Rodent Models of Dilated Cardiomyopathy and Heart Failure for Translational Investigations and Therapeutic Discovery
Abstract
:1. Introduction
2. Rats and Mice as Animal Models of Heart Failure
3. Rat Models: General Considerations
4. Ischemic Injury Models
5. Pressure Overload Models
6. Volume Overload Models
7. Drug Toxicity Models
8. Autoimmune-Mediated Models
9. Rapid Ventricular Pacing Models
10. Genetic Models
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Truby, L.K.; Rogers, J.G. Advanced Heart Failure: Epidemiology, Diagnosis, and Therapeutic Approaches. JACC. Heart Fail. 2020, 8, 523–536. [Google Scholar] [CrossRef] [PubMed]
- Heidenreich, P.A.; Albert, N.M.; Allen, L.A.; Bluemke, D.A.; Butler, J.; Fonarow, G.C.; Ikonomidis, J.S.; Khavjou, O.; Konstam, M.A.; Maddox, T.M.; et al. Forecasting the Impact of Heart Failure in the United States: A Policy Statement from the American Heart Association. Circ. Heart Fail. 2013, 6, 606–619. [Google Scholar] [CrossRef] [PubMed]
- Schilling, C.; Dalziel, K.; Nunn, R.; Du Plessis, K.; Shi, W.Y.; Celermajer, D.; Winlaw, D.; Weintraub, R.G.; Grigg, L.E.; Radford, D.J.; et al. The Fontan Epidemic: Population Projections from the Australia and New Zealand Fontan Registry. Int. J. Cardiol. 2016, 219, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Moons, P.; Bovijn, L.; Budts, W.; Belmans, A.; Gewillig, M. Temporal Trends in Survival to Adulthood among Patients Born with Congenital Heart Disease from 1970 to 1992 in Belgium. Circulation 2010, 122, 2264–2272. [Google Scholar] [CrossRef] [PubMed]
- Rossano, J.W.; Cherikh, W.S.; Chambers, D.C.; Goldfarb, S.; Hayes, D.J.; Khush, K.K.; Kucheryavaya, A.Y.; Toll, A.E.; Levvey, B.J.; Meiser, B.; et al. The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: Twenty-First Pediatric Heart Transplantation Report-2018; Focus Theme: Multiorgan Transplantation. J. Hear. Lung Transplant. Off. Publ. Int. Soc. Hear. Transplant. 2018, 37, 1184–1195. [Google Scholar] [CrossRef]
- Zangwill, S. Five Decades of Pediatric Heart Transplantation: Challenges Overcome, Challenges Remaining. Curr. Opin. Cardiol. 2017, 32, 69–77. [Google Scholar] [CrossRef]
- Kirk, R.; Dipchand, A.I.; Davies, R.R.; Miera, O.; Chapman, G.; Conway, J.; Denfield, S.; Gossett, J.G.; Johnson, J.; McCulloch, M.; et al. ISHLT Consensus Statement on Donor Organ Acceptability and Management in Pediatric Heart Transplantation. J. Hear. lung Transplant. Off. Publ. Int. Soc. Hear. Transplant. 2020, 39, 331–341. [Google Scholar] [CrossRef]
- Schlagenhauf, A.; Kalbhenn, J.; Geisen, U.; Beyersdorf, F.; Zieger, B. Acquired von Willebrand Syndrome and Platelet Function Defects during Extracorporeal Life Support (Mechanical Circulatory Support). Hamostaseologie 2020, 40, 221–225. [Google Scholar] [CrossRef]
- Lukito, P.; Wong, A.; Jing, J.; Arthur, J.F.; Marasco, S.F.; Murphy, D.A.; Bergin, P.J.; Shaw, J.A.; Collecutt, M.; Andrews, R.K.; et al. Mechanical Circulatory Support Is Associated with Loss of Platelet Receptors Glycoprotein Ibα and Glycoprotein VI. J. Thromb. Haemost. 2016, 14, 2253–2260. [Google Scholar] [CrossRef] [PubMed]
- Ishigami, S.; Ohtsuki, S.; Eitoku, T.; Ousaka, D.; Kondo, M.; Kurita, Y.; Hirai, K.; Fukushima, Y.; Baba, K.; Goto, T.; et al. Intracoronary Cardiac Progenitor Cells in Single Ventricle Physiology: The PERSEUS (Cardiac Progenitor Cell Infusion to Treat Univentricular Heart Disease) Randomized Phase 2 Trial. Circ. Res. 2017, 120, 1162–1173. [Google Scholar] [CrossRef] [PubMed]
- Makkar, R.R.; Kereiakes, D.J.; Aguirre, F.; Kowalchuk, G.; Chakravarty, T.; Malliaras, K.; Francis, G.S.; Povsic, T.J.; Schatz, R.; Traverse, J.H.; et al. Intracoronary ALLogeneic Heart STem Cells to Achieve Myocardial Regeneration (ALLSTAR): A Randomized, Placebo-Controlled, Double-Blinded Trial. Eur. Heart J. 2020, 41, 3451–3458. [Google Scholar] [CrossRef]
- Zhu, J.; Ide, H.; Fu, Y.Y.; Teichert, A.-M.; Kato, H.; Weisel, R.D.; Maynes, J.T.; Coles, J.G.; Caldarone, C.A. Losartan Ameliorates “Upstream” Pulmonary Vein Vasculopathy in a Piglet Model of Pulmonary Vein Stenosis. J. Thorac. Cardiovasc. Surg. 2014, 148, 2550–2557. [Google Scholar] [CrossRef]
- Ponzoni, M.; Frigo, A.C.; Castaldi, B.; Cerutti, A.; Di Salvo, G.; Vida, V.L.; Padalino, M.A. Surgical Strategies for the Management of End-Stage Heart Failure in Infants and Children: A 15-Year Experience with a Patient-Tailored Approach. Artif. Organs 2021, 45, 1543–1553. [Google Scholar] [CrossRef]
- Ponzoni, M.; Castaldi, B.; Padalino, M.A. Pulmonary Artery Banding for Dilated Cardiomyopathy in Children: Returning to the Bench from Bedside. Children 2022, 9, 1392. [Google Scholar] [CrossRef] [PubMed]
- Traister, A.; Patel, R.; Huang, A.; Patel, S.; Plakhotnik, J.; Lee, J.E.; Medina, M.G.; Welsh, C.; Ruparel, P.; Zhang, L.; et al. Cardiac Regenerative Capacity Is Age- and Disease-Dependent in Childhood Heart Disease. PLoS ONE 2018, 13, e0200342. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yeganeh, A.; Bartkevics, M.; Perri, A.; Brown, C.; Coles, J.; Maynes, J.T. Mesenchymal Stromal Cells Isolated From Patients With Congenital Heart Disease Reveal an Age-Dependent Proinflammatory Phenotype. JACC Adv. 2022, 1, 100050. [Google Scholar] [CrossRef]
- Wang, P.; Li, H.; Zhu, M.; Han, R.Y.; Guo, S.; Han, R. Correction of DMD in Human IPSC-Derived Cardiomyocytes by Base-Editing-Induced Exon Skipping. Mol. Ther.—Methods Clin. Dev. 2023, 28, 40–50. [Google Scholar] [CrossRef]
- Nishiyama, T.; Zhang, Y.; Cui, M.; Li, H.; Sanchez-Ortiz, E.; McAnally, J.R.; Tan, W.; Kim, J.; Chen, K.; Xu, L.; et al. Precise Genomic Editing of Pathogenic Mutations in RBM20 Rescues Dilated Cardiomyopathy. Sci. Transl. Med. 2022, 14. [Google Scholar] [CrossRef]
- Patten, R.D.; Hall-Porter, M.R. Small Animal Models of Heart Failure: Development of Novel Therapies, Past and Present. Circ. Heart Fail. 2009, 2, 138–144. [Google Scholar] [CrossRef]
