Microsomal Prostaglandin E Synthase-1 and -2: Emerging Targets in Non-Alcoholic Fatty Liver Disease
Abstract
:1. Introduction
2. Search Strategy
2.1. Microsomal Prostaglandin E Synthase-1: Identification, Structure, Function and Expression
2.2. Μ. icrosomal Prostaglandin Esynthase-1 in NAFLD Models
2.3. Μ. icrosomal Prostaglandin E2 Synthase-1 in Ischemia-Reperfusion Induced Injury
2.4. Μ. icrosomal Prostaglandin E2 Synthase-1 in Liver Inflammation and Fibrosis
2.5. Μ. icrosomal Prostaglandin E2 Synthase-1 in Hepatocellular Carcinoma and Cholangiocarcinoma
2.6. Microsomal Prostaglandin E Synthase-2: Identification, Structure, Function and Expression
2.7. Μ. icrosomal Prostaglandin E2 Synthase-2 in NAFLD Models
2.8. Microsomal Prostaglandin E2 Synthase-2 in Drug Toxicity and Inflammation
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Younossi, Z.; Tacke, F.; Arrese, M.; Chander Sharma, B.; Mostafa, I.; Bugianesi, E.; Wai-Sun Wong, V.; Yilmaz, Y.; George, J.; Fan, J.; et al. Global Perspectives on Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis. Hepatology 2019, 69, 2672–2682. [Google Scholar]
- Alvarez, C.S.; Graubard, B.I.; Thistle, J.E.; Petrick, J.L.; McGlynn, K.A. Attributable Fractions of Nonalcoholic Fatty Liver Disease for Mortality in the United States: Results From the Third National Health and Nutrition Examination Survey with 27 Years of Follow-up. Hepatology 2020, 72, 430–440. [Google Scholar] [CrossRef] [PubMed]
- Allen, A.M.; Van Houten, H.K.; Sangaralingham, L.R.; Talwalkar, J.A.; McCoy, R.G. Healthcare Cost and Utilization in Nonalcoholic Fatty Liver Disease: Real-WorldData From a Large U. S. Claims Database Hepatol. 2018, 68, 2230–2238. [Google Scholar]
- Tilg, H.; Adolph, T.E.; Moschen, A.R. Multiple Parallel Hits Hypothesis in Nonalcoholic Fatty Liver Disease: Revisited After a Decade. Hepatology 2021, 73, 833–842. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Loomba, R.; Rinella, M.E.; Bugianesi, E.; Marchesini, G.; Neuschwander-Tetri, B.A.; Serfaty, L.; Negro, F.; Caldwell, S.H.; Ratziu, V.; et al. Current and future therapeutic regimens for nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Hepatology 2018, 68, 361–371. [Google Scholar] [PubMed]
- Jakobsson, P.J.; Morgenstern, R.; Mancini, J.; Ford-Hutchinson, A.; Persson, B. Common structural features of MAPEG—A widespread superfamily of membrane associated proteins with highly divergent functions in eicosanoid and glutathionemetabolism. Protein Sci. 1999, 8, 689–692. [Google Scholar] [PubMed]
- Jakobsson, P.J.; Thorén, S.; Morgenstern, R.; Samuelsson, B. Identification of human prostaglandin E synthase: A microsomal, glutathione-dependent, inducible enzyme, constituting a potential novel drug target. Proc. Natl. Acad. Sci. USA 1999, 96, 7220–7225. [Google Scholar]
- Thorén, S.; Weinander, R.; Saha, S.; Jegerschöld, C.; Pettersson, P.L.; Samuelsson, B.; Hebert, H.; Hamberg, M.; Morgenstern, R.; Jakobsson, P.J. Human microsomal prostaglandin E synthase-1: Purification, functional characterization, and projectionstructure determination. J. Biol. Chem. 2003, 278, 22199–22209. [Google Scholar] [CrossRef] [PubMed]
- Murakami, M.; Naraba, H.; Tanioka, T.; Semmyo, N.; Nakatani, Y.; Kojima, F.; Ikeda, T.; Fueki, M.; Ueno, A.; Oh, S.; et al. Regulation of prostaglandin E2 biosynthesis by inducible membrane-associated prostaglandin E2 synthase that acts in concertwith cyclooxygenase-2. J. Biol. Chem. 2000, 275, 32783–32792. [Google Scholar] [PubMed]
- Forsberg, L.; Leeb, L.; Thorén, S.; Morgenstern, R.; Jakobsson, P. Human glutathione dependent prostaglandin E synthase: Gene structure and regulation. FEBS Lett. 2000, 471, 78–82. [Google Scholar] [CrossRef]
- Thorén, S.; Jakobsson, P.J. Coordinate up- and down-regulation of glutathione-dependent prostaglandin E synthase and cyclooxygenase-2 in A549 cells. Inhibition by NS-398 and leukotriene C4. Eur. J. Biochem. 2000, 267, 6428–6434. [Google Scholar] [PubMed]
- Tuure, L.; Hämäläinen, M.; Whittle, B.J.; Moilanen, E. Microsomal Prostaglandin E Synthase-1 Expression in Inflammatory Conditions Is Downregulated by Dexamethasone: Seminal Role of the Regulatory Phosphatase MKP-1. Front. Pharmacol. 2017, 8, 646. [Google Scholar] [PubMed]
- Westman, M.; Korotkova, M.; afKlint, E.; Stark, A.; Audoly, L.P.; Klareskog, L.; Ulfgren, A.K.; Jakobsson, P.J. Expression of microsomal prostaglandin E synthase 1 inrheumatoid arthritis synovium. Arthritis Rheum. 2004, 50, 1774–1780. [Google Scholar] [CrossRef] [PubMed]
- Ferré, P.; Foufelle, F. SREBP-1c transcription factor and lipid homeostasis: Clinical perspective. Horm. Res. 2007, 68, 72–82. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Goldstein, J.L.; Brown, M.S. Insulin induction of SREBP-1c in rodent liver requires LXRα-C/EBPβ complex. Proc. Natl. Acad. Sci. USA 2016, 1138, 182–8187. [Google Scholar] [CrossRef]
