Response Surface Methodology to Efficiently Optimize Intracellular Delivery by Photoporation
Abstract
:1. Introduction
2. Results
2.1. Synthesis of Polydopamine Nanoparticles
2.2. Optimization of Delivery Yield by Response Surface Methodology
2.2.1. Model Fitting and Statistical Assessment
2.2.2. Analysis of the Response Surface
2.2.3. Design Adjustment for the BDD
2.2.4. Model Validation
3. Discussion
4. Materials and Methods
4.1. Synthesis of Polydopamine Nanoparticles and Functionalization with Bovine Serum Albumin
4.2. Physicochemical and Morphological Characterization
4.3. VNB-Threshold
4.4. Cell Culture
4.5. Photoporation for the Intracellular Delivery of FITC-Dextran 500 kDa
4.6. Analysis of Intracellular Delivery Efficiency by Flow Cytometry
4.7. Cell Viability Analysis
4.8. Response Surface Methodology
4.8.1. Experimental Design
4.8.2. Model Fitting and Statistical Assessment
4.8.3. Canonical Analysis
4.8.4. Model Validation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pei, D. How do biomolecules cross the cell membrane? Acc. Chem. Res. 2022, 55, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Morshedi Rad, D.; Alsadat Rad, M.; Razavi Bazaz, S.; Kashaninejad, N.; Jin, D.; Ebrahimi Warkiani, M. A Comprehensive review on intracellular delivery. Adv. Mater. 2021, 33, 2005363. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.J.; Hinner, M.J. Getting Across the Cell Membrane: An Overview for Small Molecules, Peptides, and Proteins. In Methods in Molecular Biology (Clifton N.J.); Humana Press: New York, NY, USA, 2015; Volume 1266, pp. 29–53. [Google Scholar]
- Butt, M.; Zaman, M.; Ahmad, A.; Khan, R.; Mallhi, T.; Hasan, M.; Khan, Y.; Hafeez, S.; Massoud, E.; Rahman, M.; et al. Appraisal for the potential of viral and nonviral vectors in gene therapy: A review. Genes 2022, 13, 1370. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, C.; Wang, Y.; Chen, H.; Zhang, X.; Luo, C.; Zhou, W.; Li, L.; Teng, L.; Yu, H.; et al. Smart drug delivery systems for precise cancer therapy. Acta Pharm. Sin. B 2022, 12, 4098–4121. [Google Scholar] [CrossRef]
- Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124. [Google Scholar] [CrossRef]
- Yin, H.; Kanasty, R.L.; Eltoukhy, A.A.; Vegas, A.J.; Dorkin, J.R.; Anderson, D.G. Non-Viral vectors for gene-based therapy. Nat. Rev. Genet. 2014, 15, 541–555. [Google Scholar] [CrossRef]
- Stewart, M.P.; Langer, R.; Jensen, K.F. intracellular delivery by membrane disruption: Mechanisms, strategies, and concepts. Chem. Rev. 2018, 118, 7409–7531. [Google Scholar] [CrossRef]
- Shi, J.; Ma, Y.; Zhu, J.; Chen, Y.; Sun, Y.; Yao, Y.; Yang, Z.; Xie, J. A review on electroporation-based intracellular delivery. Molecules 2018, 23, 3044. [Google Scholar] [CrossRef]
- Kooiman, K.; Roovers, S.; Langeveld, S.A.G.; Kleven, R.T.; Dewitte, H.; O’Reilly, M.A.; Escoffre, J.-M.; Bouakaz, A.; Verweij, M.D.; Hynynen, K.; et al. Ultrasound-responsive cavitation nuclei for therapy and drug delivery. Ultrasound Med. Biol. 2020, 46, 1296–1325. [Google Scholar] [CrossRef]
- Bi, Q.; Song, X.; Hu, A.; Luo, T.; Jin, R.; Ai, H.; Nie, Y. Magnetofection: Magic Magnetic Nanoparticles for Efficient Gene Delivery. Chinese Chem. Lett. 2020, 31, 3041–3046. [Google Scholar] [CrossRef]
- Chakrabarty, P.; Gupta, P.; Illath, K.; Kar, S.; Nagai, M.; Tseng, F.-G.; Santra, T.S. Microfluidic mechanoporation for cellular delivery and analysis. Mater. Today Bio 2022, 13, 100193. [Google Scholar] [CrossRef] [PubMed]
- Ramon, J.; Xiong, R.; De Smedt, S.C.; Raemdonck, K.; Braeckmans, K. Vapor nanobubble-mediated photoporation constitutes a versatile intracellular delivery technology. Curr. Opin. Colloid Interface Sci. 2021, 54, 101453. [Google Scholar] [CrossRef]
