In-Situ Electrochemical Exfoliation and Methylation of Black Phosphorus into Functionalized Phosphorene Nanosheets
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Information
3.2. Characterization Techniques
3.3. BP–CH3 Synthesis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dhanabalan, S.C.; Ponraj, J.S.; Guo, Z.; Li, S.; Bao, Q.; Zhang, H. Emerging Trends in Phosphorene Fabrication towards Next Generation Devices. Adv. Sci. 2017, 4, 1600305. [Google Scholar] [CrossRef]
- Xu, G.L.; Chen, Z.; Zhong, G.M.; Liu, Y.; Yang, Y.; Ma, T.; Ren, Y.; Zuo, X.; Wu, X.H.; Zhang, X.; et al. Nanostructured Black Phosphorus/Ketjenblack-Multiwalled Carbon Nanotubes Composite as High Performance Anode Material for Sodium-Ion Batteries. Nano Lett. 2016, 16, 3955–3965. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Lian, P.; Xie, D.; Yang, Y.; Mei, Y.; Huang, X.; Wang, Z.; Yin, X. Properties, Preparation and Application of Black Phosphorus/Phosphorene for Energy Storage: A Review. J. Mater. Sci. 2017, 52, 10364–10386. [Google Scholar] [CrossRef]
- Bagheri, S.; Mansouri, N.; Aghaie, E. Phosphorene: A New Competitor for Graphene. Int. J. Hydrog. Energy 2016, 41, 4085–4095. [Google Scholar] [CrossRef]
- Luo, M.; Fan, T.; Zhou, Y.; Zhang, H.; Mei, L. 2D Black Phosphorus–Based Biomedical Applications. Adv. Funct. Mater. 2019, 29, 1–19. [Google Scholar] [CrossRef]
- Baboukani, A.R.; Khakpour, I.; Drozd, V.; Wang, C. Liquid-Based Exfoliation of Black Phosphorus into Phosphorene and Its Application for Energy Storage Devices. Small Struct. 2021, 2, 2000148. [Google Scholar] [CrossRef]
- Baboukani, A.R.; Aghaei, S.M.; Khakpour, I.; Drozd, V.; Aasi, A.; Wang, C. Defects investigation of bipolar exfoliated phosphorene nanosheets. Surf. Sci. 2022, 720, 122052. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, M.; Yang, S. Chemical Functionalization of 2D Black Phosphorus. InfoMat 2021, 3, 231–251. [Google Scholar] [CrossRef]
- Kuchkaev, A.M.; Lavate, S.; Kuchkaev, A.M.; Sukhov, A.V.; Srivastava, R.; Yakhvarov, D.G. Chemical Functionalization of 2D Black Phosphorus toward Its Applications in Energy Devices and Catalysis: A Review. Energy Technol. 2021, 9, 1–36. [Google Scholar] [CrossRef]
- Peruzzini, M.; Bini, R.; Bolognesi, M.; Caporali, M.; Ceppatelli, M.; Cicogna, F.; Coiai, S.; Heun, S.; Ienco, A.; Benito, I.I.; et al. A Perspective on Recent Advances in Phosphorene Functionalization and Its Applications in Devices. Eur. J. Inorg. Chem. 2019, 2019, 1476–1494. [Google Scholar] [CrossRef] [Green Version]
- Thurakkal, S.; Zhang, X. Covalent Functionalization of Two-Dimensional Black Phosphorus Nanosheets with Porphyrins and Their Photophysical Characterization. Mater. Chem. Front. 2021, 5, 2824–2831. [Google Scholar] [CrossRef]
- Ryder, C.R.; Wood, J.D.; Wells, S.A.; Yang, Y.; Jariwala, D.; Marks, T.J.; Schatz, G.C.; Hersam, M.C. Covalent Functionalization and Passivation of Exfoliated Black Phosphorus via Aryl Diazonium Chemistry. Nat. Chem. 2016, 8, 597–602. [Google Scholar] [CrossRef] [PubMed]
- Walz Mitra, K.L.; Chang, C.H.; Hanrahan, M.P.; Yang, J.; Tofan, D.; Holden, W.M.; Govind, N.; Seidler, G.T.; Rossini, A.J.; Velian, A. Surface Functionalization of Black Phosphorus with Nitrenes: Identification of P=N Bonds by Using Isotopic Labeling. Angew. Chem. Int. Ed. 2021, 60, 9127–9134. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Gao, H.; Gao, L.; Li, F.; Xu, N.; Long, X.; Hu, Y.; Jin, J.; Ma, J. Covalent Functionalization of Black Phosphorus Nanoflakes by Carbon Free Radicals for Durable Air and Water Stability. Nanoscale 2018, 10, 5834–5839. [Google Scholar] [CrossRef] [PubMed]