- Henkel, J.; Frede, K.; Schanze, N.; Vogel, H.; Schürmann, A.; Spruss, A.; Bergheim, I.; Püschel, G.P. Stimulation of fat accumulation in hepatocytes by PGE₂-dependent repression of hepatic lipolysis, β-oxidation and VLDL-synthesis. Lab Invest. 2012, 92, 1597–1606. [Google Scholar]
- Shriver, L.P.; Manchester, M. Inhibition of fatty acid metabolism amelioratesdisease activity in an animal model of multiple sclerosis. Sci. Rep. 2011, 1, 79. [Google Scholar] [CrossRef]
- Qu, Q.; Zeng, F.; Liu, X.; Wang, Q.J.; Deng, F. Fatty acid oxidation and carnitinepalmitoyltransferase I: Emerging therapeutic targets in cancer. Cell Death Dis. 2016, 7, e2226. [Google Scholar] [CrossRef]
- Andrikoula, M.; McDowell, I.F. The contribution of ApoB and ApoA1 measurements tocardiovascular risk assessment. Diabetes ObesMetab. 2008, 10, 271–278. [Google Scholar]
- D’Errico, I.; Salvatore, L.; Murzilli, S.; Lo Sasso, G.; Latorre, D.; Martelli, N.; Egorova, A.V.; Polishuck, R.; Madeyski-Bengtson, K.; Lelliott, C.; et al. Peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC1alpha) is a metabolic regulator of intestinalepithelial cell fate. Proc. Natl. Acad. Sci. USA 2011, 108, 6603–6608. [Google Scholar] [CrossRef]
- Besse-Patin, A.; Léveillé, M.; Oropeza, D.; Nguyen, B.N.; Prat, A.; Estall, J.L. Estrogen Signals Through Peroxisome Proliferator-Activated Receptor-γ Coactivator 1α to Reduce Oxidative Damage Associated With Diet-Induced Fatty Liver Disease. Gastroenterology 2017, 152, 243–256. [Google Scholar] [PubMed]
- Estall, J.L.; Kahn, M.; Cooper, M.P.; Fisher, F.M.; Wu, M.K.; Laznik, D.; Qu, L.; Cohen, D.E.; Shulman, G.I.; Spiegelman, B.M. Sensitivity of lipid metabolism and insulin signaling to genetic alterations in hepatic peroxisome proliferator-activated receptor-gamma coactivator-1alpha expression. Diabetes 2009, 58, 1499–1508. [Google Scholar] [PubMed]
- Henkel, J.; Coleman, C.D.; Schraplau, A.; Jöhrens, K.; Weiss, T.S.; Jonas, W.; Schürmann, A.; Püschel, G.P. Augmented liver inflammation in a microsomal prostaglandin E synthase 1 (mPGES-1)-deficient diet-induced mouse NASH model. Sci. Rep. 2018, 8, 16127. [Google Scholar] [PubMed]
- Tiegs, G.; Horst, A.K. TNF in the liver: Targeting a central player ininflammation. Semin. Immunopathol. 2022, 44, 445–459. [Google Scholar] [CrossRef]
- Yki-Järvinen, H. Non-alcoholic fatty liver disease as a cause and a consequence of metabolic syndrome. Lancet Diabetes Endocrinol. 2014, 2, 901–910. [Google Scholar] [CrossRef] [PubMed]
- Meng, Z.X.; Sun, J.X.; Ling, J.J.; Lv, J.H.; Zhu, D.Y.; Chen, Q.; Sun, Y.J.; Han, X. Prostaglandin E2 regulates Foxo activity via the Akt pathway: Implications for pancreatic islet beta cell dysfunction. Diabetologia 2006, 49, 2959–2968. [Google Scholar] [PubMed]
- Tran, P.O.; Gleason, C.E.; Robertson, R.P. Inhibition of interleukin-1beta-inducedCOX-2 and EP3 gene expression by sodium salicylate enhances pancreatic isletbeta-cell function. Diabetes 2002, 51, 1772–1778. [Google Scholar] [CrossRef]
- Pierre, C.; Guillebaud, F.; Airault, C.; Baril, N.; Barbouche, R.; Save, E.; Gaigé, S.; Bariohay, B.; Dallaporta, M.; Troadec, J.D. Invalidation of Microsomal Prostaglandin E Synthase-1 (mPGES-1) Reduces Diet-Induced Low-Grade Inflammation and Adiposity. Front. Physiol. 2018, 9, 1358. [Google Scholar] [CrossRef]
- Ballesteros-Martínez, C.; Rodrigues-Díez, R.; Beltrán, L.M.; Moreno-Carriles, R.; Martínez-Martínez, E.; González-Amor, M.; Martínez-González, J.; Rodríguez, C.; Cachofeiro, V.; Salaices, M.; et al. Microsomal prostaglandin E synthase-1 is involved in the metabolic and cardiovascular alterations associated with obesity. Br. J. Pharmacol. 2022, 179, 2733–2753. [Google Scholar] [CrossRef]
- García-Alonso, V.; López-Vicario, C.; Titos, E.; Morán-Salvador, E.; González-Périz, A.; Rius, B.; Párrizas, M.; Werz, O.; Arroyo, V.; Clària, J. Coordinate functional regulation between microsomal prostaglandin E synthase-1 (mPGES-1) and peroxisome proliferator-activated receptor γ (PPARγ) in the conversion of white-to-brown adipocytes. J. Biol. Chem. 2013, 288, 28230–28242. [Google Scholar] [CrossRef]
- Gomez, D.; Malik, H.Z.; Bonney, G.K.; Wong, V.; Toogood, G.J.; Lodge, J.P.; Prasad, K.R. Steatosis predicts postoperative morbidity following hepatic resection forcolorectal metastasis. Br. J. Surg. 2007, 94, 1395–1402. [Google Scholar] [CrossRef] [PubMed]
- McCormack, L.; Petrowsky, H.; Jochum, W.; Furrer, K.; Clavien, P.A. Hepatic steatosis is a risk factor for postoperative complications after major hepatectomy: Amatched case-control study. Ann. Surg. 2007, 245, 923–930. [Google Scholar] [PubMed]
- Tashiro, H.; Kuroda, S.; Mikuriya, Y.; Ohdan, H. Ischemia–reperfusion injury in patients with fatty liver and the clinical impact of steatotic liver on hepaticsurgery. Surg. Today 2014, 44, 1611–1625. [Google Scholar] [PubMed]
- Varela, A.T.; Rolo, A.P.; Palmeira, C.M. Fatty liver and ischemia/reperfusion: Are there drugs able to mitigate injury? Curr. Med. Chem. 2011, 18, 4987–5002. [Google Scholar] [CrossRef] [PubMed]