- Xiong, R.; Samal, S.K.; Demeester, J.; Skirtach, A.G.; De Smedt, S.C.; Braeckmans, K. Laser-assisted photoporation: Fundamentals, technological advances and applications. Adv. Phys. X 2016, 1, 596–620. [Google Scholar] [CrossRef]
- Wang, D.; Cheng, P.; Quan, X. Photothermal nanobubble nucleation on a plasmonic nanoparticle: A 3D lattice boltzmann simulation. Int. J. Heat Mass Transf. 2019, 140, 786–797. [Google Scholar] [CrossRef]
- Lombard, J.; Lam, J.; Detcheverry, F.; Biben, T.; Merabia, S. Strong and fast rising pressure waves emitted by plasmonic vapor nanobubbles. Phys. Rev. Res. 2021, 3, 023231. [Google Scholar] [CrossRef]
- Maheshwari, S.; van der Hoef, M.; Prosperetti, A.; Lohse, D. Dynamics of formation of a vapor nanobubble around a heated nanoparticle. J. Phys. Chem. C 2018, 122, 20571–20580. [Google Scholar] [CrossRef]
- Lukianova-Hleb, E.; Hu, Y.; Latterini, L.; Tarpani, L.; Lee, S.; Drezek, R.A.; Hafner, J.H.; Lapotko, D.O. Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles. ACS Nano 2010, 4, 2109–2123. [Google Scholar] [CrossRef]
- Xiong, R.; Raemdonck, K.; Peynshaert, K.; Lentacker, I.; De Cock, I.; Demeester, J.; De Smedt, S.C.; Skirtach, A.G.; Braeckmans, K. Comparison of gold nanoparticle mediated photoporation: Vapor nanobubbles outperform direct heating for delivering macromolecules in live cells. ACS Nano 2014, 8, 6288–6296. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Chong, C.; Voorhees, T.; Thadhani, N.N.; Prausnitz, M.R. Relationship between bio-effects and energy transduction during nanoparticle-mediated photoporation. J. Appl. Phys. 2020, 128, 173101. [Google Scholar] [CrossRef]
- Xiong, R.; Hua, D.; Van Hoeck, J.; Berdecka, D.; Léger, L.; De Munter, S.; Fraire, J.C.; Raes, L.; Harizaj, A.; Sauvage, F.; et al. Photothermal nanofibres enable safe engineering of Therapeutic cells. Nat. Nanotechnol. 2021, 16, 1281–1291. [Google Scholar] [CrossRef]
- Raes, L.; Pille, M.; Harizaj, A.; Goetgeluk, G.; Van Hoeck, J.; Stremersch, S.; Fraire, J.C.; Brans, T.; de Jong, O.G.; Maas-Bakker, R.; et al. Cas9 RNP Transfection by Vapor Nanobubble Photoporation for Ex Vivo Cell Engineering. Mol. Ther.-Nucleic Acids 2021, 25, 696–707. [Google Scholar] [CrossRef] [PubMed]
- Harizaj, A.; Descamps, B.; Mangodt, C.; Stremersch, S.; Stoppa, A.; Balcaen, L.; Brans, T.; De Rooster, H.; Devriendt, N.; Fraire, J.C.; et al. Cytosolic delivery of gadolinium via photoporation enables improved in vivo magnetic resonance imaging of cancer cells. Biomater. Sci. 2021, 9, 4005–4018. [Google Scholar] [CrossRef]
- Harizaj, A.; Van Hauwermeiren, F.; Stremersch, S.; De Rycke, R.; De Keersmaecker, H.; Brans, T.; Fraire, J.C.; Grauwen, K.; De Smedt, S.C.; Lentacker, I.; et al. Nanoparticle-sensitized photoporation enables inflammasome activation studies in targeted single cells. Nanoscale 2021, 13, 6592–6604. [Google Scholar] [CrossRef] [PubMed]
- Raes, L.; Stremersch, S.; Fraire, J.C.; Brans, T.; Goetgeluk, G.; De Munter, S.; Van Hoecke, L.; Verbeke, R.; Van Hoeck, J.; Xiong, R.; et al. Intracellular delivery of MRNA in adherent and suspension cells by vapor nanobubble photoporation. Nano-Micro Lett. 2020, 12, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Raes, L.; Van Hecke, C.; Michiels, J.; Stremersch, S.; Fraire, J.C.; Brans, T.; Xiong, R.; De Smedt, S.; Vandekerckhove, L.; Raemdonck, K.; et al. Gold nanoparticle-mediated photoporation enables delivery of macromolecules over a wide range of molecular weights in human CD4+ T cells. Crystals 2019, 9, 411. [Google Scholar] [CrossRef]
- Wang, L.; Wu, J.; Hu, Y.; Hu, C.; Pan, Y.; Yu, Q.; Chen, H. Using porous magnetic iron oxide nanomaterials as a facile photoporation nanoplatform for macromolecular delivery. J. Mater. Chem. B 2018, 6, 4427–4436. [Google Scholar] [CrossRef] [PubMed]
