The Role of Mitotic Slippage in Creating a “Female Pregnancy-like System” in a Single Polyploid Giant Cancer Cell
Abstract
:1. Introduction
2. Results
2.1. DNA Cytometry to Identify Appropriate Time Points for Studying the Origin and Features of Small Versus Super-Giant Polyploid Cells by Bulk Transcriptomic Analysis
2.2. Differential Gene Expression
2.2.1. Quantitation of Up- and Downregulated Bivalent Genes
2.2.2. Gene Ontology (GO) Enrichment Analysis of DE Bivalent Genes Reveals Modules of Cytokine Signaling and Response to Cytosolic DNA
2.2.3. GO Enrichment Analysis of DE Bivalent Genes Reveals Reproductive Modules
2.2.4. The GO Enrichment of All DE Genes on Day 16
2.2.5. Phylostratigraphic Distribution of the Differentially Expressed Genes over Time after DOX-Treatment
2.3. Immunofluorescence (IF) and Clonogenicity Studies
2.3.1. Change of Cell Fate through MS on Days 4–5 Is Hallmarked by Soma-to-Maternal Germ Transition
2.3.2. Inhibition of the Trophectoderm Lineage Specifier CDC42 Suppresses the Clonogenic Survival of DOX-Treated MDA-MB-231 Cells
2.3.3. CDC42 Is Located at the Periphery, Buds, and Their Microvilli of Late DOX-Treated Polyploid Giant Cells
2.3.4. DNA Repair, Autophagy, and DNA Damage Sorting in Small and Super-Giant Cells
3. Discussion
4. Materials and Methods
4.1. Cell Line and Treatment
4.2. Cell Colony Formation
4.3. Immunofluorescence (IF)
4.4. Toluidine Blue DNA Staining and Image Cytometry
4.5. RT-PCR and Selfie-Digital RT-PCR
4.6. Western Blot Analysis
4.7. Transcriptome Library Preparation
4.8. Differentially Expressed Gene (DEG) Identification and GO Enrichment Analysis
4.9. Bivalent Gene Enrichment Analysis, Phylostratigraphic Analysis, and Eighth Phylostratum STRING Protein–Protein Interaction Network Analysis
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Old, L.J. Cancer/testis (CT) Antigens—A New Link between Gametogenesis and Cancer. Cancer Immun. 2001, 1, 1. [Google Scholar] [PubMed]
- Kalejs, M.; Erenpreisa, J. Cancer/testis Antigens and Gametogenesis: A Review and “Brain-Storming” Session. Cancer Cell Int. 2005, 5, 4. [Google Scholar] [CrossRef]
- Old, L.J. Cancer Is a Somatic Cell Pregnancy. Cancer Immun. 2007, 7, 19. [Google Scholar] [PubMed]
- Salmina, K.; Bojko, A.; Inashkina, I.; Staniak, K.; Dudkowska, M.; Podlesniy, P.; Rumnieks, F.; Vainshelbaum, N.M.; Pjanova, D.; Sikora, E.; et al. “Mitotic Slippage” and Extranuclear DNA in Cancer Chemoresistance: A Focus on Telomeres. Int. J. Mol. Sci. 2020, 21, 2779. [Google Scholar] [CrossRef] [PubMed]
- Chuong, E.B. The Placenta Goes Viral: Retroviruses Control Gene Expression in Pregnancy. PLoS Biol. 2018, 16, e3000028. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Carballo, D.; Klein, J.; Acikelli, A.H.; Wilk, C.; Saka, S.; Jastrow, H.; Wennemuth, G.; Dammann, P.; Giger-Pabst, U.; Khosrawipour, V.; et al. Cytotoxic Stress Induces Transfer of Mitochondria-Associated Human Endogenous Retroviral RNA and Proteins between Cancer Cells. Oncotarget 2017, 8, 95945–95964. [Google Scholar] [CrossRef]