- Neri, A.A.; Dontas, I.A.; Iliopoulos, D.C.; Karatzas, T. Pathophysiological Changes During Ischemia-reperfusion Injury in Rodent Hepatic Steatosis. In Vivo 2020, 34, 953–964. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.; Liu, X.; Chen, L.; Wu, X.; Tao, L.; Pan, X.; Tan, S.; Liu, H.; Jiang, J.; Wu, B. Fas/FasL mediates NF-κBp65/PUMA-modulated hepatocytes apoptosis via autophagy todrive liver fibrosis. Cell Death Dis. 2021, 12, 474. [Google Scholar] [CrossRef]
- Faletti, L.; Peintner, L.; Neumann, S.; Sandler, S.; Grabinger, T.; Mac Nelly, S.; Merfort, I.; Huang, C.H.; Tschaharganeh, D.; Kang, T.W.; et al. TNFα sensitizes hepatocytes to FasL-induced apoptosis by NFκB-mediated Fas upregulation. Cell Death Dis. 2018, 9, 909. [Google Scholar] [CrossRef]
- Cubero, F.J.; Woitok, M.M.; Zoubek, M.E.; de Bruin, A.; Hatting, M.; Trautwein, C. Disruption of the FasL/Fas axis protects against inflammation-derivedtumorigenesis in chronic liver disease. Cell Death Dis. 2019, 10, 115. [Google Scholar] [CrossRef]
- Nakajima, H.; Mizuta, N.; Fujiwara, I.; Sakaguchi, K.; Ogata, H.; Magae, J.; Yagita, H.; Koji, T. Blockade of the Fas/Fas ligand interaction suppresses hepatocyteapoptosis in ischemia-reperfusion rat liver. Apoptosis 2008, 13, 1013–1021. [Google Scholar]
- Item, F.; Wueest, S.; Lemos, V.; Stein, S.; Lucchini, F.C.; Denzler, R.; Fisser, M.C.; Challa, T.D.; Pirinen, E.; Kim, Y.; et al. Fas cell surface death receptor controls hepatic lipid metabolism by regulating mitochondrial function. Nat. Commun. 2017, 8, 480. [Google Scholar] [CrossRef]
- Yao, L.; Chen, W.; Han, C.; Wu, T. Microsomal prostaglandin E synthase-1 protects against Fas-induced liver injury. Am. J. Physiol. Gastrointest. Liver Physiol. 2016, 310, G1071–G1080. [Google Scholar] [CrossRef] [PubMed]
- Nishizawa, N.; Ito, Y.; Eshima, K.; Ohkubo, H.; Kojo, K.; Inoue, T.; Raouf, J.; Jakobsson, P.J.; Uematsu, S.; Akira, S.; et al. Inhibition of microsomal prostaglandin E synthase-1 facilitates liver repair after hepaticinjury in mice. J. Hepatol. 2018, 69, 110–120. [Google Scholar] [PubMed]
- Schuster, S.; Cabrera, D.; Arrese, M.; Feldstein, A.E. Triggering and resolution ofinflammation in NASH. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 349–364. [Google Scholar] [PubMed]
- Cobbina, E.; Akhlaghi, F. Non-alcoholic fatty liver disease (NAFLD)—Pathogenesis, classification, and effect on drug metabolizing enzymes andtransporters. Drug Metab. Rev. 2017, 49, 197–211. [Google Scholar] [PubMed]
- Friedman, S.L.; Neuschwander-Tetri, B.A.; Rinella, M.; Sanyal, A.J. Mechanisms of NAFLDdevelopment and therapeutic strategies. Nat. Med. 2018, 24, 908–922. [Google Scholar]
- Arrese, M.; Cabrera, D.; Kalergis, A.M.; Feldstein, A.E. Innate Immunity andInflammation in NAFLD/NASH. Dig. Dis. Sci. 2016, 61, 1294–1303. [Google Scholar]
- Kazankov, K.; Jørgensen, S.M.D.; Thomsen, K.L.; Møller, H.J.; Vilstrup, H.; George, J.; Schuppan, D.; Grønbæk, H. The role of macrophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 145–159. [Google Scholar] [CrossRef]
- Parlati, L.; Régnier, M.; Guillou, H.; Postic, C. New targets for NAFLD. JHEP Rep. 2021, 3, 100346. [Google Scholar] [CrossRef]
- Dixon, E.D.; Nardo, A.D.; Claudel, T.; Trauner, M. The Role of Lipid Sensing Nuclear Receptors (PPARs and LXR) and Metabolic Lipases in Obesity, Diabetes and NAFLD. Genes 2021, 12, 645. [Google Scholar] [CrossRef]
- Ni, M.; Zhang, B.; Zhao, J.; Feng, Q.; Peng, J.; Hu, Y.; Zhao, Y. Biological mechanisms and related natural modulators of liver X receptor in nonalcoholic fatty liverdisease. Biomed Pharmacother. 2019, 113, 108778. [Google Scholar] [CrossRef]
- Griffett, K.; Solt, L.A.; El-Gendy, B.e.l.-D.; Kamenecka, T.M.; Burris, T.P. A liver-selective LXR inverse agonist that suppresses hepatic steatosis. ACS Chem. Biol. 2013, 8, 59–567. [Google Scholar] [CrossRef] [PubMed]
- Guillem-Llobat, P.; Íñiguez, M.A. Inhibition of lipopolysaccharide-induced gene expression by liver X receptor ligands in macrophages involves interference with early growth response factor 1. Prostaglandins Leukot Essent Fat. Acids 2015, 96, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Montecucco, F.; Burger, F.; Pelli, G.; Poku, N.K.; Berlier, C.; Steffens, S.; Mach, F. Statins inhibit C-reactive protein-induced chemokine secretion, ICAM-1upregulation and chemotaxis in adherent human monocytes. Rheumatology 2009, 48, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Athyros, V.G.; Kakafika, A.I.; Tziomalos, K.; Karagiannis, A.; Mikhailidis, D.P. Pleiotropic effects of statins--clinical evidence. Curr. Pharm. Des. 2009, 15, 479–489. [Google Scholar] [CrossRef]