- Wayteck, L.; Xiong, R.; Braeckmans, K.; De Smedt, S.C.; Raemdonck, K. Comparing Photoporation and nucleofection for delivery of small interfering RNA to Cytotoxic T cells. J. Control. Release 2017, 267, 154–162. [Google Scholar] [CrossRef]
- Kumar, S.; Li, A.; Thadhani, N.N.; Prausnitz, M.R. Optimization of Intracellular macromolecule delivery by nanoparticle-mediated photoporation. Nanomed. Nanotechnol. Biol. Med. 2021, 37, 102431. [Google Scholar] [CrossRef]
- Liu, J.; Li, C.; Brans, T.; Harizaj, A.; Van de Steene, S.; De Beer, T.; De Smedt, S.; Szunerits, S.; Boukherroub, R.; Xiong, R.; et al. Surface functionalization with polyethylene glycol and polyethyleneimine improves the performance of graphene-based materials for safe and efficient intracellular delivery by laser-induced photoporation. Int. J. Mol. Sci. 2020, 21, 1540. [Google Scholar] [CrossRef]
- Teirlinck, E.; Barras, A.; Liu, J.; Fraire, J.C.; Lajunen, T.; Xiong, R.; Forier, K.; Li, C.; Urtti, A.; Boukherroub, R.; et al. Exploring light-sensitive nanocarriers for simultaneous triggered antibiotic release and disruption of biofilms upon generation of laser-induced vapor nanobubbles. Pharmaceutics 2019, 11, 201. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Xiong, R.; Brans, T.; Lippens, S.; Parthoens, E.; Zanacchi, F.C.; Magrassi, R.; Singh, S.K.; Kurungot, S.; Szunerits, S.; et al. Repeated photoporation with graphene quantum dots enables homogeneous labeling of live cells with extrinsic markers for fluorescence microscopy. Light Sci. Appl. 2018, 7, 47. [Google Scholar] [CrossRef] [PubMed]
- Holguin, S.Y.; Thadhani, N.N.; Prausnitz, M.R. Effect of laser fluence, nanoparticle concentration and total energy input per cell on photoporation of cells. Nanomed. Nanotechnol. Biol. Med. 2018, 14, 1667–1677. [Google Scholar] [CrossRef] [PubMed]
- Xiong, R.; Joris, F.; Liang, S.; De Rycke, R.; Lippens, S.; Demeester, J.; Skirtach, A.; Raemdonck, K.; Himmelreich, U.; De Smedt, S.C.; et al. Cytosolic delivery of nanolabels prevents their asymmetric inheritance and enables extended quantitative in vivo cell imaging. Nano Lett. 2016, 16, 5975–5986. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, A.; Kelly, S.C.; Dwivedi, N.; Thadhani, N.; Prausnitz, M.R. Efficient intracellular delivery of molecules with high cell viability using nanosecond-pulsed laser-activated carbon nanoparticles. ACS Nano 2014, 8, 2889–2899. [Google Scholar] [CrossRef]
- Chakravarty, P.; Qian, W.; El-Sayed, M.A.; Prausnitz, M.R. Delivery of molecules into cells using carbon nanoparticles activated by femtosecond laser pulses. Nat. Nanotechnol. 2010, 5, 607–611. [Google Scholar] [CrossRef]
- Di Ianni, E.; Jacobsen, N.R.; Vogel, U.B.; Møller, P. Systematic review on primary and secondary genotoxicity of carbon black nanoparticles in mammalian cells and animals. Mutat. Res. 2022, 790, 108441. [Google Scholar] [CrossRef]
- Ghulam, A.N.; dos Santos, O.A.L.; Hazeem, L.; Pizzorno Backx, B.; Bououdina, M.; Bellucci, S. Graphene oxide (GO) materials—Applications and toxicity on living organisms and environment. J. Funct. Biomater. 2022, 13, 77. [Google Scholar] [CrossRef]
- Sani, A.; Cao, C.; Cui, D. Toxicity of Gold Nanoparticles (AuNPs): A review. Biochem. Biophys. Rep. 2021, 26, 100991. [Google Scholar] [CrossRef]
- Mohammadpour, R.; Dobrovolskaia, M.A.; Cheney, D.L.; Greish, K.F.; Ghandehari, H. Subchronic and chronic toxicity evaluation of inorganic nanoparticles for delivery applications. Adv. Drug Deliv. Rev. 2019, 144, 112–132. [Google Scholar] [CrossRef]