- Sofer, Z.; Luxa, J.; Bouša, D.; Sedmidubský, D.; Lazar, P.; Hartman, T.; Hardtdegen, H.; Pumera, M. The Covalent Functionalization of Layered Black Phosphorus by Nucleophilic Reagents. Angew. Chem. Int. Ed. 2017, 56, 9891–9896. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Gao, L.F.; Li, L.; Hu, C.X.; Yang, Q.Q.; Zhu, Z.Y.; Peng, R.; Wang, Q.; Peng, Y.; Jin, J.; et al. Negatively Charged 2D Black Phosphorus for Highly Efficient Covalent Functionalization. Mater. Chem. Front. 2018, 2, 1700–1706. [Google Scholar] [CrossRef]
- Wild, S.; Fickert, M.; Mitrovic, A.; Lloret, V.; Neiss, C.; Vidal-Moya, J.A.; Rivero-Crespo, M.Á.; Leyva-Pérez, A.; Werbach, K.; Peterlik, H.; et al. Lattice Opening upon Bulk Reductive Covalent Functionalization of Black Phosphorus. Angew. Chem. Int. Ed. 2019, 58, 5763–5768. [Google Scholar] [CrossRef]
- Wild, S.; Dinh, X.T.; Maid, H.; Hauke, F.; Abellán, G.; Hirsch, A. Quantifying the Covalent Functionalization of Black Phosphorus. Angew. Chem. Int. Ed. 2020, 59, 20230–20234. [Google Scholar] [CrossRef]
- Choudhary, S.; Mungse, H.P.; Khatri, O.P. Dispersion of Alkylated Graphene in Organic Solvents and Its Potential for Lubrication Applications. J. Mater. Chem. 2012, 22, 21032–21039. [Google Scholar] [CrossRef]
- Englert, J.M.; Knirsch, K.C.; Dotzer, C.; Butz, B.; Hauke, F.; Spiecker, E.; Hirsch, A. Functionalization of Graphene by Electrophilic Alkylation of Reduced Graphite. Chem. Commun. 2012, 48, 5025–5027. [Google Scholar] [CrossRef]
- Cao, Y.; Feng, J.; Wu, P. Alkyl-Functionalized Graphene Nanosheets with Improved Lipophilicity. Carbon N. Y. 2010, 48, 1683–1685. [Google Scholar] [CrossRef]
- Liang, F.; Sadana, A.K.; Peera, A.; Chattopadhyay, J.; Gu, Z.; Hauge, R.H.; Billups, W.E. A Convenient Route to Functionalized Carbon Nanotubes. Nano Lett. 2004, 4, 1257–1260. [Google Scholar] [CrossRef]
- Knirsch, K.C.; Englert, J.M.; Dotzer, C.; Hauke, F.; Hirsch, A. Screening of the Chemical Reactivity of Three Different Graphite Sources Using the Formation of Reductively Alkylated Graphene as a Model Reaction. Chem. Commun. 2013, 49, 10811–10813. [Google Scholar] [CrossRef]
- Li, J.; Chen, C.; Liu, S.; Lu, J.; Goh, W.P.; Fang, H.; Qiu, Z.; Tian, B.; Chen, Z.; Yao, C.; et al. Ultrafast Electrochemical Expansion of Black Phosphorus toward High-Yield Synthesis of Few-Layer Phosphorene. Chem. Mater. 2018, 30, 2742–2749. [Google Scholar] [CrossRef]
- Husch, N.S. Electrode Reactions of the Methyl Halides. Z. Elektrochem. 1957, 61, 734–738. [Google Scholar] [CrossRef]
- Martini, F.; Borsacchi, S.; Barcaro, G.; Caporali, M.; Vanni, M.; Serrano-Ruiz, M.; Geppi, M.; Peruzzini, M.; Calucci, L. Phosphorene and Black Phosphorus: The 31P NMR View. J. Phys. Chem. Lett. 2019, 10, 5122–5127. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, P.; Zhang, T.; Zhu, X.; Zhang, M.; Chen, M.; Du, P.; Wang, G.W.; Ji, H.; Yang, J.; et al. Azide Passivation of Black Phosphorus Nanosheets: Covalent Functionalization Affords Ambient Stability Enhancement. Angew. Chem. Int. Ed. 2019, 58, 1479–1483. [Google Scholar] [CrossRef]
- Plutnar, J.; Sofer, Z.; Pumera, M. Products of Degradation of Black Phosphorus in Protic Solvents. ACS Nano 2018, 12, 8390–8396. [Google Scholar] [CrossRef]
- Grim, O.S.; McFarlane, W.; Davidoff, F.E. Group Contributions to Phosphorus-31 Chemical Shifts of Tertiary Phosphines. J. Org. Chem. 1967, 3284, 1965–1968. [Google Scholar] [CrossRef]
- Fluck, E.; Lorenz, J. Chemische Verschiebungen von Phosphinen, Phosphoniumsalzen Und Diphosphino-Nickel (II)-Chloriden. Z. Naturforsch. B 1967, 22, 1095–1100. [Google Scholar] [CrossRef] [Green Version]