- Athyros, V.G.; Tziomalos, K.; Gossios, T.D.; Griva, T.; Anagnostis, P.; Kargiotis, K.; Pagourelias, E.D.; Theocharidou, E.; Karagiannis, A.; Mikhailidis, D.P.; et al. Safety and efficacy of long-term statin treatment for cardiovascular events in patients with coronary heart disease and abnormal liver tests in the Greek Atorvastatin and Coronary Heart Disease Evaluation (GREACE)Study: A post-hoc analysis. Lancet 2010, 376, 1916–1922. [Google Scholar] [CrossRef]
- Mouawad, C.A.; Mrad, M.F.; El-Achkar, G.A.; Abdul-Sater, A.; Nemer, G.M.; Creminon, C.; Lotersztajn, S.; Habib, A. Statins Modulate Cyclooxygenase-2 and Microsomal Prostaglandin E Synthase-1 in Human Hepatic Myofibroblasts. J. Cell Biochem. 2016, 117, 1176–1186. [Google Scholar] [CrossRef]
- Mallat, A.; Gallois, C.; Tao, J.; Habib, A.; Maclouf, J.; Mavier, P.; Préaux, A.M.; Lotersztajn, S. Platelet-derived growth factor-BB and thrombin generate positive and negative signals for human hepatic stellate cell proliferation. Role of a prostaglandin/cyclic AMP pathway and cross-talk with endothelin receptors. J. Biol. Chem. 1998, 273, 27300–27305. [Google Scholar] [CrossRef]
- Liu, C.; Chen, S.; Wang, X.; Chen, Y.; Tang, N. 15d-PGJ₂ decreases PGE₂ synthesis in HBx-positive liver cells by interfering EGR1 binding to mPGES-1 promoter. Biochem. Pharmacol. 2014, 91, 337–347. [Google Scholar]
- Ma, Y.; Wang, X.; Tang, N. Downregulation of mPGES-1 Expression via EGR1 Plays an Important Role in Inhibition of Caffeine on PGE2 Synthesis of HBx(+)Hepatocytes. Mediat. Inflamm. 2015, 2015, 372750. [Google Scholar]
- Shen, H.; Rodriguez, A.C.; Shiani, A.; Lipka, S.; Shahzad, G.; Kumar, A.; Mustacchia, P. Association between caffeine consumption and nonalcoholic fatty liver disease: A systemic review and meta-analysis. Therap. Adv. Gastroenterol. 2016, 9, 113–120. [Google Scholar]
- Parama, D.; Boruah, M.; Yachna, K.; Rana, V.; Banik, K.; Harsha, C.; Thakur, K.K.; Dutta, U.; Arya, A.; Mao, X.; et al. Diosgenin, a steroidal saponin, and its analogs: Effective therapies against different chronic diseases. Life Sci. 2020, 260, 118182. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Liang, S.; Liu, Q.; Deng, Z.; Zhang, Y.; Du, J.; Zhang, Y.; Li, S.; Cheng, B.; Ling, C. Diosgenin prevents high-fat diet-induced rat non-alcoholic fatty liver disease through the AMPK and LXR signaling pathways. Int. J. Mol. Med. 2018, 41, 1089–1095. [Google Scholar] [PubMed]
- Wang, Y.; Yu, W.; Li, S.; Guo, D.; He, J.; Wang, Y. Acetyl-CoA Carboxylases and Diseases. Front. Oncol. 2022, 12, 836058. [Google Scholar] [PubMed]
- Goedeke, L.; Bates, J.; Vatner, D.F.; Perry, R.J.; Wang, T.; Ramirez, R.; Li, L.; Ellis, M.W.; Zhang, D.; Wong, K.E.; et al. Acetyl-CoA Carboxylase Inhibition Reverses NAFLD and Hepatic Insulin Resistance but Promotes Hypertriglyceridemia in Rodents. Hepatology 2018, 68, 2197–2211. [Google Scholar] [PubMed]
- Kim, Y.S.; Nam, H.J.; Han, C.Y.; Joo, M.S.; Jang, K.; Jun, D.W.; Kim, S.G. Liver X Receptor Alpha Activation Inhibits Autophagy and Lipophagy in Hepatocytes by Dysregulating Autophagy-Related 4B Cysteine Peptidase and Rab-8B, ReducingMitochondrial Fuel Oxidation. Hepatology 2021, 73, 1307–1326. [Google Scholar] [CrossRef]
- Tsukayama, I.; Mega, T.; Hojo, N.; Toda, K.; Kawakami, Y.; Takahashi, Y.; Suzuki-Yamamoto, T. Diosgenin suppresses COX-2 and mPGES-1 via GR and improves LPS-induced liverinjury in mouse. Prostaglandins Other Lipid Mediat. 2021, 156, 106580. [Google Scholar] [CrossRef]
- Kotha, R.R.; Luthria, D.L. Curcumin: Biological, Pharmaceutical, Nutraceutical, and Analytical Aspects. Molecules 2019, 24, 2930. [Google Scholar] [CrossRef]
- Unlu, A.; Nayir, E.; DogukanKalenderoglu, M.; Kirca, O.; Ozdogan, M. Curcumin(Turmeric) and cancer. J. BUON 2016, 21, 1050–1060. [Google Scholar]
- White, C.M.; Lee, J.Y. The impact of turmeric or its curcumin extract on nonalcoholic fatty liver disease: A systematic review of clinical trials. Pharm. Pract. 2019, 17, 1350. [Google Scholar] [CrossRef]
- Moon, Y.; Glasgow, W.C.; Eling, T.E. Curcumin suppresses interleukin 1beta-mediated microsomal prostaglandin E synthase 1 by altering early growth response gene 1and other signaling pathways. J. Pharmacol. Exp. Ther. 2005, 315, 788–795. [Google Scholar]
- Bogdan, D.; Falcone, J.; Kanjiya, M.P.; Park, S.H.; Carbonetti, G.; Studholme, K.; Gomez, M.; Lu, Y.; Elmes, M.W.; Smietalo, N.; et al. Fatty acid-binding protein 5 controls microsomal prostaglandin E synthase 1 (mPGES-1)induction during inflammation. J. Biol. Chem. 2018, 293, 5295–5306. [Google Scholar] [CrossRef] [PubMed]
- Shie, P.H.; Huang, S.S.; Deng, J.S.; Huang, G.J. Spiranthes sinensis Suppresses Production of Pro-Inflammatory Mediators by Down-Regulating the NF-κB Signaling Pathway and Up-Regulating HO-1/Nrf2 Anti-Oxidant Protein. Am. J. Chin. Med. 2015, 43, 969–989. [Google Scholar] [PubMed]
- Gobeil, F., Jr.; Zhu, T.; Brault, S.; Geha, A.; Vazquez-Tello, A.; Fortier, A.; Barbaz, D.; Checchin, D.; Hou, X.; Nader, M.; et al. Nitric oxide signaling via nuclearized endothelial nitric-oxide synthase modulates expression of the immediate early genes iNOS and mPGES-1. J. Biol. Chem. 2006, 281, 16058–16067. [Google Scholar] [PubMed] [Green Version]