- Ou, L.; Song, B.; Liang, H.; Liu, J.; Feng, X.; Deng, B.; Sun, T.; Shao, L. Toxicity of graphene-family nanoparticles: A general review of the origins and mechanisms. Part. Fibre Toxicol. 2016, 13, 57. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Neuss, S.; Leifert, A.; Fischler, M.; Wen, F.; Simon, U.; Schmid, G.; Brandau, W.; Jahnen-Dechent, W. Size-dependent cytotoxicity of gold nanoparticles. Small 2007, 3, 1941–1949. [Google Scholar] [CrossRef] [PubMed]
- Tsoli, M.; Kuhn, H.; Brandau, W.; Esche, H.; Schmid, G. Cellular uptake and toxicity of Au55 clusters. Small 2005, 1, 841–844. [Google Scholar] [CrossRef] [PubMed]
- Poinard, B.; Lam, S.A.E.; Neoh, K.G.; Kah, J.C.Y. Mucopenetration and biocompatibility of polydopamine surfaces for delivery in an ex vivo porcine bladder. J. Control. Release 2019, 300, 161–173. [Google Scholar] [CrossRef] [PubMed]
- Poinard, B.; Zhan, S.; Neo, Y.; Li, E.; Yeo, L.; Peng, H.; Heng, S.; Gee Neoh, K.; Chen, J.; Kah, Y. Polydopamine nanoparticles enhance drug release for combined photodynamic and photothermal therapy. ACS Appl. Mater. Interfaces 2018, 10, 21125–21136. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ai, K.; Lu, L. Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev. 2014, 114, 5057–5115. [Google Scholar] [CrossRef]
- Postma, A.; Yan, Y.; Wang, Y.; Zelikin, A.N.; Tjipto, E.; Caruso, F. Self-polymerization of dopamine as a versatile and robust technique to prepare polymer capsules. Chem. Mater. 2009, 21, 3042–3044. [Google Scholar] [CrossRef]
- Zmerli, I.; Michel, J.-P.; Makky, A. Bioinspired polydopamine nanoparticles: Synthesis, nanomechanical properties, and efficient pegylation strategy. J. Mater. Chem. B 2020, 8, 4489–4504. [Google Scholar] [CrossRef]
- Liebscher, J. Chemistry of polydopamine—Scope, variation, and limitation. Eur. J. Org. Chem. 2019, 2019, 4976–4994. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Z.; Yang, P.; Hu, J.; Wang, Z.; Li, Y. Size Control synthesis of melanin-like polydopamine nanoparticles by tuning radicals. Polym. Chem. 2019, 10, 4194–4200. [Google Scholar] [CrossRef]
- Ryu, J.H.; Messersmith, P.B.; Lee, H. Polydopamine surface chemistry: A decade of discovery. ACS Appl. Mater. Interfaces 2018, 10, 7523–7540. [Google Scholar] [CrossRef]
- Ju, K.Y.; Lee, Y.; Lee, S.; Park, S.B.; Lee, J.K. Bioinspired polymerization of dopamine to generate melanin-like nanoparticles having an excellent free-radical-scavenging property. Biomacromolecules 2011, 12, 625–632. [Google Scholar] [CrossRef]
- Harizaj, A.; Wels, M.; Raes, L.; Stremersch, S.; Goetgeluk, G.; Brans, T.; Vandekerckhove, B.; Sauvage, F.; De Smedt, S.C.; Lentacker, I.; et al. Photoporation with biodegradable polydopamine nanosensitizers enables safe and efficient delivery of MRNA in human T cells. Adv. Funct. Mater. 2021, 31, 2102472. [Google Scholar] [CrossRef]
- Czitrom, V. One-factor-at-a-time versus designed experiments. Am. Stat. 1999, 53, 126. [Google Scholar] [CrossRef]
- Lendrem, D.W.; Lendrem, B.C.; Woods, D.; Rowland-Jones, R.; Burke, M.; Chatfield, M.; Isaacs, J.D.; Owen, M.R. Lost in space: Design of experiments and scientific exploration in a hogarth universe. Drug Discov. Today 2015, 20, 1365–1371. [Google Scholar] [CrossRef]
- Box, G.E.P.; Wilson, K.B. On the experimental attainment of optimum conditions. J. R. Stat. Soc. Ser. B 1951, 13, 1–38. [Google Scholar] [CrossRef]
- Khuri, A.I.; Mukhopadhyay, S. Response surface methodology. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 128–149. [Google Scholar] [CrossRef]
- Sarabia, L.A.; Ortiz, M.C. Response Surface Methodology. In Comprehensive Chemometrics; Elsevier: Amsterdam, The Netherlands, 2009; pp. 345–390. [Google Scholar]
- Wu, J.C.F.; Hamada, M.S. Experiments: Planning, Analysis, and Optimization, 3rd ed.; Wiley Series in Probability and Statistics; Wiley: New York, NY, USA, 2021; ISBN 9781119470106. [Google Scholar]