- Houser, S.R.; Margulies, K.B.; Murphy, A.M.; Spinale, F.G.; Francis, G.S.; Prabhu, S.D.; Rockman, H.A.; Kass, D.A.; Molkentin, J.D.; Sussman, M.A.; et al. Animal Models of Heart Failure: A Scientific Statement from the American Heart Association. Circ. Res. 2012, 111, 131–150. [Google Scholar] [CrossRef] [Green Version]
- Riehle, C.; Bauersachs, J. Small Animal Models of Heart Failure. Cardiovasc. Res. 2019, 115, 1838–1849. [Google Scholar] [CrossRef]
- Holtze, S.; Gorshkova, E.; Braude, S.; Cellerino, A.; Dammann, P.; Hildebrandt, T.B.; Hoeflich, A.; Hoffmann, S.; Koch, P.; Terzibasi Tozzini, E.; et al. Alternative Animal Models of Aging Research. Front. Mol. Biosci. 2021, 8, 660959. [Google Scholar] [CrossRef]
- Makowski, M.R.; Wiethoff, A.J.; Jansen, C.H.P.; Botnar, R.M. Cardiovascular MRI in Small Animals. Expert Rev. Cardiovasc. Ther. 2010, 8, 35–47. [Google Scholar] [CrossRef]
- Fu, X.; Segiser, A.; Carrel, T.P.; Tevaearai Stahel, H.T.; Most, H. Rat Heterotopic Heart Transplantation Model to Investigate Unloading-Induced Myocardial Remodeling. Front. Cardiovasc. Med. 2016, 3, 34. [Google Scholar] [CrossRef] [PubMed]
- Dobson, G.P. On Being the Right Size: Heart Design, Mitochondrial Efficiency and Lifespan Potential. Clin. Exp. Pharmacol. Physiol. 2003, 30, 590–597. [Google Scholar] [CrossRef]
- Zaragoza, C.; Gomez-Guerrero, C.; Martin-Ventura, J.L.; Blanco-Colio, L.; Lavin, B.; Mallavia, B.; Tarin, C.; Mas, S.; Ortiz, A.; Egido, J. Animal Models of Cardiovascular Diseases. J. Biomed. Biotechnol. 2011, 2011, 497841. [Google Scholar] [CrossRef]
- Nolan, S.E.; Mannisi, J.A.; Bush, D.E.; Healy, B.; Weisman, H.F. Increased Afterload Aggravates Infarct Expansion after Acute Myocardial Infarction. J. Am. Coll. Cardiol. 1988, 12, 1318–1325. [Google Scholar] [CrossRef] [PubMed]
- Ross, J.J. Dilated Cardiomyopathy: Concepts Derived from Gene Deficient and Transgenic Animal Models. Circ. J. 2002, 66, 219–224. [Google Scholar] [CrossRef]
- Willott, R.H.; Gomes, A.V.; Chang, A.N.; Parvatiyar, M.S.; Pinto, J.R.; Potter, J.D. Mutations in Troponin That Cause HCM, DCM AND RCM: What Can We Learn about Thin Filament Function? J. Mol. Cell. Cardiol. 2010, 48, 882–892. [Google Scholar] [CrossRef]
- Lee, Y.-K.; Jiang, Y.; Ran, X.-R.; Lau, Y.-M.; Ng, K.-M.; Lai, W.-H.K.; Siu, C.-W.; Tse, H.-F. Recent Advances in Animal and Human Pluripotent Stem Cell Modeling of Cardiac Laminopathy. Stem Cell Res. Ther. 2016, 7, 139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yadav, S.; Sitbon, Y.H.; Kazmierczak, K.; Szczesna-Cordary, D. Hereditary Heart Disease: Pathophysiology, Clinical Presentation, and Animal Models of HCM, RCM, and DCM Associated with Mutations in Cardiac Myosin Light Chains. Pflug. Arch. 2019, 471, 683–699. [Google Scholar] [CrossRef]
- Schultheiss, H.-P.; Fairweather, D.; Caforio, A.L.P.; Escher, F.; Hershberger, R.E.; Lipshultz, S.E.; Liu, P.P.; Matsumori, A.; Mazzanti, A.; McMurray, J.; et al. Dilated Cardiomyopathy. Nat. Rev. Dis. Prim. 2019, 5, 32. [Google Scholar] [CrossRef]
- Milani-Nejad, N.; Janssen, P.M.L. Small and Large Animal Models in Cardiac Contraction Research: Advantages and Disadvantages. Pharmacol. Ther. 2014, 141, 235–249. [Google Scholar] [CrossRef]
- Bozkurt, B.; Colvin, M.; Cook, J.; Cooper, L.T.; Deswal, A.; Fonarow, G.C.; Francis, G.S.; Lenihan, D.; Lewis, E.F.; McNamara, D.M.; et al. Current Diagnostic and Treatment Strategies for Specific Dilated Cardiomyopathies: A Scientific Statement From the American Heart Association. Circulation 2016, 134. [Google Scholar] [CrossRef]
- Faggiano, A.; Avallone, C.; Gentile, D.; Provenzale, G.; Toriello, F.; Merlo, M.; Sinagra, G.; Carugo, S. Echocardiographic Advances in Dilated Cardiomyopathy. J. Clin. Med. 2021, 10, 5518. [Google Scholar] [CrossRef]
- 2014 ESC Guidelines on Diagnosis and Management of Hypertrophic Cardiomyopathy. Eur. Heart J. 2014, 35, 2733–2779. [CrossRef]
- Rapezzi, C.; Aimo, A.; Barison, A.; Emdin, M.; Porcari, A.; Linhart, A.; Keren, A.; Merlo, M.; Sinagra, G. Restrictive Cardiomyopathy: Definition and Diagnosis. Eur. Heart J. 2022, 43, 4679–4693. [Google Scholar] [CrossRef] [PubMed]
- Towbin, J.A.; McKenna, W.J.; Abrams, D.J.; Ackerman, M.J.; Calkins, H.; Darrieux, F.C.C.; Daubert, J.P.; de Chillou, C.; DePasquale, E.C.; Desai, M.Y.; et al. 2019 HRS Expert Consensus Statement on Evaluation, Risk Stratification, and Management of Arrhythmogenic Cardiomyopathy. Hear. Rhythm 2019, 16, e301–e372. [Google Scholar] [CrossRef] [PubMed]
- Wijnker, P.J.M.; van der Velden, J. Mutation-Specific Pathology and Treatment of Hypertrophic Cardiomyopathy in Patients, Mouse Models and Human Engineered Heart Tissue. Biochim. Biophys. Acta—Mol. Basis Dis. 2020, 1866, 165774. [Google Scholar] [CrossRef]
- Gannon, M.P.; Link, M.S. Phenotypic Variation and Targeted Therapy of Hypertrophic Cardiomyopathy Using Genetic Animal Models. Trends Cardiovasc. Med. 2021, 31, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, L.; Pacciulli, D.; Zhao, J.; Nan, C.; Shen, W.; Quan, J.; Tian, J.; Huang, X. Restrictive Cardiomyopathy Caused by Troponin Mutations: Application of Disease Animal Models in Translational Studies. Front. Physiol. 2016, 7. [Google Scholar] [CrossRef]
- Chintanaphol, M.; Orgil, B.-O.; Alberson, N.R.; Towbin, J.A.; Purevjav, E. Restrictive Cardiomyopathy: From Genetics and Clinical Overview to Animal Modeling. Rev. Cardiovasc. Med. 2022, 23, 0108. [Google Scholar] [CrossRef]
- Gerull, B.; Brodehl, A. Genetic Animal Models for Arrhythmogenic Cardiomyopathy. Front. Physiol. 2020, 11. [Google Scholar] [CrossRef] [PubMed]
- Padrón-Barthe, L.; Domínguez, F.; Garcia-Pavia, P.; Lara-Pezzi, E. Animal Models of Arrhythmogenic Right Ventricular Cardiomyopathy: What Have We Learned and Where Do We Go? Insight for Therapeutics. Basic Res. Cardiol. 2017, 112, 50. [Google Scholar] [CrossRef] [PubMed]
