diabetologia 2012, 55, 32–35. [Google Scholar] [CrossRef] [PubMed]
- Jude, E.B.; Selby, P.L.; Burgess, J.; Lilleystone, P.; Mawer, E.B.; Page, S.R.; Donohoe, M.; Foster, A.V.; Edmonds, M.E.; Boulton, A.J. Bisphosphonates in the Treatment of Charcot Neuroarthropathy: A Double-Blind Randomised Controlled Trial. Diabetologia 2001, 44, 2032–2037. [Google Scholar] [CrossRef]
- Pakarinen, T.-K.; Laine, H.-J.; Honkonen, S.E.; Peltonen, J.; Oksala, H.; Lahtela, J. Charcot Arthropathy of the Diabetic Foot. Current Concepts and Review of 36 Cases. Scand. J. Surg. 2002, 91, 195–201. [Google Scholar] [CrossRef]
- Pitocco, D.; Ruotolo, V.; Caputo, S.; Mancini, L.; Collina, C.M.; Manto, A.; Caradonna, P.; Ghirlanda, G. Six-Month Treatment with Alendronate in Acute Charcot Neuroarthropathy: A Randomized Controlled Trial. Diabetes Care 2005, 28, 1214–1215. [Google Scholar] [CrossRef]
- Moreno, M.; Gratacós, J.; Casado, E.; Galisteo, C.; Orellana, C.; Larrosa, M. Usefulness of Pamidronate in the Treatment of Charcot’s Arthropathy. Reumatol. Clin. 2007, 3, 257–261. [Google Scholar] [CrossRef]
- Naqvi, A.; Cuchacovich, R.; Saketkoo, L.; Espinoza, L.R. Acute Charcot Arthropathy Successfully Treated with Pamidronate: Long-Term Follow-Up. Am. J. Med. Sci. 2008, 335, 145–148. [Google Scholar] [CrossRef] [PubMed]
- Pakarinen, T.-K.; Laine, H.-J.; Mäenpää, H.; Mattila, P.; Lahtela, J. The Effect of Zoledronic Acid on the Clinical Resolution of Charcot Neuroarthropathy. Diabetes Care 2011, 34, 1514–1516. [Google Scholar] [CrossRef]
- Das, L.; Bhansali, A.; Prakash, M.; Jude, E.B.; Rastogi, A. Effect of Methylprednisolone or Zoledronic Acid on Resolution of Active Charcot Neuroarthropathy in Diabetes: A Randomized, Double-Blind, Placebo-Controlled Study. Diabetes Care 2019, 42, e185–e186. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Lin, X.-Q.; Long, Y.; Wang, J. Calcitonin Gene-Related Peptide is Potential Therapeutic Target of Osteoporosis. Heliyon 2022, 8, e12288. [Google Scholar] [CrossRef] [PubMed]
- Bem, R.; Jirkovská, A.; Fejfarová, V.; Skibová, J.; Jude, E.B. Intranasal Calcitonin in the Treatment of Acute Charcot Neuroosteoarthropathy: A Randomized Controlled Trial. Diabetes Care 2006, 29, 1392–1394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Author, Year | Participants | Treatment | Results |
---|---|---|---|
Busch-Westbroek et al., 2017 [58] | 22 | Denosumab 60 mg (single subcutaneous dose) and TCC protocol | Fracture resolution and shorter TCC treatment time |
Shofler et al., 2021 [59] | 7 | Denosumab 60 mg (single subcutaneous dose) in the CF acute phase | Exit from the acute phase in an average of 52.00 ± 17.89 days after injection |
Carvés et al., 2021 [57] | 7 | Denosumab 60 mg (single subcutaneous dose) in refractory stage |
|
Author, Year | Partecipants | Treatment | Results |
---|---|---|---|
Bem et al., 2006 [73] | 32 | Calcitonin spray 200 IU + calcium vs. calcium alone |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Greco, T.; Mascio, A.; Comisi, C.; Polichetti, C.; Caravelli, S.; Mosca, M.; Mondanelli, N.; Troiano, E.; Maccauro, G.; Perisano, C. RANKL-RANK-OPG Pathway in Charcot Diabetic Foot: Pathophysiology and Clinical-Therapeutic Implications. Int. J. Mol. Sci. 2023, 24, 3014. https://doi.org/10.3390/ijms24033014
Greco T, Mascio A, Comisi C, Polichetti C, Caravelli S, Mosca M, Mondanelli N, Troiano E, Maccauro G, Perisano C. RANKL-RANK-OPG Pathway in Charcot Diabetic Foot: Pathophysiology and Clinical-Therapeutic Implications. International Journal of Molecular Sciences. 2023; 24(3):3014. https://doi.org/10.3390/ijms24033014
Chicago/Turabian StyleGreco, Tommaso, Antonio Mascio, Chiara Comisi, Chiara Polichetti, Silvio Caravelli, Massimiliano Mosca, Nicola Mondanelli, Elisa Troiano, Giulio Maccauro, and Carlo Perisano. 2023. "RANKL-RANK-OPG Pathway in Charcot Diabetic Foot: Pathophysiology and Clinical-Therapeutic Implications" International Journal of Molecular Sciences 24, no. 3: 3014. https://doi.org/10.3390/ijms24033014
APA StyleGreco, T., Mascio, A., Comisi, C., Polichetti, C., Caravelli, S., Mosca, M., Mondanelli, N., Troiano, E., Maccauro, G., & Perisano, C. (2023). RANKL-RANK-OPG Pathway in Charcot Diabetic Foot: Pathophysiology and Clinical-Therapeutic Implications. International Journal of Molecular Sciences, 24(3), 3014. https://doi.org/10.3390/ijms24033014