- de Oliveira, L.G.; de Paiva, A.P.; Balestrassi, P.P.; Ferreira, J.R.; da Costa, S.C.; da Silva Campos, P.H. Response surface methodology for advanced manufacturing technology optimization: Theoretical fundamentals, practical guidelines, and survey literature review. Int. J. Adv. Manuf. Technol. 2019, 104, 1785–1837. [Google Scholar] [CrossRef]
- Karimifard, S.; Alavi Moghaddam, M.R. Application of response surface methodology in physicochemical removal of dyes from wastewater: A critical review. Sci. Total Environ. 2018, 640–641, 772–797. [Google Scholar] [CrossRef]
- Myers, R.H.; Montgomery, D.C.; Anderson-Cook, C.M. Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 3rd ed.; John Wiley & Sons: New York, NY, USA, 2016; ISBN 978-1-118-91601-8. [Google Scholar]
- Jankovic, A.; Chaudhary, G.; Goia, F. Designing the Design of Experiments (DOE)—An investigation on the influence of different factorial designs on the characterization of complex systems. Energy Build. 2021, 250, 111298. [Google Scholar] [CrossRef]
- Carmignani, A.; Battaglini, M.; Sinibaldi, E.; Marino, A.; Vighetto, V.; Cauda, V.; Ciofani, G. In Vitro and Ex Vivo investigation of the effects of polydopamine nanoparticle size on their antioxidant and photothermal properties: Implications for biomedical applications. ACS Appl. Nano Mater. 2022, 5, 1702–1713. [Google Scholar] [CrossRef]
- Guerrini, L.; Alvarez-Puebla, R.A.; Pazos-Perez, N. Surface modifications of nanoparticles for stability in biological fluids. Materials 2018, 11, 1154. [Google Scholar] [CrossRef]
- Box, G.E.P.; Draper, N.R. Response Surfaces, Mixtures, and Ridge Analyses, 2nd ed.; Wiley: Hoboken, NJ, USA, 2007; ISBN 978-0-470-05357-7. [Google Scholar]
- Lenth, R.V. Response-Surface Methods in R., Using Rsm. J. Stat. Softw. 2009, 32, 1–17. [Google Scholar] [CrossRef]
- Zhang, Z.; Xiaofeng, B. Comparison about the Three Central Composite Designs with Simulation. In Proceedings of the 2009 International Conference on Advanced Computer Control, Singapore, 22–24 January 2009; pp. 163–167. [Google Scholar]
- Naegle, K.; Gough, N.R.; Yaffe, M.B. Criteria for biological reproducibility: What does “n” mean? Sci. Signal. 2015, 8, fs7. [Google Scholar] [CrossRef] [PubMed]
- Breig, S.J.M.; Luti, K.J.K. Response surface methodology: A review on its applications and challenges in microbial cultures. Mater. Today Proc. 2021, 42, 2277–2284. [Google Scholar] [CrossRef]
- Gilman, J.; Walls, L.; Bandiera, L.; Menolascina, F. Statistical design of experiments for synthetic biology. ACS Synth. Biol. 2021, 10, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Klichinsky, M.; Ruella, M.; Shestova, O.; Lu, X.M.; Best, A.; Zeeman, M.; Schmierer, M.; Gabrusiewicz, K.; Anderson, N.R.; Petty, N.E.; et al. Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat. Biotechnol. 2020, 38, 947–953. [Google Scholar] [CrossRef]
- Xiong, R.; Vandenbroucke, R.E.; Broos, K.; Brans, T.; Van Wonterghem, E.; Libert, C.; Demeester, J.; De Smedt, S.C.; Braeckmans, K. Sizing Nanomaterials in bio-fluids by CFRAP enables protein aggregation measurements and diagnosis of bio-barrier permeability. Nat. Commun. 2016, 7, 12982. [Google Scholar] [CrossRef] [PubMed]
- Seber, G.A.F.; Lee, A.J. Linear Regression Analysis; Wiley Series in Probability and Statistics; Wiley: New York, NY, USA, 2003; ISBN 9780471415404. [Google Scholar]
- Alcantara, I.M.; Naranjo, J.; Lang, Y. Model selection using press statistic. Comput. Stat. 2022, 37, 1–14. [Google Scholar] [CrossRef]
- Bar-Gera, H. The target parameter of adjusted r-squared in fixed-design experiments. Am. Stat. 2017, 71, 112–119. [Google Scholar] [CrossRef]