- Kshitiz; Afzal, J.; Maziarz, J.D.; Hamidzadeh, A.; Liang, C.; Erkenbrack, E.M.; Kim, H.N.; Haeger, J.-D.; Pfarrer, C.; Hoang, T.; et al. Evolution of Placental Invasion and Cancer Metastasis Are Causally Linked. Nat. Ecol. Evol. 2019, 3, 1743–1753. [Google Scholar] [CrossRef]
- Lala, P.K.; Nandi, P.; Hadi, A.; Halari, C. A Crossroad between Placental and Tumor Biology: What Have We Learnt? Placenta 2021, 116, 12–30. [Google Scholar] [CrossRef]
- Anatskaya, O.V.; Vinogradov, A.E.; Vainshelbaum, N.M.; Giuliani, A.; Erenpreisa, J. Phylostratic Shift of Whole-Genome Duplications in Normal Mammalian Tissues towards Unicellularity Is Driven by Developmental Bivalent Genes and Reveals a Link to Cancer. Int. J. Mol. Sci. 2020, 21, 8759. [Google Scholar] [CrossRef]
- Martínez-Zamudio, R.I.; Roux, P.-F.; de Freitas, J.A.N.L.F.; Robinson, L.; Doré, G.; Sun, B.; Belenki, D.; Milanovic, M.; Herbig, U.; Schmitt, C.A.; et al. AP-1 Imprints a Reversible Transcriptional Programme of Senescent Cells. Nat. Cell Biol. 2020, 22, 842–855. [Google Scholar] [CrossRef]
- Erenpreisa, J.; Salmina, K.; Anatskaya, O.; Cragg, M.S. Paradoxes of Cancer: Survival at the Brink. Semin. Cancer Biol. 2022, 81, 119–131. [Google Scholar] [CrossRef] [PubMed]
- Corrales, L.; Woo, S.-R.; Williams, J.B.; McWhirter, S.M.; Dubensky, T.W., Jr.; Gajewski, T.F. Antagonism of the STING Pathway via Activation of the AIM2 Inflammasome by Intracellular DNA. J. Immunol. 2016, 196, 3191–3198. [Google Scholar] [CrossRef] [PubMed]
- Liberzon, A.; Subramanian, A.; Pinchback, R.; Thorvaldsdóttir, H.; Tamayo, P.; Mesirov, J.P. Molecular Signatures Database (MSigDB) 3.0. Bioinformatics 2011, 27, 1739–1740. [Google Scholar] [CrossRef] [PubMed]
- Harris, M.A.; Clark, J.; Ireland, A.; Lomax, J.; Ashburner, M.; Foulger, R.; Eilbeck, K.; Lewis, S.; Marshall, B.; Mungall, C.; et al. The Gene Ontology (GO) Database and Informatics Resource. Nucleic Acids Res. 2004, 32, D258–D261. [Google Scholar]
- Vainshelbaum, N.M.; Salmina, K.; Gerashchenko, B.I.; Lazovska, M.; Zayakin, P.; Cragg, M.S.; Pjanova, D.; Erenpreisa, J. Role of the Circadian Clock “Death-Loop” in the DNA Damage Response Underpinning Cancer Treatment Resistance. Cells 2022, 11, 880. [Google Scholar] [CrossRef] [PubMed]
- Lineweaver, C.H.; Bussey, K.J.; Blackburn, A.C.; Davies, P.C.W. Cancer Progression as a Sequence of Atavistic Reversions. Bioessays 2021, 43, e2000305. [Google Scholar] [CrossRef]
- Vainshelbaum, N.M.; Giuliani, A.; Salmina, K.; Pjanova, D.; Erenpreisa, J. The Transcriptome and Proteome Networks of Malignant Tumours Reveal Atavistic Attractors of Polyploidy-Related Asexual Reproduction. Int. J. Mol. Sci. 2022, 23, 14930. [Google Scholar] [CrossRef]
- Trigos, A.S.; Pearson, R.B.; Papenfuss, A.T.; Goode, D.L. Altered Interactions between Unicellular and Multicellular Genes Drive Hallmarks of Transformation in a Diverse Range of Solid Tumors. Proc. Natl. Acad. Sci. USA 2017, 114, 6406–6411. [Google Scholar] [CrossRef]