- Pilati, M.; Rebonato, M.; Formigari, R.; Butera, G. Endomyocardial Biopsy in Pediatric Myocarditis and Dilated Cardiomyopathy: A Tool in Search for a Role. J. Cardiovasc. Dev. Dis. 2022, 9. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef]
- Ponzoni, M.; Azzolina, D.; Vedovelli, L.; Gregori, D.; Di Salvo, G.; D’Udekem, Y.; Vida, V.; Padalino, M.A. Ventricular Morphology of Single Ventricle Hearts Has a Significant Impact on Outcomes after Fontan Palliation. A Meta-Analysis. Eur. J. Cardio-Thorac. Surg. 2022. [Google Scholar] [CrossRef] [PubMed]
- Sugino, H.; Shimada, H. Effect of Isoproterenol on Renal Uric Acid Excretion in Rats. Jpn. J. Pharmacol. 1987, 45, 343–348. [Google Scholar] [CrossRef]
- RONA, G.; CHAPPEL, C.I.; BALAZS, T.; GAUDRY, R. An Infarct-like Myocardial Lesion and Other Toxic Manifestations Produced by Isoproterenol in the Rat. AMA. Arch. Pathol. 1959, 67, 443–455. [Google Scholar] [PubMed]
- Adler, N.; Camin, L.L.; Shulkin, P. Rat Model for Acute Myocardial Infarction: Application to Technetium-Labeled Glucoheptonate, Tetracycline, and Polyphosphate. J. Nucl. Med. 1976, 17, 203–207. [Google Scholar] [PubMed]
- Ryu, J.H.; Kim, I.-K.; Cho, S.-W.; Cho, M.-C.; Hwang, K.-K.; Piao, H.; Piao, S.; Lim, S.H.; Hong, Y.S.; Choi, C.Y.; et al. Implantation of Bone Marrow Mononuclear Cells Using Injectable Fibrin Matrix Enhances Neovascularization in Infarcted Myocardium. Biomaterials 2005, 26, 319–326. [Google Scholar] [CrossRef]
- Yang, S.M.; Liu, J.; Li, C.X. Intermedin Protects against Myocardial Ischemia-Reperfusion Injury in Hyperlipidemia Rats. Genet. Mol. Res. 2014, 13, 8309–8319. [Google Scholar] [CrossRef] [PubMed]
- Kolk, M.V.V.; Meyberg, D.; Deuse, T.; Tang-Quan, K.R.; Robbins, R.C.; Reichenspurner, H.; Schrepfer, S. LAD-Ligation: A Murine Model of Myocardial Infarction. J. Vis. Exp. 2009. [Google Scholar] [CrossRef]
- Reichert, K.; Colantuono, B.; McCormack, I.; Rodrigues, F.; Pavlov, V.; Abid, M.R. Murine Left Anterior Descending (LAD) Coronary Artery Ligation: An Improved and Simplified Model for Myocardial Infarction. J. Vis. Exp. 2017. [Google Scholar] [CrossRef]
- Pfeffer, M.A.; Pfeffer, J.M.; Fishbein, M.C.; Fletcher, P.J.; Spadaro, J.; Kloner, R.A.; Braunwald, E. Myocardial Infarct Size and Ventricular Function in Rats. Circ. Res. 1979, 44, 503–512. [Google Scholar] [CrossRef] [PubMed]
- Kainuma, S.; Miyagawa, S.; Fukushima, S.; Tsuchimochi, H.; Sonobe, T.; Fujii, Y.; Pearson, J.T.; Saito, A.; Harada, A.; Toda, K.; et al. Influence of Coronary Architecture on the Variability in Myocardial Infarction Induced by Coronary Ligation in Rats. PLoS ONE 2017, 12, e0183323. [Google Scholar] [CrossRef]
- Michael, L.H.; Entman, M.L.; Hartley, C.J.; Youker, K.A.; Zhu, J.; Hall, S.R.; Hawkins, H.K.; Berens, K.; Ballantyne, C.M. Myocardial Ischemia and Reperfusion: A Murine Model. Am. J. Physiol. 1995, 269, H2147–H2154. [Google Scholar] [CrossRef]
- Szabó, P.L.; Dostal, C.; Pilz, P.M.; Hamza, O.; Acar, E.; Watzinger, S.; Mathew, S.; Kager, G.; Hallström, S.; Podesser, B.K.; et al. Remote Ischemic Perconditioning Ameliorates Myocardial Ischemia and Reperfusion-Induced Coronary Endothelial Dysfunction and Aortic Stiffness in Rats. J. Cardiovasc. Pharmacol. Ther. 2021, 26, 702–713. [Google Scholar] [CrossRef]
- Peterss, S.; Guenther, S.; Kellermann, K.; Jungwirth, B.; Lichtinghagen, R.; Haverich, A.; Hagl, C.; Khaladj, N. An Experimental Model of Myocardial Infarction and Controlled Reperfusion Using a Miniaturized Cardiopulmonary Bypass in Rats. Interact. Cardiovasc. Thorac. Surg. 2014, 19, 561–566. [Google Scholar] [CrossRef]
- Rockman, H.A.; Wachhorst, S.P.; Mao, L.; Ross, J.J. ANG II Receptor Blockade Prevents Ventricular Hypertrophy and ANF Gene Expression with Pressure Overload in Mice. Am. J. Physiol. 1994, 266, H2468–H2475. [Google Scholar] [CrossRef]
- Nakao, Y.; Aono, J.; Hamaguchi, M.; Takahashi, K.; Sakaue, T.; Inoue, K.; Ikeda, S.; Yamaguchi, O. O-Ring-Induced Transverse Aortic Constriction (OTAC) Is a New Simple Method to Develop Cardiac Hypertrophy and Heart Failure in Mice. Sci. Rep. 2022, 12, 85. [Google Scholar] [CrossRef]
- Feldman, A.M.; Weinberg, E.O.; Ray, P.E.; Lorell, B.H. Selective Changes in Cardiac Gene Expression during Compensated Hypertrophy and the Transition to Cardiac Decompensation in Rats with Chronic Aortic Banding. Circ. Res. 1993, 73, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Miranda-Silva, D.; Gonçalves-Rodrigues, P.; Almeida-Coelho, J.; Hamdani, N.; Lima, T.; Conceição, G.; Sousa-Mendes, C.; Cláudia-Moura; González, A.; Díez, J.; et al. Characterization of Biventricular Alterations in Myocardial (Reverse) Remodelling in Aortic Banding-Induced Chronic Pressure Overload. Sci. Rep. 2019, 9, 2956. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, K.; Oydanich, M.; Zhang, J.; Babici, D.; Fraidenraich, D.; Vatner, D.E.; Vatner, S.F. Rats Are Protected from the Stress of Chronic Pressure Overload Compared with Mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2020, 318, R894–R900. [Google Scholar] [CrossRef] [PubMed]
- Litwin, S.E.; Katz, S.E.; Weinberg, E.O.; Lorell, B.H.; Aurigemma, G.P.; Douglas, P.S. Serial Echocardiographic-Doppler Assessment of Left Ventricular Geometry and Function in Rats with Pressure-Overload Hypertrophy. Chronic Angiotensin-Converting Enzyme Inhibition Attenuates the Transition to Heart Failure. Circulation 1995, 91, 2642–2654. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Chemaly, E.R.; Liang, L.F.; LaRocca, T.J.; Yaniz-Galende, E.; Hajjar, R.J. A New Model of Congestive Heart Failure in Rats. Am. J. Physiol. Heart Circ. Physiol. 2011, 301, H994–H1003. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.S.; Lee, J.; Park, K.C.; Yang, K.-J.; Cho, E.J. The Relationship between MiRNA-26b and Connective Tissue Growth Factor in Rat Models of Aortic Banding and Debanding. Korean J. Intern. Med. 2021, 36, 596–607. [Google Scholar] [CrossRef]