- Chicco, D.; Warrens, M.J.; Jurman, G. The coefficient of determination r-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Comput. Sci. 2021, 7, e623. [Google Scholar] [CrossRef]
- Eriksson, L.; Jaworska, J.; Worth, A.P.; Cronin, M.T.D.; McDowell, R.M.; Gramatica, P. Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs. Environ. Health Perspect. 2003, 111, 1361–1375. [Google Scholar] [CrossRef] [PubMed]
- Donev, A.N. Design of experiments in the presence of errors in factor levels. J. Stat. Plan. Inference 2004, 126, 569–585. [Google Scholar] [CrossRef]
- Baş, D.; Boyacı, İ.H. Modeling and optimization I: Usability of response surface methodology. J. Food Eng. 2007, 78, 836–845. [Google Scholar] [CrossRef]
- Kościelniak, P.; Parczewski, A. Non-linear transformation of factors in the design of experiments. Anal. Chim. Acta 1983, 153, 103–109. [Google Scholar] [CrossRef]
- Zolgharnein, J.; Shahmoradi, A.; Ghasemi, J.B. Comparative Study of box-behnken, central composite, and doehlert matrix for multivariate optimization of Pb (II) adsorption onto robinia tree leaves. J. Chemom. 2013, 27, 12–20. [Google Scholar] [CrossRef]
- Duckert, B.; Fauvart, M.; Goos, P.; Stakenborg, T.; Lagae, L.; Braeken, D. High-definition electroporation: Precise and efficient transfection on a microelectrode array. J. Control. Release 2022, 352, 61–73. [Google Scholar] [CrossRef]
- Box, G.E.P.; Hunter, J.S.; Hunter, W.G. Statistics for Experimenters: Design, Innovation, and Discovery, 2nd ed.; Wiley: Hoboken, NJ, USA, 2005; ISBN 978-0-471-71813-0. [Google Scholar]
- Wolf, T.; Jin, W.; Zoppi, G.; Vogel, I.A.; Akhmedov, M.; Bleck, C.K.E.; Beltraminelli, T.; Rieckmann, J.C.; Ramirez, N.J.; Benevento, M.; et al. Dynamics in protein translation sustaining T cell preparedness. Nat. Immunol. 2020, 21, 927–937. [Google Scholar] [CrossRef]
- Howden, A.J.M.; Hukelmann, J.L.; Brenes, A.; Spinelli, L.; Sinclair, L.V.; Lamond, A.I.; Cantrell, D.A. Quantitative analysis of T cell proteomes and environmental sensors during T cell differentiation. Nat. Immunol. 2019, 20, 1542–1554. [Google Scholar] [CrossRef]
- Divecha, J.; Tarapara, B. Small, balanced, efficient, optimal, and near rotatable response surface designs for factorial experiments asymmetrical in some quantitative, qualitative factors. Qual. Eng. 2017, 29, 196–210. [Google Scholar] [CrossRef]
- Wu, C.F.J.; Ding, Y. Construction of response surface designs for qualitative and quantitative factors. J. Stat. Plan. Inference 1998, 71, 331–348. [Google Scholar] [CrossRef]
- Dulbecco, R.; Vogt, M. Plaque formation and isolation of pure lines with poliomyelitis viruses. J. Exp. Med. 1954, 99, 167–182. [Google Scholar] [CrossRef] [PubMed]
- Rodgers, J.L.; Nicewander, W.A.; Toothaker, L. Linearly independent, orthogonal, and uncorrelated variables. Am. Stat. 1984, 38, 133–134. [Google Scholar] [CrossRef]
- Rao, A.C.; Toutenburg, H.; Shalabh; Heumann, C. Linear Models and Generalizations; Springer Series in Statistics; Springer: Berlin/Heidelberg, Germany, 2008; ISBN 978-3-540-74226-5. [Google Scholar]
- Willmott, C.; Matsuura, K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 2005, 30, 79–82. [Google Scholar] [CrossRef]
- Yap, B.W.; Sim, C.H. Comparisons of various types of normality tests. J. Stat. Comput. Simul. 2011, 81, 2141–2155. [Google Scholar] [CrossRef]
- Uyanto, S.S. Monte carlo power comparison of seven most commonly used heteroscedasticity tests. Commun. Stat.-Simul. Comput. 2022, 51, 2065–2082. [Google Scholar] [CrossRef]
- Tillman, J.A. The power of the durbin-watson test. Econometrica 1975, 43, 959. [Google Scholar] [CrossRef]
- Buyske, S.; Trout, R. Advanced Design of Experiments. Available online: https://statweb.rutgers.edu/buyske/591/lect_all.pdf (accessed on 20 September 2022).