- Hadjimichael, C.; Chanoumidou, K.; Papadopoulou, N.; Arampatzi, P.; Papamatheakis, J.; Kretsovali, A. Common Stemness Regulators of Embryonic and Cancer Stem Cells. World J. Stem Cells 2015, 7, 1150–1184. [Google Scholar]
- Yasuda, T.; Banville, D.; Hendy, G.N.; Goltzman, D. Characterization of the Human Parathyroid Hormone-like Peptide Gene. Functional and Evolutionary Aspects. J. Biol. Chem. 1989, 264, 7720–7725. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.-M.; Lin, Y.-F.; Su, C.-Y.; Peng, H.-Y.; Chang, Y.-C.; Hsiao, J.-R.; Chen, C.-L.; Chang, J.-Y.; Shieh, Y.-S.; Hsiao, M.; et al. Parathyroid Hormone-Like Hormone Is a Poor Prognosis Marker of Head and Neck Cancer and Promotes Cell Growth via RUNX2 Regulation. Sci. Rep. 2017, 7, 41131. [Google Scholar] [CrossRef]
- Qie, S.; Sang, N. Stanniocalcin 2 (STC2): A Universal Tumour Biomarker and a Potential Therapeutical Target. J. Exp. Clin. Cancer Res. 2022, 41, 161. [Google Scholar] [CrossRef]
- Suman, P.; Malhotra, S.S.; Gupta, S.K. LIF-STAT Signaling and Trophoblast Biology. JAKSTAT 2013, 2, e25155. [Google Scholar] [CrossRef]
- Baryshev, M.; Inashkina, I.; Salmina, K.; Huna, A.; Jackson, T.R.; Erenpreisa, J. DNA Methylation of the Oct4A Enhancers in Embryonal Carcinoma Cells after Etoposide Treatment Is Associated with Alternative Splicing and Altered Pluripotency in Reversibly Senescent Cells. Cell Cycle 2018, 17, 362–366. [Google Scholar] [CrossRef]
- Schöler, H.R.; Dressler, G.R.; Balling, R.; Rohdewohld, H.; Gruss, P. Oct-4: A Germline-Specific Transcription Factor Mapping to the Mouse T-Complex. EMBO J. 1990, 9, 2185–2195. [Google Scholar] [CrossRef]
- Pesce, M.; Anastassiadis, K.; Schöler, H.R. Oct-4: Lessons of Totipotency from Embryonic Stem Cells. Cells Tissues Organs 1999, 165, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Motwani, M.; Pesiridis, S.; Fitzgerald, K.A. DNA Sensing by the cGAS-STING Pathway in Health and Disease. Nat. Rev. Genet. 2019, 20, 657–674. [Google Scholar] [CrossRef]
- Deb, K.; Sivaguru, M.; Yong, H.Y.; Roberts, R.M. Cdx2 Gene Expression and Trophectoderm Lineage Specification in Mouse Embryos. Science 2006, 311, 992–996. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, J.; Lai, X.-N.; Jiao, X.-Q.; Xiong, J.-P.; Xiong, L.-X. Focus on Cdc42 in Breast Cancer: New Insights, Target Therapy Development and Non-Coding RNAs. Cells 2019, 8, 146. [Google Scholar] [CrossRef]
- Fu, J.; Liu, B.; Zhang, H.; Fu, F.; Yang, X.; Fan, L.; Zheng, M.; Zhang, S. The Role of Cell Division Control Protein 42 in Tumor and Non-Tumor Diseases: A Systematic Review. J. Cancer 2022, 13, 800–814. [Google Scholar] [CrossRef] [PubMed]
- Kalailingam, P.; Tan, H.B.; Pan, J.Y.; Tan, S.H.; Thanabalu, T. Overexpression of CDC42SE1 in A431 Cells Reduced Cell Proliferation by Inhibiting the Akt Pathway. Cells 2019, 8, 117. [Google Scholar] [CrossRef]