- Gao, J.P.; Chen, C.X.; Wu, Q.; Gu, W.L.; Li, X. Effect of Sodium Houttuyfonate on Inhibiting Ventricular Remodeling Induced by Abdominal Aortic Banding in Rats. Can. J. Physiol. Pharmacol. 2010, 88, 693–701. [Google Scholar] [CrossRef]
- Hirata, M.; Ousaka, D.; Arai, S.; Okuyama, M.; Tarui, S.; Kobayashi, J.; Kasahara, S.; Sano, S. Novel Model of Pulmonary Artery Banding Leading to Right Heart Failure in Rats. Biomed Res. Int. 2015, 2015, 753210. [Google Scholar] [CrossRef]
- Andersen, S.; Schultz, J.G.; Holmboe, S.; Axelsen, J.B.; Hansen, M.S.; Lyhne, M.D.; Nielsen-Kudsk, J.E.; Andersen, A. A Pulmonary Trunk Banding Model of Pressure Overload Induced Right Ventricular Hypertrophy and Failure. J. Vis. Exp. 2018. [Google Scholar] [CrossRef] [Green Version]
- Bossers, G.P.L.; Hagdorn, Q.A.J.; Koop, A.-M.C.; van der Feen, D.E.; Bartelds, B.; van Leusden, T.; De Boer, R.A.; Silljé, H.H.W.; Berger, R.M.F. Female Rats Are Less Prone to Clinical Heart Failure than Male Rats in a Juvenile Rat Model of Right Ventricular Pressure Load. Am. J. Physiol. Heart Circ. Physiol. 2022, 322, H994–H1002. [Google Scholar] [CrossRef]
- Mendes-Ferreira, P.; Santos-Ribeiro, D.; Adão, R.; Maia-Rocha, C.; Mendes-Ferreira, M.; Sousa-Mendes, C.; Leite-Moreira, A.F.; Brás-Silva, C. Distinct Right Ventricle Remodeling in Response to Pressure Overload in the Rat. Am. J. Physiol. Heart Circ. Physiol. 2016, 311, H85–H95. [Google Scholar] [CrossRef]
- Ruppert, M.; Barta, B.A.; Korkmaz-Icöz, S.; Loganathan, S.; Oláh, A.; Sayour, A.A.; Benke, K.; Nagy, D.; Bálint, T.; Karck, M.; et al. Sex Similarities and Differences in the Reverse and Anti-Remodeling Effect of Pressure Unloading Therapy in a Rat Model of Aortic Banding and Debanding. Am. J. Physiol. Heart Circ. Physiol. 2022, 323, H204–H222. [Google Scholar] [CrossRef] [PubMed]
- Miranda-Silva, D.G.; Rodrigues, P.; Alves, E.; Rizo, D.; Fonseca, A.C.R.G.; Lima, T.; Baganha, F.; Conceição, G.; Sousa, C.; Gonçalves, A.; et al. Mitochondrial Reversible Changes Determine Diastolic Function Adaptations During Myocardial (Reverse) Remodeling. Circ. Heart Fail. 2020, 13, e006170. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Xie, Q.; Wang, L.; Lu, Y.; Liu, P.; Yang, P.; Chen, R.; Shao, C.; Qiao, C.; Wang, Z.; et al. The TIR/BB-Loop Mimetic AS-1 Prevents Ang II-Induced Hypertensive Cardiac Hypertrophy via NF-ΚB Dependent Downregulation of MiRNA-143. Sci. Rep. 2019, 9, 6354. [Google Scholar] [CrossRef] [PubMed]
- Yuasa, S.; Nishina, T.; Nishimura, K.; Miwa, S.; Ikeda, T.; Hanyu, M.; Fujioka, Y.; Kihara, Y.; Sasayama, S.; Komeda, M. A Rat Model of Dilated Cardiomyopathy to Investigate Partial Left Ventriculectomy. J. Card. Surg. 2001, 16, 40–47. [Google Scholar] [CrossRef]
- OKAMOTO, K.; AOKI, K. Development of a Strain of Spontaneously Hypertensive Rats. Jpn. Circ. J. 1963, 27, 282–293. [Google Scholar] [CrossRef]
- Heyen, J.R.R.; Blasi, E.R.; Nikula, K.; Rocha, R.; Daust, H.A.; Frierdich, G.; Van Vleet, J.F.; De Ciechi, P.; McMahon, E.G.; Rudolph, A.E. Structural, Functional, and Molecular Characterization of the SHHF Model of Heart Failure. Am. J. Physiol. Heart Circ. Physiol. 2002, 283, H1775–H1784. [Google Scholar] [CrossRef]
- Andersen, A.; van der Feen, D.E.; Andersen, S.; Schultz, J.G.; Hansmann, G.; Bogaard, H.J. Animal Models of Right Heart Failure. Cardiovasc. Diagn. Ther. 2020, 10, 1561–1579. [Google Scholar] [CrossRef]
- Bogaard, H.J.; Natarajan, R.; Henderson, S.C.; Long, C.S.; Kraskauskas, D.; Smithson, L.; Ockaili, R.; McCord, J.M.; Voelkel, N.F. Chronic Pulmonary Artery Pressure Elevation Is Insufficient to Explain Right Heart Failure. Circulation 2009, 120, 1951–1960. [Google Scholar] [CrossRef] [Green Version]
- Yamazaki, H.; Tajima, H.; Yamamoto, Y.; Munesue, S.; Okazaki, M.; Ohbatake, Y.; Nakanuma, S.; Makino, I.; Miyashita, T.; Takamura, H.; et al. Thrombopoietin Accumulation in Hepatocytes Induces a Decrease in Its Serum Levels in a Sinusoidal Obstruction Syndrome Model. Mol. Med. Rep. 2022, 25. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wang, J.; Cheng, Y.; Li, X.; He, M.; Zhu, J.; Han, H.; Wei, G.; Kong, H.; Xie, W.; et al. Glucagon-Like Peptide-1 Mediates the Protective Effect of the Dipeptidyl Peptidase IV Inhibitor on Renal Fibrosis via Reducing the Phenotypic Conversion of Renal Microvascular Cells in Monocrotaline-Treated Rats. Biomed Res. Int. 2018, 2018, 1864107. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, B.; Chen, X.; Hirenallur-Shanthappa, D.; Zhao, Y.; Stansfield, J.C.; Zhang, B.B.; Sheikh, A.; Wu, Z. Neutralization of GDF15 Prevents Anorexia and Weight Loss in the Monocrotaline-Induced Cardiac Cachexia Rat Model. Cells 2022, 11, 1073. [Google Scholar] [CrossRef]
- Voelkel, N.F.; Gomez-Arroyo, J. The Role of Vascular Endothelial Growth Factor in Pulmonary Arterial Hypertension. The Angiogenesis Paradox. Am. J. Respir. Cell Mol. Biol. 2014, 51, 474–484. [Google Scholar] [CrossRef] [PubMed]
- Jayasekera, G.; Wilson, K.S.; Buist, H.; Woodward, R.; Uckan, A.; Hughes, C.; Nilsen, M.; Church, A.C.; Johnson, M.K.; Gallagher, L.; et al. Understanding Longitudinal Biventricular Structural and Functional Changes in a Pulmonary Hypertension Sugen–Hypoxia Rat Model by Cardiac Magnetic Resonance Imaging. Pulm. Circ. 2020, 10, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Zelt, J.G.E.; Cadete, V.; Deng, Y.; Godoy, R.; Cuillerier, A.; Rowe, K.; Abdul-Ghani, M.; Megeney, L.; Burelle, Y.; Giulivi, A.; et al. Right Ventricular Maladaptation to Pressure Overload in Fischer Rats Is Associated With Profound Deficiency in Adenylate Kinase 1 and Impaired Ventricular Energetics. Hypertension 2022, 79, 2774–2786. [Google Scholar] [CrossRef]