- Axler, S. Linear Algebra Done Right. In Undergraduate Texts in Mathematics, 3rd ed; Springer International Publishing: Cham, Switzerland, 2015; ISBN 978-3-319-11079-0. [Google Scholar]
- Li, J.J. Spectral Theorem and Applications; University of Chicago: Chicago, IL, USA, 2016. [Google Scholar]
- Lankham, I.; Nachtergaele, B.; Schilling, A. The Spectral Theorem for Normal Linear Maps. University of California: Los Angeles, CA, USA, 2007. [Google Scholar]
- Halmos, P.R. What does the spectral theorem say? Am. Math. Mon. 1963, 70, 241. [Google Scholar] [CrossRef]
- NIST/SEMATECH. NIST/SEMATECH E-Handbook of Statistical Methods; NIST/SEMATECH: Gaithersburg, MD, USA, 2003. [Google Scholar]
300 nm Factor Level: −1 | 500 nm Factor Level: 0 | 700 nm Factor Level: +1 | ||||
---|---|---|---|---|---|---|
HyClone | Opti-MEM | HyClone | Opti-MEM | HyClone | Opti-MEM | |
Size (nm) | 290.8 ± 3.5 | 309.0 ± 6.8 | 516.1 ± 9.3 | 492.3 ± 5.8 | 728.4 ± 8.7 | 754.6 ± 23.6 |
PDI | 0.084 ± 0.020 | 0.078 ± 0.015 | 0.051 ± 0.014 | 0.050 ± 0.019 | 0.118 ± 0.048 | 0.112 ± 0.043 |
Z.P. (mV) | −33.0 ± 0.1 | −37.9 ± 0.9 | −40.6 ± 0.5 |
CCC | BBD | |
---|---|---|
Statistic | Mean ± Standard Deviation | Mean ± Standard Deviation |
Multiple R2 | 0.871 ± 0.038 * | 0.951 ± 0.009 * |
Adjusted R2 | 0.726 ± 0.081 * | 0.877 ± 0.022 * |
PRESS | 1921 ± 821 | 907 ± 79 |
Predicted R2 | 0.145 ± 0.275 | 0.416 ± 0.046 |
RMSE | 3.957 ± 0.824 * | 2.180 ± 0.191 * |
MAE | 3.340 ± 0.505 * | 1.850 ± 0.185 * |
CCC | BBD | |||||||
---|---|---|---|---|---|---|---|---|
Replicate 1 | Replicate 2 | Replicate 3 | C.V. | Replicate 1 | Replicate 2 | Replicate 3 | C.V. | |
Size (nm) | 534.956 | 550.250 | 536.688 | 1.549 | 524.159 | 540.399 | 567.548 | 4.029 |
Concentration (×108 NPs/mL) | 2.594 | 2.455 | 2.504 | 2.800 | 2.823 | 2.404 | 1.279 | 36.817 |
Fluence (J/cm2) | 0.950 | 0.841 | 0.939 | 6.594 | 1.076 | 0.745 | 0.793 | 20.528 |
Delivery yield at S.P. (%) with 95% confidence intervals | 41.899 ± 7.044 | 39.591 ± 7.684 | 36.015 ± 5.214 | 7.569 | 37.781 ± 3.981 | 43.076 ± 4.515 | 41.798 ± 8.796 | 6.758 |
Eigenvalues | −2.393 | −2.053 | −2.718 | N.A. | −1.491 | 0.693 | 0.915 | N.A. |
−3.822 | −4.777 | −4.169 | −3.494 | −0.956 | −0.851 | |||
−10.576 | −10.385 | −10.025 | −16.884 | −18.166 | −17.735 |
Variables | Observed Values | Predicted Values | t-Test | ||||||
---|---|---|---|---|---|---|---|---|---|
Run | Size | Concentration | Fluence | Mean | SD | Mean | SD | t-Value | p-Value |
1 | 0.25 | 0.5 | 0.5 | 29.437 | 1.902 | 38.215 | 1.973 | −5.548 | 0.005 * |
2 | −0.5 | −0.5 | 0.5 | 24.316 | 7.639 | 33.033 | 4.837 | −1.670 | 0.183 |
3 | −0.5 | 0.5 | −0.5 | 24.166 | 5.488 | 33.613 | 3.379 | −2.539 | 0.077 |
4 | 0.25 | −0.5 | −0.5 | 39.794 | 4.459 | 39.713 | 4.606 | 0.022 | 0.984 |
5 | 0.25 | 0.5 | −0.5 | 34.062 | 1.541 | 39.812 | 2.952 | −2.991 | 0.058 |
6 | 0.25 | −0.5 | 0.5 | 32.018 | 4.620 | 39.429 | 3.919 | −2.119 | 0.103 |