- Iwakiri, Y.; Kim, M.Y. Nitric oxide in liver diseases. Trends Pharmacol. Sci. 2015, 36, 524–536. [Google Scholar]
- Tateya, S.; Rizzo, N.O.; Handa, P.; Cheng, A.M.; Morgan-Stevenson, V.; Daum, G.; Clowes, A.W.; Morton, G.J.; Schwartz, M.W.; Kim, F. Endothelial NO/cGMP/VASP signaling attenuates Kupffer cell activation and hepatic insulin resistance induced by high-fatfeeding. Diabetes 2011, 60, 2792–2801. [Google Scholar] [CrossRef]
- Navarro, L.A.; Wree, A.; Povero, D.; Berk, M.P.; Eguchi, A.; Ghosh, S.; Papouchado, B.G.; Erzurum, S.C.; Feldstein, A.E. Arginase 2 deficiency results in spontaneous steatohepatitis: A novel link between innate immune activation and hepatic denovo lipogenesis. J. Hepatol. 2015, 62, 412–420. [Google Scholar]
- Weledji, E.P.; Enow Orock, G.; Ngowe, M.N.; Nsagha, D.S. How grim is hepatocellular carcinoma? Ann. Med. Surg. 2014, 3, 71–76. [Google Scholar]
- Yang, J.D.; Roberts, L.R. Epidemiology and management of hepatocellular carcinoma. Infect. Dis. Clin. N. Am. 2010, 24, 899–919. [Google Scholar] [CrossRef]
- Michelotti, A.; de Scordilli, M.; Palmero, L.; Guardascione, M.; Masala, M.; Roncato, R.; Foltran, L.; Ongaro, E.; Puglisi, F. NAFLD-Related Hepatocarcinoma: The Malignant Side of Metabolic Syndrome. Cells 2021, 10, 2034. [Google Scholar]
- Llovet, J.M.; Kelley, R.K.; Villanueva, A.; Singal, A.G.; Pikarsky, E.; Roayaie, S.; Lencioni, R.; Koike, K.; Zucman-Rossi, J.; Finn, R.S. Hepatocellular carcinoma. Nat. Rev. Dis. Prim. 2021, 7, 6. [Google Scholar]
- Anstee, Q.M.; Reeves, H.L.; Kotsiliti, E.; Govaere, O.; Heikenwalder, M. From NASH to HCC: Current concepts and future challenges. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 411–428. [Google Scholar] [PubMed]
- Chang, H.H.; Meuillet, E.J. Identification and development of mPGES-1 inhibitors:where we are at? Future Med. Chem. 2011, 3, 1909–1934. [Google Scholar] [PubMed]
- Yoshimatsu, K.; Altorki, N.K.; Golijanin, D.; Zhang, F.; Jakobsson, P.J.; Dannenberg, A.J.; Subbaramaiah, K. Inducible prostaglandin E synthase is overexpressed in non-smallcell lung cancer. Clin. Cancer Res. 2001, 7, 2669–2674. [Google Scholar] [PubMed]
- Nakanishi, M.; Rosenberg, D.W. Multifaceted roles of PGE2 in inflammation andcancer. Semin. Immunopathol. 2013, 35, 123–137. [Google Scholar] [CrossRef]
- Karavitis, J.; Hix, L.M.; Shi, Y.H.; Schultz, R.F.; Khazaie, K.; Zhang, M. Regulation of COX2 expression in mouse mammary tumor cells controls bone metastasis andPGE2-induction of regulatory T cell migration. PLoS ONE 2012, 7, e46342. [Google Scholar]
- Takii, Y.; Abiru, S.; Fujioka, H.; Nakamura, M.; Komori, A.; Ito, M.; Taniguchi, K.; Daikoku, M.; Meda, Y.; Ohata, K.; et al. Expression of microsomal prostaglandin E synthase-1 in human hepatocelluarcarcinoma. Liver Int. 2007, 27, 989–996. [Google Scholar] [CrossRef]
- Nonaka, K.; Fujioka, H.; Takii, Y.; Abiru, S.; Migita, K.; Ito, M.; Kanematsu, T.; Ishibashi, H. mPGES-1 expression in non-cancerous liver tissue impacts on postoperative recurrence of HCC. World J. Gastroenterol. 2010, 16, 4846–4853. [Google Scholar] [CrossRef]
- Breinig, M.; Rieker, R.; Eiteneuer, E.; Wertenbruch, T.; Haugg, A.M.; Helmke, B.M.; Schirmacher, P.; Kern, M.A. Differential expression of E-prostanoid receptors inhuman hepatocellular carcinoma. Int. J. Cancer 2008, 122, 547–557. [Google Scholar] [CrossRef]
- Lu, D.; Han, C.; Wu, T. Microsomal prostaglandin E synthase-1 promotes hepatocarcinogenesis through activation of a novel EGR1/β-catenin signalingaxis. Oncogene 2012, 31, 842–857. [Google Scholar]
- Han, Q.; Shi, H.; Liu, F. CD163(+) M2-type tumor-associated macrophage support the suppression of tumor-infiltrating T cells in osteosarcoma. Int. Immunopharmacol. 2016, 34, 101–106. [Google Scholar] [CrossRef]
- Schmid, P.; Adams, S.; Rugo, H.S.; Schneeweiss, A.; Barrios, C.H.; Iwata, H.; Diéras, V.; Hegg, R.; Im, S.A.; Shaw Wright, G.; et al. IMpassion130 Trial Investigators. Atezolizumab and Nab-Paclitaxel in Advanced Triple-Negative Breast Cancer. N. Engl. J. Med. 2018, 379, 2108–2121. [Google Scholar] [CrossRef] [PubMed]
- Petrylak, D.P.; Powles, T.; Bellmunt, J.; Braiteh, F.; Loriot, Y.; Morales-Barrera, R.; Burris, H.A.; Kim, J.W.; Ding, B.; Kaiser, C.; et al. Atezolizumab (MPDL3280A) Monotherapy for Patients With Metastatic Urothelial Cancer: Long-term Outcomes From a Phase 1 Study. JAMA Oncol. 2018, 4, 537–544. [Google Scholar] [PubMed]
- Chen, Z.; Chen, Y.; Peng, L.; Wang, X.; Tang, N. 2,5-dimethylcelecoxib improves immune microenvironment of hepatocellular carcinoma by promoting ubiquitination of HBx-induced PD-L1. J. Immunother. Cancer 2020, 8, e001377. [Google Scholar] [PubMed]
- Rizvi, S.; Khan, S.A.; Hallemeier, C.L.; Kelley, R.K.; Gores, G.J. Cholangiocarcinoma—Evolving concepts and therapeutic strategies. Nat. Rev. Clin. Oncol. 2018, 15, 95–111. [Google Scholar]