- Havlenova, T.; Skaroupkova, P.; Miklovic, M.; Behounek, M.; Chmel, M.; Jarkovska, D.; Sviglerova, J.; Stengl, M.; Kolar, M.; Novotny, J.; et al. Right versus Left Ventricular Remodeling in Heart Failure Due to Chronic Volume Overload. Sci. Rep. 2021, 11, 17136. [Google Scholar] [CrossRef]
- Brower, G.L.; Janicki, J.S. Contribution of Ventricular Remodeling to Pathogenesis of Heart Failure in Rats. Am. J. Physiol. Heart Circ. Physiol. 2001, 280, H674–H683. [Google Scholar] [CrossRef]
- Aimoto, M.; Yagi, K.; Ezawa, A.; Tsuneoka, Y.; Kumada, K.; Hasegawa, T.; Kuze, T.; Chiba, T.; Nagasawa, Y.; Tanaka, H.; et al. Chronic Volume Overload Caused by Abdominal Aorto-Venocaval Shunt Provides Arrhythmogenic Substrates in the Rat Atrium. Biol. Pharm. Bull. 2022, 45, 635–642. [Google Scholar] [CrossRef]
- Oliver-Dussault, C.; Ascah, A.; Marcil, M.; Matas, J.; Picard, S.; Pibarot, P.; Burelle, Y.; Deschepper, C.F. Early Predictors of Cardiac Decompensation in Experimental Volume Overload. Mol. Cell. Biochem. 2010, 338, 271–282. [Google Scholar] [CrossRef]
- Tung, Y.-C.; Cheng, M.-L.; Wu, L.-S.; Tang, H.-Y.; Huang, C.-Y.; Chang, G.-J.; Chang, C.-J. Derangements and Reversibility of Energy Metabolism in Failing Hearts Resulting from Volume Overload: Transcriptomics and Metabolomics Analyses. Int. J. Mol. Sci. 2022, 23, 6809. [Google Scholar] [CrossRef]
- Corporan, D.; Onohara, D.; Amedi, A.; Saadeh, M.; Guyton, R.A.; Kumar, S.; Padala, M. Hemodynamic and Transcriptomic Studies Suggest Early Left Ventricular Dysfunction in a Preclinical Model of Severe Mitral Regurgitation. J. Thorac. Cardiovasc. Surg. 2021, 161, 961–976.e22. [Google Scholar] [CrossRef]
- Corporan, D.; Segura, A.; Padala, M. Ultrastructural Adaptation of the Cardiomyocyte to Chronic Mitral Regurgitation. Front. Cardiovasc. Med. 2021, 8, 714774. [Google Scholar] [CrossRef] [PubMed]
- Onohara, D.; Corporan, D.; Hernandez-Merlo, R.; Guyton, R.A.; Padala, M. Mitral Regurgitation Worsens Cardiac Remodeling in Ischemic Cardiomyopathy in an Experimental Model. J. Thorac. Cardiovasc. Surg. 2020, 160, e107–e125. [Google Scholar] [CrossRef] [PubMed]
- Kono, T.; Onohara, D.; Amedi, A.; Corporan, D.; Padala, M. Effect of Early versus Late Onset Mitral Regurgitation on Left Ventricular Remodeling in Ischemic Cardiomyopathy in an Animal Model. J. Thorac. Cardiovasc. Surg. 2021. [Google Scholar] [CrossRef]
- Arsenault, M.; Plante, E.; Drolet, M.-C.; Couet, J. Experimental Aortic Regurgitation in Rats under Echocardiographic Guidance. J. Heart Valve Dis. 2002, 11, 128–134. [Google Scholar]
- Bussoni, M.; Okoshi, M.P.; Matsubara, L.S.; Polegato, B.F.; Roscani, M.G.; Pereira, E.J.; de Paiva, S.A.R.; Zornoff, L.A.M.; Okoshi, K.; Minicucci, M.F.; et al. The Role of Extracellular Matrix in the Experimental Acute Aortic Regurgitation Model in Rats. Heart. Lung Circ. 2022, 31, 894–902. [Google Scholar] [CrossRef] [PubMed]
- Walsh-Wilkinson, E.; Drolet, M.-C.; Arsenault, M.; Couet, J. Sex Differences in the Evolution of Left Ventricle Remodeling in Rats with Severe Volume Overload. BMC Cardiovasc. Disord. 2020, 20, 51. [Google Scholar] [CrossRef]
- Akazawa, Y.; Fujioka, T.; Ide, H.; Yazaki, K.; Honjo, O.; Sun, M.; Friedberg, M.K. Impaired Right and Left Ventricular Function and Relaxation Induced by Pulmonary Regurgitation Are Not Reversed by Tardive Antifibrosis Treatment. Am. J. Physiol. Heart Circ. Physiol. 2021, 321, H38–H51. [Google Scholar] [CrossRef]
- Droogmans, S.; Franken, P.R.; Garbar, C.; Weytjens, C.; Cosyns, B.; Lahoutte, T.; Caveliers, V.; Pipeleers-Marichal, M.; Bossuyt, A.; Schoors, D.; et al. In Vivo Model of Drug-Induced Valvular Heart Disease in Rats: Pergolide-Induced Valvular Heart Disease Demonstrated with Echocardiography and Correlation with Pathology. Eur. Heart J. 2007, 28, 2156–2162. [Google Scholar] [CrossRef]
- Khosroshahi, A.J.; Mokhtari, B.; Badalzadeh, R. Combination of Nicotinamide Mononucleotide and Troxerutin Induces Full Protection against Doxorubicin-Induced Cardiotoxicity by Modulating Mitochondrial Biogenesis and Inflammatory Response. Mol. Biol. Rep. 2022. [Google Scholar] [CrossRef] [PubMed]
- O’Connell, J.L.; Romano, M.M.D.; Campos Pulici, E.C.; Carvalho, E.E.V.; de Souza, F.R.; Tanaka, D.M.; Maciel, B.C.; Salgado, H.C.; Fazan-Júnior, R.; Rossi, M.A.; et al. Short-Term and Long-Term Models of Doxorubicin-Induced Cardiomyopathy in Rats: A Comparison of Functional and Histopathological Changes. Exp. Toxicol. Pathol. Off. J. Ges. Fur Toxikol. Pathol. 2017, 69, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Chakouri, N.; Farah, C.; Matecki, S.; Amedro, P.; Vincenti, M.; Saumet, L.; Vergely, L.; Sirvent, N.; Lacampagne, A.; Cazorla, O. Screening for In-Vivo Regional Contractile Defaults to Predict the Delayed Doxorubicin Cardiotoxicity in Juvenile Rat. Theranostics 2020, 10, 8130–8142. [Google Scholar] [CrossRef] [PubMed]
- Rahmanifard, M.; Vessal, M.; Noorafshan, A.; Karbalay-Doust, S.; Naseh, M. The Protective Effects of Coenzyme Q10 and Lisinopril Against Doxorubicin-Induced Cardiotoxicity in Rats: A Stereological and Electrocardiogram Study. Cardiovasc. Toxicol. 2021, 21, 936–946. [Google Scholar] [CrossRef]
- Saleh, D.O.; Mahmoud, S.S.; Hassan, A.; Sanad, E.F. Doxorubicin-Induced Hepatic Toxicity in Rats: Mechanistic Protective Role of Omega-3 Fatty Acids through Nrf2/HO-1 Activation and PI3K/Akt/GSK-3β Axis Modulation. Saudi J. Biol. Sci. 2022, 29, 103308. [Google Scholar] [CrossRef]
- Mahzari, S.; Hosseinian, S.; Hadjzadeh, M.-A.-R.; Mohebbati, R.; Noshahr, Z.S.; Rad, A.K. Kidney Dysfunction and Oxidative Stress in Doxorubicin-Induced Nephrotic Rat: Protective Role of Sesame Oil. Saudi J. Kidney Dis. Transplant. Off. Publ. Saudi Cent. Organ Transplant. Saudi Arab. 2021, 32, 1243–1252. [Google Scholar] [CrossRef]