7 | −0.5 | 0.5 | 0.5 | 28.528 | 5.513 | 33.866 | 2.278 | −1.550 | 0.230 |
8 | −0.5 | −0.5 | −0.5 | 20.523 | 3.739 | 31.467 | 4.622 | −3.188 | 0.035 * |
9 | −1 | 1 | 1 | 19.168 | 7.338 | 20.149 | 2.872 | −0.216 | 0.845 |
10 | 1 | 0 | 0 | 26.262 | 4.842 | 26.630 | 1.628 | −0.125 | 0.910 |
11 | −1 | 1 | −1 | 19.090 | 7.274 | 18.492 | 7.245 | 0.101 | 0.925 |
12 | −1 | −1 | 1 | 13.305 | 5.476 | 17.069 | 8.981 | −0.620 | 0.576 |
13 | 0 | 0 | 1 | 23.111 | 8.938 | 38.893 | 2.800 | −2.919 | 0.081 |
14 | 0 | 0 | −1 | 38.841 | 2.164 | 39.541 | 4.478 | −0.244 | 0.824 |
15 | 1 | 1 | 1 | 20.239 | 3.217 | 17.903 | 3.677 | 0.828 | 0.455 |
16 | 1 | 1 | −1 | 28.705 | 1.443 | 26.108 | 5.100 | 0.849 | 0.475 |
17 | −1 | −1 | −1 | 15.425 | 2.595 | 10.159 | 6.440 | 1.314 | 0.292 |
18 | −1 | 0 | 0 | 22.932 | 9.079 | 18.488 | 2.998 | 0.805 | 0.492 |
19 | 0 | −1 | 0 | 34.199 | 10.266 | 38.359 | 6.726 | −0.587 | 0.593 |
20 | 0 | 1 | 0 | 37.972 | 5.081 | 38.609 | 2.644 | −0.193 | 0.860 |
21 | 1 | −1 | −1 | 34.704 | 3.256 | 28.689 | 7.757 | 1.238 | 0.313 |
22 | 1 | −1 | 1 | 28.532 | 3.118 | 25.737 | 6.291 | 0.690 | 0.541 |
Parameter Values | |||||
---|---|---|---|---|---|
Size (nm) | 142 | 300 | 500 | 700 | 858 |
Concentration (NPs/mL) | 0.789 × 108 | 1.5 × 108 | 2.5 × 108 | 3.5 × 108 | 4.289 × 108 |
Fluence (J/cm2) | 0.463 | 0.7 | 1 | 1.3 | 1.537 |
Coded factor levels | −1.789 | −1 | 0 | +1 | +1.789 |
Parameter Values | ||
---|---|---|
Size (nm) | 400 | 550 |
Concentration (NPs/mL) | 2.0 × 108 | 3.0 × 108 |
Fluence (J/cm2) | 0.85 | 1.15 |
Coded factor levels | −0.5 | 0.25 or 0.5 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goemaere, I.; Punj, D.; Harizaj, A.; Woolston, J.; Thys, S.; Sterck, K.; De Smedt, S.C.; De Vos, W.H.; Braeckmans, K. Response Surface Methodology to Efficiently Optimize Intracellular Delivery by Photoporation. Int. J. Mol. Sci. 2023, 24, 3147. https://doi.org/10.3390/ijms24043147
Goemaere I, Punj D, Harizaj A, Woolston J, Thys S, Sterck K, De Smedt SC, De Vos WH, Braeckmans K. Response Surface Methodology to Efficiently Optimize Intracellular Delivery by Photoporation. International Journal of Molecular Sciences. 2023; 24(4):3147. https://doi.org/10.3390/ijms24043147
Chicago/Turabian StyleGoemaere, Ilia, Deep Punj, Aranit Harizaj, Jessica Woolston, Sofie Thys, Karen Sterck, Stefaan C. De Smedt, Winnok H. De Vos, and Kevin Braeckmans. 2023. "Response Surface Methodology to Efficiently Optimize Intracellular Delivery by Photoporation" International Journal of Molecular Sciences 24, no. 4: 3147. https://doi.org/10.3390/ijms24043147
APA StyleGoemaere, I., Punj, D., Harizaj, A., Woolston, J., Thys, S., Sterck, K., De Smedt, S. C., De Vos, W. H., & Braeckmans, K. (2023). Response Surface Methodology to Efficiently Optimize Intracellular Delivery by Photoporation. International Journal of Molecular Sciences, 24(4), 3147. https://doi.org/10.3390/ijms24043147