- Quin, L.D.; Breen, J.J. Steric Effects in 31P NMR Spectra: ‘Gamma’ Shielding in Aliphatic Phosphorus Compounds. Org. Magn. Reson. 1973, 5, 17–19. [Google Scholar] [CrossRef]
- Qiu, P.; Xu, C.; Zhou, N.; Chen, H.; Jiang, F. Metal-Free Black Phosphorus Nanosheets-Decorated Graphitic Carbon Nitride Nanosheets with C-P Bonds for Excellent Photocatalytic Nitrogen Fixation. Appl. Catal. B Environ. 2018, 221, 27–35. [Google Scholar] [CrossRef]
- Favron, A.; Gaufrès, E.; Fossard, F.; Phaneuf-Laheureux, A.L.; Tang, N.Y.W.; Lévesque, P.L.; Loiseau, A.; Leonelli, R.; Francoeur, S.; Martel, R. Photooxidation and Quantum Confinement Effects in Exfoliated Black Phosphorus. Nat. Mater. 2015, 14, 826–832. [Google Scholar] [CrossRef] [PubMed]
- Baboukani, A.R.; Khakpour, I.; Drozd, V.; Allagui, A.; Wang, C. Single-step exfoliation of black phosphorus and deposition of phosphorene via bipolar electrochemistry for capacitive energy storage application. J. Mater. Chem. A. 2019, 7, 25548–25556. [Google Scholar] [CrossRef]
- Pikl, R.; Duschek, F.; Fickert, C.; Finsterer, R.; Kiefer, W. Vibrational Studies of Phosphines: Raman Spectra of the Phospines PMexPh3-x (x = 0-3) and Normal Coordinate Analysis of Trimethylphosphine. Vib. Spectrosc. 1997, 14, 189–197. [Google Scholar] [CrossRef]
- Halmann, M. Infrared Absorption of Trimethylphosphine. Spectrochim. Acta 1960, 16, 407–412. [Google Scholar] [CrossRef]
- Nilges, T.; Kersting, M.; Pfeifer, T. A Fast Low-Pressure Transport Route to Large Black Phosphorus Single Crystals. J. Solid State Chem. 2008, 181, 1707–1711. [Google Scholar] [CrossRef]
- Kuchkaev, A.M.; Sukhov, A.V.; Kuchkaev, A.M.; Ziganshina, S.A.; Babaev, V.M.; Gubaidullin, A.T.; Dobrynin, A.B.; Nizameev, I.R.; Shrivastava, R.; Lavate, S.; et al. Electrochemical Properties of Nickel (II) Ions in the Presence of Few-Layer Black Phosphorus. Russ. J. Electrochem. 2022, 58, 680–688. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuchkaev, A.M.; Kuchkaev, A.M.; Sukhov, A.V.; Saparina, S.V.; Gnezdilov, O.I.; Klimovitskii, A.E.; Ziganshina, S.A.; Nizameev, I.R.; Asanov, I.P.; Brylev, K.A.; et al. In-Situ Electrochemical Exfoliation and Methylation of Black Phosphorus into Functionalized Phosphorene Nanosheets. Int. J. Mol. Sci. 2023, 24, 3095. https://doi.org/10.3390/ijms24043095
Kuchkaev AM, Kuchkaev AM, Sukhov AV, Saparina SV, Gnezdilov OI, Klimovitskii AE, Ziganshina SA, Nizameev IR, Asanov IP, Brylev KA, et al. In-Situ Electrochemical Exfoliation and Methylation of Black Phosphorus into Functionalized Phosphorene Nanosheets. International Journal of Molecular Sciences. 2023; 24(4):3095. https://doi.org/10.3390/ijms24043095
Chicago/Turabian StyleKuchkaev, Aidar M., Airat M. Kuchkaev, Aleksander V. Sukhov, Svetlana V. Saparina, Oleg I. Gnezdilov, Alexander E. Klimovitskii, Sufia A. Ziganshina, Irek R. Nizameev, Igor P. Asanov, Konstantin A. Brylev, and et al. 2023. "In-Situ Electrochemical Exfoliation and Methylation of Black Phosphorus into Functionalized Phosphorene Nanosheets" International Journal of Molecular Sciences 24, no. 4: 3095. https://doi.org/10.3390/ijms24043095
APA StyleKuchkaev, A. M., Kuchkaev, A. M., Sukhov, A. V., Saparina, S. V., Gnezdilov, O. I., Klimovitskii, A. E., Ziganshina, S. A., Nizameev, I. R., Asanov, I. P., Brylev, K. A., Sinyashin, O. G., & Yakhvarov, D. G. (2023). In-Situ Electrochemical Exfoliation and Methylation of Black Phosphorus into Functionalized Phosphorene Nanosheets. International Journal of Molecular Sciences, 24(4), 3095. https://doi.org/10.3390/ijms24043095