- Shaldoum, F.; El-Kott, A.F.; Ouda, M.M.A.; Abd-Ella, E.M. Immunomodulatory Effects of Bee Pollen on Doxorubicin-Induced Bone Marrow/Spleen Immunosuppression in Rat. J. Food Biochem. 2021, 45, e13747. [Google Scholar] [CrossRef] [PubMed]
- Joseph, J.; Joseph, L.; Shekhawat, N.S.; Devi, S.; Wang, J.; Melchert, R.B.; Hauer-Jensen, M.; Kennedy, R.H. Hyperhomocysteinemia Leads to Pathological Ventricular Hypertrophy in Normotensive Rats. Am. J. Physiol. Heart Circ. Physiol. 2003, 285, H679–H686. [Google Scholar] [CrossRef]
- Liu, B.; Ma, S.; Wang, T.; Zhao, C.; Li, Y.; Yin, J.; Liu, C.; Gao, C.; Sun, L.; Yue, W.; et al. A Novel Rat Model of Heart Failure Induced by High Methionine Diet Showing Evidence of Association between Hyperhomocysteinemia and Activation of NF-KappaB. Am. J. Transl. Res. 2016, 8, 117–124. [Google Scholar]
- Capasso, J.M.; Li, P.; Guideri, G.; Malhotra, A.; Cortese, R.; Anversa, P. Myocardial Mechanical, Biochemical, and Structural Alterations Induced by Chronic Ethanol Ingestion in Rats. Circ. Res. 1992, 71, 346–356. [Google Scholar] [CrossRef]
- Capasso, J.M.; Li, P.; Guideri, G.; Anversa, P. Left Ventricular Dysfunction Induced by Chronic Alcohol Ingestion in Rats. Am. J. Physiol. 1991, 261, H212–H219. [Google Scholar] [CrossRef]
- Marchini, G.S.; Cestari, I.N.; Salemi, V.M.C.; Irigoyen, M.C.; Arnold, A.; Kakoi, A.; Rocon, C.; Aiello, V.D.; Cestari, I.A. Early Changes in Myocyte Contractility and Cardiac Function in Streptozotocin-Induced Type 1 Diabetes in Rats. PLoS ONE 2020, 15, e0237305. [Google Scholar] [CrossRef]
- Lakomkin, V.L.; Abramov, A.A.; Lukoshkova, E.V.; Prosvirnin, A.V.; Kapelko, V.I. Systolic Dysfunction of the Heart in Type 1 Diabetes Mellitus. Bull. Exp. Biol. Med. 2021, 172, 14–17. [Google Scholar] [CrossRef]
- Sklifasovskaya, A.P.; Blagonravov, M.L.; Ryabinina, A.Y.; Azova, M.M.; Goryachev, V.A. Expression of Bax and Bcl-2 Proteins in Left-Ventricular Cardiomyocytes in Wistar-Kyoto and SHR Rats with Insulin-Dependent Diabetes Mellitus. Bull. Exp. Biol. Med. 2021, 171, 576–581. [Google Scholar] [CrossRef]
- López y López, G.; Tepox Galicia, A.Y.; Atonal Flores, F.; Flores Hernández, J.; Pérez Vizcaino, F.; Villa Mancera, A.E.; Miguél, G.G.; Reynoso Palomar, A. Echocardiographic Follow-up to Right Ventricular Modifications in Secondary Pulmonary Hypertension to Diabetes in Rats. Clin. Exp. Hypertens. 2021, 43, 242–253. [Google Scholar] [CrossRef] [PubMed]
- Mátyás, C.; Kovács, A.; Németh, B.T.; Oláh, A.; Braun, S.; Tokodi, M.; Barta, B.A.; Benke, K.; Ruppert, M.; Lakatos, B.K.; et al. Comparison of Speckle-Tracking Echocardiography with Invasive Hemodynamics for the Detection of Characteristic Cardiac Dysfunction in Type-1 and Type-2 Diabetic Rat Models. Cardiovasc. Diabetol. 2018, 17, 13. [Google Scholar] [CrossRef] [PubMed]
- Nana-Leventaki, E.; Nana, M.; Poulianitis, N.; Sampaziotis, D.; Perrea, D.; Sanoudou, D.; Rontogianni, D.; Malliaras, K. Cardiosphere-Derived Cells Attenuate Inflammation, Preserve Systolic Function, and Prevent Adverse Remodeling in Rat Hearts With Experimental Autoimmune Myocarditis. J. Cardiovasc. Pharmacol. Ther. 2019, 24, 70–77. [Google Scholar] [CrossRef]
- Wu, Y.; Zheng, Z.; Cao, X.; Yang, Q.; Norton, V.; Adini, A.; Maiti, A.K.; Adini, I.; Wu, H. RIP1/RIP3/MLKL Mediates Myocardial Function Through Necroptosis in Experimental Autoimmune Myocarditis. Front. Cardiovasc. Med. 2021, 8, 696362. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Chen, Y.; Xu, Z.; Wang, S.; Wang, L.; Liu, X.; Gao, F. Non-Invasive Assessment of Early and Acute Myocarditis in a Rat Model Using Cardiac Magnetic Resonance Tissue Tracking Analysis of Myocardial Strain. Quant. Imaging Med. Surg. 2020, 10, 2157–2167. [Google Scholar] [CrossRef]
- Korkusuz, H.; Esters, P.; Naguib, N.; Nour Eldin, N.-E.; Lindemayr, S.; Huebner, F.; Koujan, A.; Bug, R.; Ackermann, H.; Vogl, T.J. Acute Myocarditis in a Rat Model: Late Gadolinium Enhancement with Histopathological Correlation. Eur. Radiol. 2009, 19, 2672–2678. [Google Scholar] [CrossRef] [PubMed]
- Sepúlveda, M.; Gonano, L.A.; Back, T.G.; Chen, S.R.W.; Vila Petroff, M. Role of CaMKII and ROS in Rapid Pacing-Induced Apoptosis. J. Mol. Cell. Cardiol. 2013, 63, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Fu, W.-D.; Chen, L. MiRNA-182 Regulates the Cardiomyocyte Apoptosis in Heart Failure. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 4917–4923. [Google Scholar] [CrossRef] [PubMed]
- Aistrup, G.L.; Kelly, J.E.; Kapur, S.; Kowalczyk, M.; Sysman-Wolpin, I.; Kadish, A.H.; Wasserstrom, J.A. Pacing-Induced Heterogeneities in Intracellular Ca2+ Signaling, Cardiac Alternans, and Ventricular Arrhythmias in Intact Rat Heart. Circ. Res. 2006, 99, e65–e73. [Google Scholar] [CrossRef]
- Greaser, M.L.; Warren, C.M.; Esbona, K.; Guo, W.; Duan, Y.; Parrish, A.M.; Krzesinski, P.R.; Norman, H.S.; Dunning, S.; Fitzsimons, D.P.; et al. Mutation That Dramatically Alters Rat Titin Isoform Expression and Cardiomyocyte Passive Tension. J. Mol. Cell. Cardiol. 2008, 44, 983–991. [Google Scholar] [CrossRef]
- Guo, W.; Schafer, S.; Greaser, M.L.; Radke, M.H.; Liss, M.; Govindarajan, T.; Maatz, H.; Schulz, H.; Li, S.; Parrish, A.M.; et al. RBM20, a Gene for Hereditary Cardiomyopathy, Regulates Titin Splicing. Nat. Med. 2012, 18, 766–773. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Zhu, C.; Yin, Z.; Zhang, Y.; Wang, C.; Walk, A.S.; Lin, Y.-H.; McKinsey, T.A.; Woulfe, K.C.; Ren, J.; et al. The Ryanodine Receptor Stabilizer S107 Ameliorates Contractility of Adult Rbm20 Knockout Rat Cardiomyocytes. Physiol. Rep. 2021, 9, e15011. [Google Scholar] [CrossRef]
- Sugihara, H.; Kimura, K.; Yamanouchi, K.; Teramoto, N.; Okano, T.; Daimon, M.; Morita, H.; Takenaka, K.; Shiga, T.; Tanihata, J.; et al. Age-Dependent Echocardiographic and Pathologic Findings in a Rat Model with Duchenne Muscular Dystrophy Generated by CRISPR/Cas9 Genome Editing. Int. Heart J. 2020, 61, 1279–1284. [Google Scholar] [CrossRef] [PubMed]
