Advanced Materials for Electrochemical Energy Storage: Lithium-Ion, Lithium-Sulfur, Lithium-Air and Sodium Batteries
Conflicts of Interest
References
- Wang, H.; Hashem, A.M.; Abdel-Ghany, A.E.; Abbas, S.M.; El-Tawil, R.S.; Li, T.; Li, X.; El-Mounayri, H.; Tovar, A.; Zhu, L.; et al. Effect of cationic (Na+) and anionic (F−) co-doping on the structural and electrochemical properties of LiNi1/3Mn1/3Co1/3O2 cathode material for lithium-ion batteries. Int. J. Mol. Sci. 2022, 23, 6755. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Shen, K.; Liu, L.; Chi, F.; Hou, X.; Yang, W. First-principles investigation on electrochemical performance of Na-doped LiNi1/3Co1/3Mn1/3O2. Front. Phys. 2021, 8, 616066. [Google Scholar] [CrossRef]
- Bubulinca, C.; Sapurina, I.; Kazantseva, N.E.; Pechancova, V.; Saha, P. A self-standing binder-free biomimetic cathode on LMO/CNT enhanced with graphene and PANI for aqueous rechargeable batteries. Int. J. Mol. Sci. 2022, 23, 1457. [Google Scholar] [CrossRef] [PubMed]
- Abraham, J.J.; Moossa, B.; Tariq, H.A.; Kahraman, R.; Al-Qaradawi, S.; Shakoor, R.A. Electrochemical performance of Na3V2(PO4)2F3 electrode material in a symmetric cell. Int. J. Mol. Sci. 2021, 22, 12045. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; He, W.; Ren, F.; Ren, P.; Xu, Y. High-performance symmetric lithium-ion batteries constructed with a new bi-functional electrode Li- and Mn-rich layered oxide 0.3Li2MnO3·0.7LiNi1/3Co1/3Mn1/3O2. Electrochim. Acta 2019, 325, 134932. [Google Scholar] [CrossRef]
- Tang, L.; Zhang, J.; Li, Z.; Liu, X.; Xu, Q.; Liu, H.; Wang, Y.; Xia, Y.; Ma, Z. Using Na7V4(P2O7)4(PO4) with superior Na storage performance as bipolar electrodes to build a novel high-energy-density symmetric sodium-ion full battery. J. Power Sources 2020, 451, 227734. [Google Scholar] [CrossRef]
- Hsu, C.-H.; Chung, C.-H.; Hsieh, T.-H.; Lin, H.-P. Green and highly-efficient microwave synthesis route for sulfur/carbon composite for Li-S battery. Int. J. Mol. Sci. 2021, 23, 39. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Ji, G.; Han, X.; Xing, F.; Gao, Q. Advanced nanostructured MXene-based materials for high energy density lithium-sulfur batteries. Int. J. Mol. Sci. 2021, 23, 6329. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Julien, C.M. Advanced Materials for Electrochemical Energy Storage: Lithium-Ion, Lithium-Sulfur, Lithium-Air and Sodium Batteries. Int. J. Mol. Sci. 2023, 24, 3026. https://doi.org/10.3390/ijms24033026
Julien CM. Advanced Materials for Electrochemical Energy Storage: Lithium-Ion, Lithium-Sulfur, Lithium-Air and Sodium Batteries. International Journal of Molecular Sciences. 2023; 24(3):3026. https://doi.org/10.3390/ijms24033026
Chicago/Turabian StyleJulien, Christian M. 2023. "Advanced Materials for Electrochemical Energy Storage: Lithium-Ion, Lithium-Sulfur, Lithium-Air and Sodium Batteries" International Journal of Molecular Sciences 24, no. 3: 3026. https://doi.org/10.3390/ijms24033026
APA StyleJulien, C. M. (2023). Advanced Materials for Electrochemical Energy Storage: Lithium-Ion, Lithium-Sulfur, Lithium-Air and Sodium Batteries. International Journal of Molecular Sciences, 24(3), 3026. https://doi.org/10.3390/ijms24033026