- Razumilava, N.; Gores, G.J. Cholangiocarcinoma. Lancet 2014, 383, 2168–2179. [Google Scholar] [CrossRef]
- Labib, P.L.; Goodchild, G.; Pereira, S.P. Molecular Pathogenesis of Cholangiocarcinoma. BMC Cancer 2019, 19, 185. [Google Scholar]
- Petrick, J.L.; Yang, B.; Altekruse, S.F.; Van Dyke, A.L.; Koshiol, J.; Graubard, B.I.; McGlynn, K.A. Risk factors for intrahepatic and extrahepatic cholangiocarcinoma in the United States: A population-based study in SEER-Medicare. PLoS ONE 2017, 12, e0186643. [Google Scholar]
- Lu, D.; Han, C.; Wu, T. Microsomal prostaglandin E synthase-1 inhibits PTEN and promotes experimental cholangiocarcinogenesis and tumor progression. Gastroenterology 2011, 140, 2084–2094. [Google Scholar]
- Jongthawin, J.; Chusorn, P.; Techasen, A.; Loilome, W.; Boonmars, T.; Thanan, R.; Puapairoj, A.; Khuntikeo, N.; Tassaneeyakul, W.; Yongvanit, P.; et al. PGE2 signaling and its biosynthesis-related enzymes in cholangiocarcinoma progression. Tumour. Biol. 2014, 35, 8051–8064. [Google Scholar] [CrossRef]
- Watanabe, K.; Kurihara, K.; Tokunaga, Y.; Hayaishi, O. Two types of Microsomal prostaglandin E synthase: Glutathione-dependent and -independent prostaglandin Esynthases. Biochem. Biophys. Res. Commun. 1997, 235, 148–152. [Google Scholar] [CrossRef]
- Watanabe, K.; Kurihara, K.; Suzuki, T. Purification and characterization of membrane-bound prostaglandin E synthase from bovine heart. Biochim. Biophys. Acta 1999, 1439, 406–414. [Google Scholar] [PubMed]
- Tanikawa, N.; Ohmiya, Y.; Ohkubo, H.; Hashimoto, K.; Kangawa, K.; Kojima, M.; Ito, S.; Watanabe, K. Identification and characterization of a novel type of membrane-associated prostaglandin E synthase. Biochem. Biophys. Res. Commun. 2002, 291, 884–889. [Google Scholar] [PubMed]
- Watanabe, K.; Ohkubo, H.; Niwa, H.; Tanikawa, N.; Koda, N.; Ito, S.; Ohmiya, Y. Essential 110Cys in active site of membrane-associated prostaglandin E synthase-2. Biochem. Biophys. Res. Commun. 2003, 306, 577–581. [Google Scholar] [PubMed]
- Murakami, M.; Nakashima, K.; Kamei, D.; Masuda, S.; Ishikawa, Y.; Ishii, T.; Ohmiya, Y.; Watanabe, K.; Kudo, I. Cellular prostaglandin E2 production by membrane-bound prostaglandin E synthase-2 via both cyclooxygenases-1 and -2. J. Biol. Chem. 2003, 278, 37937–37947. [Google Scholar] [CrossRef] [Green Version]
- Yamada, T.; Takusagawa, F. PGH2 degradation pathway catalyzed by GSH-heme complex bound microsomal prostaglandin E2 synthase type 2: The first example ofa dual-function enzyme. Biochemistry 2007, 46, 8414–8424. [Google Scholar] [CrossRef] [PubMed]
- Takusagawa, F. Microsomal prostaglandin E synthase type 2 (mPGES2) is a glutathione-dependent heme protein, and dithiothreitol dissociates the bound heme to produce active prostaglandin E2 synthase in vitro. J. Biol. Chem. 2013, 288, 10166–10175. [Google Scholar]
- Kosaka, T.; Miyata, A.; Ihara, H.; Hara, S.; Sugimoto, T.; Takeda, O.; Takahashi, E.; Tanabe, T. Characterization of the human gene (PTGS2) encoding prostaglandin-endoperoxide synthase 2. Eur. J. Biochem. 1994, 221, 889–897. [Google Scholar] [CrossRef] [PubMed]
- White, D.M.; Mikol, D.D.; Espinosa, R.; Weimer, B.; Le Beau, M.M.; Stefansson, K. Structure and chromosomal localization of the human gene for a brain form of prostaglandinD2 synthase. J. Biol. Chem. 1992, 267, 23202–23208. [Google Scholar] [CrossRef] [PubMed]
- Tanioka, T.; Nakatani, Y.; Semmyo, N.; Murakami, M.; Kudo, I. Molecular identification of cytosolic prostaglandin E2 synthase that is functionally coupled with cyclooxygenase-1 in immediate prostaglandin E2 biosynthesis. J. Biol. Chem. 2000, 275, 32775–32782. [Google Scholar] [CrossRef]
- Fahmi, H. mPGES-1 as a novel target for arthritis. Curr. Opin. Rheumatol. 2004, 16, 623–627. [Google Scholar] [CrossRef]
- Zhong, D.; Cai, J.; Hu, C.; Chen, J.; Zhang, R.; Fan, C.; Li, S.; Zhang, H.; Xu, Z.; Jia, Z.; et al. Inhibition of mPGES-2 ameliorates NASH by activating NR1D1 via heme. Hepatology 2022. Epub ahead of print. [Google Scholar] [CrossRef]
- Tilg, H.; Moschen, A.R.; Roden, M. NAFLD and diabetes mellitus. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Targher, G.; Corey, K.E.; Byrne, C.D.; Roden, M. The complex link between NAFLD and type 2 diabetes mellitus—Mechanisms and treatments. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 599–612. [Google Scholar] [PubMed]
- Zhong, D.; Wan, Z.; Cai, J.; Quan, L.; Zhang, R.; Teng, T.; Gao, H.; Fan, C.; Wang, M.; Guo, D.; et al. mPGES-2 blockade antagonizes β-cell senescence toameliorate diabetes by acting on NR4A1. Nat. Metab. 2022, 4, 269–283. [Google Scholar] [CrossRef]
- Arao, Y.; Kawai, H.; Kamimura, K.; Kobayashi, T.; Nakano, O.; Hayatsu, M.; Ushiki, T.; Terai, S. Effect of methionine/choline-deficient diet and high-fat diet-induced steatohepatitis on mitochondrial homeostasis in mice. Biochem. Biophys. Res. Commun. 2020, 527, 365–371. [Google Scholar]