- Fujikura, Y.; Kimura, K.; Yamanouchi, K.; Sugihara, H.; Hatakeyama, M.; Zhuang, H.; Abe, T.; Daimon, M.; Morita, H.; Komuro, I.; et al. A Medium-Chain Triglyceride Containing Ketogenic Diet Exacerbates Cardiomyopathy in a CRISPR/Cas9 Gene-Edited Rat Model with Duchenne Muscular Dystrophy. Sci. Rep. 2022, 12, 11580. [Google Scholar] [CrossRef]
- Ling, Y.; Ma, J.; Qi, X.; Zhang, X.; Kong, Q.; Guan, F.; Dong, W.; Chen, W.; Gao, S.; Gao, X.; et al. Novel Rat Model of Multiple Mitochondrial Dysfunction Syndromes (MMDS) Complicated with Cardiomyopathy. Anim. Model. Exp. Med. 2021, 4, 381–390. [Google Scholar] [CrossRef]
- Ling, Y.; Yang, X.; Zhang, X.; Guan, F.; Qi, X.; Dong, W.; Liu, M.; Ma, J.; Jiang, X.; Gao, K.; et al. Myocardium-Specific Isca1 Knockout Causes Iron Metabolism Disorder and Myocardial Oncosis in Rat. Life Sci. 2022, 297, 120485. [Google Scholar] [CrossRef]
- Steinhorn, B.; Sorrentino, A.; Badole, S.; Bogdanova, Y.; Belousov, V.; Michel, T. Chemogenetic Generation of Hydrogen Peroxide in the Heart Induces Severe Cardiac Dysfunction. Nat. Commun. 2018, 9, 4044. [Google Scholar] [CrossRef] [PubMed]
- Spyropoulos, F.; Sorrentino, A.; van der Reest, J.; Yang, P.; Waldeck-Weiermair, M.; Steinhorn, B.; Eroglu, E.; Saeedi Saravi, S.S.; Yu, P.; Haigis, M.; et al. Metabolomic and Transcriptomic Signatures of Chemogenetic Heart Failure. Am. J. Physiol. Heart Circ. Physiol. 2022, 322, H451–H465. [Google Scholar] [CrossRef] [PubMed]
- Sorrentino, A.; Steinhorn, B.; Troncone, L.; Saravi, S.S.S.; Badole, S.; Eroglu, E.; Kijewski, M.F.; Divakaran, S.; Di Carli, M.; Michel, T. Reversal of Heart Failure in a Chemogenetic Model of Persistent Cardiac Redox Stress. Am. J. Physiol. Heart Circ. Physiol. 2019, 317, H617–H626. [Google Scholar] [CrossRef]
- Porrello, E.R.; Mahmoud, A.I.; Simpson, E.; Johnson, B.A.; Grinsfelder, D.; Canseco, D.; Mammen, P.P.; Rothermel, B.A.; Olson, E.N.; Sadek, H.A. Regulation of Neonatal and Adult Mammalian Heart Regeneration by the MiR-15 Family. Proc. Natl. Acad. Sci. USA 2013, 110, 187–192. [Google Scholar] [CrossRef]
- Kalra, S.; Bhatt, H.; Kirtane, A.J. Stenting in Primary Percutaneous Coronary Intervention for Acute ST-Segment Elevation Myocardial Infarction. Methodist Debakey Cardiovasc. J. 2018, 14, 14–22. [Google Scholar] [CrossRef]
- Vidal-Calés, P.; Cepas-Guillén, P.L.; Brugaletta, S.; Sabaté, M. New Interventional Therapies beyond Stenting to Treat ST-Segment Elevation Acute Myocardial Infarction. J. Cardiovasc. Dev. Dis. 2021, 8, 100. [Google Scholar] [CrossRef]
- Kato, H.; Fu, Y.Y.; Zhu, J.; Wang, L.; Aafaqi, S.; Rahkonen, O.; Slorach, C.; Traister, A.; Leung, C.H.; Chiasson, D.; et al. Pulmonary Vein Stenosis and the Pathophysiology of “Upstream” Pulmonary Veins. J. Thorac. Cardiovasc. Surg. 2014, 148, 245–253. [Google Scholar] [CrossRef]
- Ryan, J.J.; Marsboom, G.; Archer, S.L. Rodent Models of Group 1 Pulmonary Hypertension. In Pharmacotherapy of Pulmonary Hypertension; Springer: Berlin/Heidelberg, Germany, 2013; pp. 105–149. [Google Scholar]
- Furman, B.L. Streptozotocin-Induced Diabetic Models in Mice and Rats. Curr. Protoc. Pharmacol. 2015, 70, 5.47.1–5.47.20. [Google Scholar] [CrossRef]
- Traister, A.; Li, M.; Aafaqi, S.; Lu, M.; Arab, S.; Radisic, M.; Gross, G.; Guido, F.; Sherret, J.; Verma, S.; et al. Integrin-Linked Kinase Mediates Force Transduction in Cardiomyocytes by Modulating SERCA2a/PLN Function. Nat. Commun. 2014, 5, 4533. [Google Scholar] [CrossRef]
- Boczar, K.E.; Aseyev, O.; Sulpher, J.; Johnson, C.; Burwash, I.G.; Turek, M.; Dent, S.; Dwivedi, G. Right Heart Function Deteriorates in Breast Cancer Patients Undergoing Anthracycline-Based Chemotherapy. Echo Res. Pract. 2016, 3, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Yao, F.; Abdel-Rahman, A.A. Tetrahydrobiopterin Paradoxically Mediates Cardiac Oxidative Stress and Mitigates Ethanol-Evoked Cardiac Dysfunction in Conscious Female Rats. Eur. J. Pharmacol. 2021, 909, 174406. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.; Dvorakova, M.C. Future Perspective of Diabetic Animal Models. Endocr. Metab. Immune Disord.—Drug Targets 2020, 20, 25–38. [Google Scholar] [CrossRef]
- Lafuse, W.P.; Wozniak, D.J.; Rajaram, M.V.S. Role of Cardiac Macrophages on Cardiac Inflammation, Fibrosis and Tissue Repair. Cells 2020, 10, 51. [Google Scholar] [CrossRef] [PubMed]
- Nagasaka, A.; Terawaki, T.; Noda, M.; Takashima, M.; Fujino, M.; Yamauchi, Y.; Arawaka, S.; Kato, T.; Nakaya, M. GRK5 -mediated Inflammation and Fibrosis Exert Cardioprotective Effects during the Acute Phase of Myocardial Infarction. FEBS Open Bio 2023. [Google Scholar] [CrossRef] [PubMed]
- Chalise, U.; Becirovic-Agic, M.; Lindsey, M.L. The Cardiac Wound Healing Response to Myocardial Infarction. WIREs Mech. Dis. 2023, 15. [Google Scholar] [CrossRef]
- Del Re, D.P. Hippo-Yap Signaling in Cardiac and Fibrotic Remodeling. Curr. Opin. Physiol. 2022, 26, 100492. [Google Scholar] [CrossRef]
- Sarohi, V.; Chakraborty, S.; Basak, T. Exploring the Cardiac ECM during Fibrosis: A New Era with next-Gen Proteomics. Front. Mol. Biosci. 2022, 9. [Google Scholar] [CrossRef]
- Tschöpe, C.; Ammirati, E.; Bozkurt, B.; Caforio, A.L.P.; Cooper, L.T.; Felix, S.B.; Hare, J.M.; Heidecker, B.; Heymans, S.; Hübner, N.; et al. Myocarditis and Inflammatory Cardiomyopathy: Current Evidence and Future Directions. Nat. Rev. Cardiol. 2021, 18, 169–193. [Google Scholar] [CrossRef]
- Farrag, N.A.; Thornhill, R.E.; Prato, F.S.; Skanes, A.C.; Sullivan, R.; Sebben, D.; Butler, J.; Sykes, J.; Wilk, B.; Ukwatta, E. Assessment of Left Atrial Fibrosis Progression in Canines Following Rapid Ventricular Pacing Using 3D Late Gadolinium Enhanced CMR Images. PLoS ONE 2022, 17, e0269592. [Google Scholar] [CrossRef]
- Schiabor Barrett, K.M.; Cirulli, E.T.; Bolze, A.; Rowan, C.; Elhanan, G.; Grzymski, J.J.; Lee, W.; Washington, N.L. Cardiomyopathy Prevalence Exceeds 30% in Individuals with TTN Variants and Early Atrial Fibrillation. Genet. Med. 2023, 100012. [Google Scholar] [CrossRef]
- Marcello, M.; Cetrangolo, V.; Savarese, M.; Udd, B. Use of Animal Models to Understand Titin Physiology and Pathology. J. Cell. Mol. Med. 2022, 26, 5103–5112. [Google Scholar] [CrossRef]
- Schultz, T.I.; Raucci, F.J.; Salloum, F.N. Cardiovascular Disease in Duchenne Muscular Dystrophy. JACC Basic Transl. Sci. 2022, 7, 608–625. [Google Scholar] [CrossRef] [PubMed]
- Fujikura, Y.; Sugihara, H.; Hatakeyama, M.; Oishi, K.; Yamanouchi, K. Ketogenic Diet with Medium-chain Triglycerides Restores Skeletal Muscle Function and Pathology in a Rat Model of Duchenne Muscular Dystrophy. FASEB J. 2021, 35. [Google Scholar] [CrossRef] [PubMed]
- Ruppert, T.; Heckmann, M.B.; Rapti, K.; Schultheis, D.; Jungmann, A.; Katus, H.A.; Winter, L.; Frey, N.; Clemen, C.S.; Schröder, R.; et al. AAV-Mediated Cardiac Gene Transfer of Wild-Type Desmin in Mouse Models for Recessive Desminopathies. Gene Ther. 2020, 27, 516–524. [Google Scholar] [CrossRef] [PubMed]
- Caravia, X.M.; Ramirez-Martinez, A.; Gan, P.; Wang, F.; McAnally, J.R.; Xu, L.; Bassel-Duby, R.; Liu, N.; Olson, E.N. Loss of Function of the Nuclear Envelope Protein LEMD2 Causes DNA Damage–Dependent Cardiomyopathy. J. Clin. Invest. 2022, 132. [Google Scholar] [CrossRef] [PubMed]
- Brodehl, A.; Belke, D.D.; Garnett, L.; Martens, K.; Abdelfatah, N.; Rodriguez, M.; Diao, C.; Chen, Y.-X.; Gordon, P.M.K.; Nygren, A.; et al. Transgenic Mice Overexpressing Desmocollin-2 (DSC2) Develop Cardiomyopathy Associated with Myocardial Inflammation and Fibrotic Remodeling. PLoS ONE 2017, 12, e0174019. [Google Scholar] [CrossRef]
- Kloos, W.; Katus, H.A.; Meder, B. Genetic Cardiomyopathies. Herz 2012, 37, 612–618. [Google Scholar] [CrossRef]
Model | Detrimental Stimulus | Ventricular Selectivity | Advantages | Drawbacks | References |
---|---|---|---|---|---|
Ischemic Injury | Isoproterenol injections | Predominantly on LV, scarce data on RV |
|
| [49] |
Electrocautery injury | LV only, RV only, or biventricular |
|
| [50] | |
Cryogenic damage | LV only, RV only, or biventricular |
|
| [51] | |
Permanent circumflex artery ligation | LV lateral wall |
|
| [52] | |
Permanent LAD ligation | LV anterior or antero-lateral wall |
|
| [53,54,55,56] | |
Temporary LAD/circumflex artery ligation | LV anterior or antero-lateral wall/LV lateral wall |
|
| [57,58,59] | |
Pressure Overload | Transverse aortic constriction | Predominantly on LV, scarce data on RV |
|
| [60,61] (in mice) |
Ascending aortic banding | Predominantly on LV, RV partially involved by hypertrophy and fibrosis |
|
| [35,62,63,64,65,66,67] | |
Abdominal aortic constriction | Predominantly on LV, scarce data on RV |
|
| [68] | |
PA banding | Predominantly on RV, scarce data on LV |
|
| [69,70,71,72] | |
Temporary aortic banding | Predominantly on LV, RV partially involved by hypertrophy and fibrosis |
|
| [63,66,67,73,74] | |
Angiotensin II infusion | Predominantly on LV, scarce data on RV |
|
| [75] | |
Dahl sensitive rats on high salt diet | Predominantly on LV, scarce data on RV |
|
| [76] | |
Spontaneously hypersensitive rats | Predominantly on LV, scarce data on RV |
|
| [77,78] | |
Monocrotaline infusion | Predominantly on RV, scarce data on LV |
|
| [79,80,81,82,83] | |
Sugen hypoxia | Predominantly on RV |
|
| [84,85,86] | |
Volume Overload | Aorto-caval fistula | Biventricular involvement |
|
| [87,88,89,90] |
Temporary aorto-caval fistula | Biventricular involvement |
|
| [91] | |
Mitral regurgitation | Predominantly on LV, scarce data on RV |
|
| [92,93,94,95] | |
Aortic regurgitation | Predominantly on LV, scarce data on RV |
|
| [96,97,98] | |
Pulmonary regurgitation | Predominantly on RV, diastolic dysfunction in LV |
|
| [99] | |
Pergolide/serotonin injection | Biventricular involvement |
|
| [100] | |
Drug Toxicity | Doxorubicin | Predominantly on LV, scarce data on RV |
|
| [101,102,103,104,105,106,107] |
Homocysteine | Biventricular involvement |
|
| [108,109] | |
Ethanol | LV only |
|
| [110,111] | |
Streptozotocin | Biventricular involvement |
|
| [112,113,114,115,116] | |
Auto-immunity | Porcine Myosin Injections | Predominantly on LV |
|
| [117,118,119,120] |
Tachy-cardia | Rapid ventricular pacing | Predominantly on LV, no data on RV |
|
| [121,122,123] |
Genetic Mutations | Rbm20 | Predominantly on LV, no data on RV |
|
| [124,125,126] |
Dystrophin | Biventricular involvement |
|
| [127,128] | |
Isca1 | Predominantly on LV, no data on RV |
|
| [129,130] | |
Chemogenetic (D-amino acid oxidase + D-alanine) | Predominantly on LV, no data on RV |
|
| [131,132,133] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ponzoni, M.; Coles, J.G.; Maynes, J.T. Rodent Models of Dilated Cardiomyopathy and Heart Failure for Translational Investigations and Therapeutic Discovery. Int. J. Mol. Sci. 2023, 24, 3162. https://doi.org/10.3390/ijms24043162
Ponzoni M, Coles JG, Maynes JT. Rodent Models of Dilated Cardiomyopathy and Heart Failure for Translational Investigations and Therapeutic Discovery. International Journal of Molecular Sciences. 2023; 24(4):3162. https://doi.org/10.3390/ijms24043162
Chicago/Turabian StylePonzoni, Matteo, John G. Coles, and Jason T. Maynes. 2023. "Rodent Models of Dilated Cardiomyopathy and Heart Failure for Translational Investigations and Therapeutic Discovery" International Journal of Molecular Sciences 24, no. 4: 3162. https://doi.org/10.3390/ijms24043162
APA StylePonzoni, M., Coles, J. G., & Maynes, J. T. (2023). Rodent Models of Dilated Cardiomyopathy and Heart Failure for Translational Investigations and Therapeutic Discovery. International Journal of Molecular Sciences, 24(4), 3162. https://doi.org/10.3390/ijms24043162