- Zhang, Z.; Xu, X.; Tian, W.; Jiang, R.; Lu, Y.; Sun, Q.; Fu, R.; He, Q.; Wang, J.; Liu, Y.; et al. ARRB1 inhibits non-alcoholic steatohepatitis progression by promotingGDF15 maturation. J. Hepatol. 2020, 72, 976–989. [Google Scholar] [CrossRef]
- Na, H.; Lee, H.; Lee, M.H.; Lim, H.J.; Kim, H.J.; Jeon, Y.; Kang, H.L.; Lee, M.O. Deletion of exons 3 and 4 in the mouse Nr1d1 gene worsens high-fat diet-induced hepaticsteatosis. Life Sci. 2016, 166, 13–19. [Google Scholar]
- Kojetin, D.J.; Burris, T.P. REV-ERB and ROR nuclear receptors as drug targets. Nat. Rev. Drug Discov. 2014, 13, 197–216. [Google Scholar]
- Ni, C.; Zheng, K.; Gao, Y.; Chen, Y.; Shi, K.; Ni, C.; Jin, G.; Yu, G. ACOT4 accumulation via AKT-mediated phosphorylation promotes pancreatic tumourigenesis. Cancer Lett. 2021, 498, 19–30. [Google Scholar]
- Li, H.; Li, X.; Yu, S.; Hu, Y.; Xu, L.; Wang, T.; Yang, X.; Sun, X.; Zhao, B. miR-23b Ameliorates nonalcoholic steatohepatitis by targeting Acyl-CoA thioesterases 4. Exp. Cell Res. 2021, 4071, 12787. [Google Scholar] [CrossRef]
- Vassaux, G.; Gaillard, D.; Darimont, C.; Ailhaud, G.; Negrel, R. Differential response of preadipocytes and adipocytes to prostacyclin and prostaglandin E2:physiological implications. Endocrinology 1992, 131, 2393–2398. [Google Scholar] [PubMed]
- Nitz, I.; Fisher, E.; Grallert, H.; Li, Y.; Gieger, C.; Rubin, D.; Boeing, H.; Spranger, J.; Lindner, I.; Schreiber, S.; et al. Association of prostaglandin E synthase 2 (PTGES2) Arg298His polymorphism with type 2 diabetes in two German studypopulations. J. Clin. Endocrinol. Metab. 2007, 92, 3183–3188. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, R.; Zhu, Y.; Teng, T.; Cheng, Y.; Chowdhury, A.; Lu, J.; Jia, Z.; Song, J.; Yin, X.; et al. Microsomal prostaglandin E synthase 2 deficiency is resistant toacetaminophen-induced liver injury. Arch Toxicol. 2019, 93, 2863–2878. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, A.; Nabila, J.; Adelusi Temitope, I.; Wang, S. Current etiological comprehension and therapeutic targets of acetaminophen-induced hepatotoxicity. Pharmacol. Res. 2020, 161, 105102. [Google Scholar] [CrossRef]
- Chowdhury, A.; Lu, J.; Zhang, R.; Nabila, J.; Gao, H.; Wan, Z.; Adelusi Temitope, I.; Yin, X.; Sun, Y. Mangiferin ameliorates acetaminophen-induced hepatotoxicity through APAP-Cys and JNK modulation. Biomed Pharm. 2019, 117, 109097. [Google Scholar]
- Frey, S.M.; Wiegand, T.J.; Green, J.L.; Heard, K.J.; Wilkins, D.G.; Gorodetsky, R.M.; Dart, R.C. Confirming the Causative Role of Acetaminophen in Indeterminate Acute Liver Failure Using Acetaminophen-Cysteine Adducts. J. Med. Toxicol. 2015, 11, 218–222. [Google Scholar]
- Wu, K.K.; Huan, Y. Streptozotocin-induced diabetic models in mice and rats. Curr. Protoc. Pharmacol. 2008, 70, 5–47. [Google Scholar] [CrossRef]
- Szkudelski, T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol. Res. 2001, 50, 537–546. [Google Scholar]
- Sun, Y.; Jia, Z.; Yang, G.; Kakizoe, Y.; Liu, M.; Yang, K.T.; Liu, Y.; Yang, B.; Yang, T. mPGES-2 deletion remarkably enhances liver injury in streptozotocin-treated micevia induction of GLUT2. J. Hepatol. 2014, 61, 1328–1336. [Google Scholar]
- Lee, E.H.; Park, H.J.; Jung, H.Y.; Kang, I.K.; Kim, B.O.; Cho, Y.J. Isoquercitrin isolated from newly bred Green ball apple peel in lipopolysaccharide-stimulated macrophage regulates NF-κB inflammatory pathways and cytokines. 3 Biotech 2022, 12, 100. [Google Scholar] [CrossRef]
- Liu, Y.; Cheng, F.; Luo, Y.; Zhan, Z.; Hu, P.; Ren, H.; Tang, H.; Peng, M. PEGylated Curcumin Derivative Attenuates Hepatic Steatosis via CREB/PPAR-γ/CD36Pathway. Biomed Res. Int. 2017, 2017, 8234507. [Google Scholar] [PubMed]
- Xiao, S.; Deng, Y.; Shen, N.; Sun, Y.; Tang, H.; Hu, P.; Ren, H.; Peng, M. Curc-mPEG454, a PEGylated curcumin derivative, as a multi-target anti-fibrotic prodrug. Int. Immunopharmacol. 2021, 101, 108166. [Google Scholar] [PubMed]
- Majkić, T.; Bekvalac, K.; Beara, I. Plantain (Plantago L.) species as modulators of prostaglandin E2 and thromboxane A2 production ininflammation. J. Ethnopharmacol. 2020, 262, 113140. [Google Scholar] [PubMed]
- Ni, F.; Ekanayake, A.; Espinosa, B.; Yu, C.; Sanders, J.N.; Perino, J.; Houk, K.N.; Zhang, C. Synthesis and Target Identification of a Novel Electrophilic Warhead, 2-Chloromethylquinoline. Biochemistry 2019, 58, 2715–2719. [Google Scholar] [CrossRef] [PubMed]
- Bindu, S.; Mazumder, S.; Bandyopadhyay, U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective. Biochem. Pharmacol. 2020, 180, 114147. [Google Scholar] [CrossRef]
- Bergqvist, F.; Morgenstern, R.; Jakobsson, P.J. A review on mPGES-1 inhibitors: From preclinical studies to clinical applications. Prostaglandins Other Lipid Mediat. 2020, 147, 106383. [Google Scholar] [CrossRef]
- Arora, M.; Choudhary, S.; Singh, P.K.; Sapra, B.; Silakari, O. Structural investigation on the selective COX-2 inhibitors mediated cardiotoxicity: A review. Life Sci. 2020, 251, 117631. [Google Scholar]
- Neuschwander-Tetri, B.A.; Loomba, R.; Sanyal, A.J.; Lavine, J.E.; Van Natta, M.L.; Abdelmalek, M.F.; Chalasani, N.; Dasarathy, S.; Diehl, A.M.; Hameed, B.; et al. NASH Clinical Research Network. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): A multicentre, randomised, placebo-controlled trial. Lancet 2015, 385, 956–965. [Google Scholar] [CrossRef]
- Westerouen Van Meeteren, M.J.; Drenth, J.P.H.; Tjwa, E.T.T.L. Elafibranor: A potential drug for the treatment of nonalcoholic steatohepatitis (NASH). Expert Opin. Investig. Drugs 2020, 29, 117–123. [Google Scholar]
- Ratziu, V.; Harrison, S.A.; Francque, S.; Bedossa, P.; Lehert, P.; Serfaty, L.; Romero-Gomez, M.; Boursier, J.; Abdelmalek, M.; Caldwell, S.; et al. GOLDEN-505 Investigator Study Group. Elafibranor, an Agonist of the Peroxisome Proliferator-Activated Receptor-α and -δ, Induces Resolution of Nonalcoholic Steatohepatitis Without Fibrosis Worsening. Gastroenterology 2016, 150, 1147–1159.e5. [Google Scholar] [CrossRef]
- Zhou, S.; Zhou, Z.; Ding, K.; Yuan, Y.; Loftin, C.; Zheng, F.; Zhan, C.G. DREAM-in-CDM Approach and Identification of a New Generation of Anti-inflammatory Drugs Targeting mPGES-1. Sci. Rep. 2020, 10, 10187. [Google Scholar] [PubMed]
Effect on Liver Histology | Implicated Molecular Pathway |
---|---|
Aggravation of steatosis | Inhibition of SREBP-1c |
Reduced expression of CPTI | |
Downregulation of PGC1-α | |
Inhibition of inflammation | Decreased production of TNF-α and IL-1β |
Alleviation of Fas-induced liver injury | Upregulation of the EGFR/Akt pathway |
Aggravates ischemia induced injury | Utilization of EP4 receptor to shift the transcriptional status of macrophages from tissue restorative to inflammation promoting |
Favors malignant transformation and more aggressive HCC phenotypes | EGR-1 and β-catenin complex activation |
Favors CCA proliferation | EGRF-PI3K-AKT-mTOR axis stimulation |
Agent | Molecule/Pathway Modulated | Effect on Liver Histology/Immune Responses |
---|---|---|
Compound III | Inhibition of the mPGES-1 | Improved hepatic repair |
25HC, TO901317, GW3965, 9-cis-retinoic acid | Suppression of LPS mediated mPGES-1 expression by LXR/RXR activation | Lower PGE2 production by macrophages |
Statins | Upregulation of mPGES-1 in liver myofibroblasts | Potential antifibrotic effects |
Caffeine | Downregulation of mPGES-1 via the PPARγ-EGR-1-mPGES-1 axis | Potential antifibrotic effects |
Diosgenin | Suppression of mPGES-1 | Potential attenuation of inflammation related to acute liver injury |
Curcumin | Suppression of mPGES-1 via inhibition of activation by NFκB and EGR-1 | Improved liver damage |
Spiranthes sinensis | Suppression of mPGES-1 by hindering the phosphorylation of IκB | Improved liver damage |
2,5-dimethylcelecoxib | Inhibition of mPGES-1 | Counteracted immunosuppression in HCC cells |
CAY10526 | Inhibition of mPGES-1 | Repressed proliferation and metastatic potential in CCA cells |
Effect on Liver Histology | Implicated Molecular Pathway |
---|---|
Protection against steatosis | Induction of the expression of ACOT4 |
Downregulation of the expression of CYPA414 | |
Protection against inflammation and fibrosis | Upregulation of glutathione |
Higher resistance to streptozotocin-induced injury | Upregulation of GLUT2 in the absence of mPGES-2 |
Agent | Molecule/Pathway Modulated | Effect on Liver Histology/Immune Responses |
---|---|---|
SZ0232 | Inhibition of mPGES-2 | Alleviated liver injury and lipid aggregation |
Isoquercitrin | Suppression of mPGES-2 | Potential anti-inflammatory properties |
mCurc-mPEG454 | Suppression of mPGES-2 | Decrease in PGE2 levels |
P. altissima | Suppression of all three prostaglandin E synthase enzymes | Potential anti-inflammatory properties |
2-chloromethylquinoline | Inhibition of mPGES-2 | Potential anti-inflammatory properties |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotsos, D.; Tziomalos, K. Microsomal Prostaglandin E Synthase-1 and -2: Emerging Targets in Non-Alcoholic Fatty Liver Disease. Int. J. Mol. Sci. 2023, 24, 3049. https://doi.org/10.3390/ijms24033049
Kotsos D, Tziomalos K. Microsomal Prostaglandin E Synthase-1 and -2: Emerging Targets in Non-Alcoholic Fatty Liver Disease. International Journal of Molecular Sciences. 2023; 24(3):3049. https://doi.org/10.3390/ijms24033049
Chicago/Turabian StyleKotsos, Dimitrios, and Konstantinos Tziomalos. 2023. "Microsomal Prostaglandin E Synthase-1 and -2: Emerging Targets in Non-Alcoholic Fatty Liver Disease" International Journal of Molecular Sciences 24, no. 3: 3049. https://doi.org/10.3390/ijms24033049
APA StyleKotsos, D., & Tziomalos, K. (2023). Microsomal Prostaglandin E Synthase-1 and -2: Emerging Targets in Non-Alcoholic Fatty Liver Disease. International Journal of Molecular Sciences, 24(3), 3049. https://doi.org/10.3390/ijms24033049