- Leblanc, J.; Zhang, X.; McKee, D.; Wang, Z.-B.; Li, R.; Ma, C.; Sun, Q.-Y.; Liu, X.J. The Small GTPase Cdc42 Promotes Membrane Protrusion during Polar Body Emission via ARP2-Nucleated Actin Polymerization. Mol. Hum. Reprod. 2011, 17, 305–316. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Shan, N.; Yuan, Y.; Tan, B.; He, C.; Tong, C.; Qi, H. Knockdown of Activated Cdc42-Associated Kinase Inhibits Human Extravillous Trophoblast Migration and Invasion and Decreases Protein Expression of Pho-Akt and Matrix Metalloproteinase. J. Matern. Fetal. Neonatal Med. 2020, 33, 1125–1133. [Google Scholar] [CrossRef]
- Erenpreisa, J.; Ivanov, A.; Cragg, M.; Selivanova, G.; Illidge, T. Nuclear Envelope-Limited Chromatin Sheets Are Part of Mitotic Death. Histochem. Cell Biol. 2002, 117, 243–255. [Google Scholar] [CrossRef] [PubMed]
- Erenpreisa, J.; Salmina, K.; Huna, A.; Kosmacek, E.A.; Cragg, M.S.; Ianzini, F.; Anisimov, A.P. Polyploid Tumour Cells Elicit Paradiploid Progeny through Depolyploidizing Divisions and Regulated Autophagic Degradation. Cell Biol. Int. 2011, 35, 687–695. [Google Scholar] [CrossRef]
- Erenpreisa, J.; Huna, A.; Salmina, K.; Jackson, T.R.; Cragg, M.S. Macroautophagy-Aided Elimination of Chromatin: Sorting of Waste, Sorting of Fate? Autophagy 2012, 8, 1877–1881. [Google Scholar] [CrossRef] [PubMed]
- Erenpreisa, J.; Salmiņa, K.; Belyayev, A.; Inashkina, I.; Cragg, M.S. Chapter 12—Survival at the Brink: Chromatin Autophagy of Tumor Cells in Response to Genotoxic Challenge. In Autophagy: Cancer, Other Pathologies, Inflammation, Immunity, Infection, and Aging; Hayat, M.A., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 275–294. ISBN 9780128121467. [Google Scholar]
- Mirzayans, R.; Murray, D. Intratumor Heterogeneity and Therapy Resistance: Contributions of Dormancy, Apoptosis Reversal (Anastasis) and Cell Fusion to Disease Recurrence. Int. J. Mol. Sci. 2020, 21, 1308. [Google Scholar] [CrossRef]
- Zaitceva, V.; Kopeina, G.S.; Zhivotovsky, B. Anastasis: Return Journey from Cell Death. Cancers 2021, 13, 3671. [Google Scholar] [CrossRef] [PubMed]
- Hewitt, G.; Carroll, B.; Sarallah, R.; Correia-Melo, C.; Ogrodnik, M.; Nelson, G.; Otten, E.G.; Manni, D.; Antrobus, R.; Morgan, B.A.; et al. SQSTM1/p62 Mediates Crosstalk between Autophagy and the UPS in DNA Repair. Autophagy 2016, 12, 1917–1930. [Google Scholar] [CrossRef]
- Walen, K.H. Mitotic Slippage Process Concealed Cancer-Sought Chromosome Instability Mechanism (S-CIN). J. Cancer Ther. 2017, 8, 608–623. [Google Scholar] [CrossRef]
- Madgwick, S.; Hansen, D.V.; Levasseur, M.; Jackson, P.K.; Jones, K.T. Mouse Emi2 Is Required to Enter Meiosis II by Reestablishing Cyclin B1 during Interkinesis. J. Cell Biol. 2006, 174, 791–801. [Google Scholar] [CrossRef]
- Erenpreisa, J.; Cragg, M.S. MOS, Aneuploidy and the Ploidy Cycle of Cancer Cells. Oncogene 2010, 29, 5447–5451. [Google Scholar] [CrossRef] [Green Version]
- Fukasawa, K.; Murakami, M.S.; Blair, D.G.; Kuriyama, R.; Hunt, T.; Fischinger, P.; Vande Woude, G.F. Similarities between Somatic Cells Overexpressing the Mos Oncogene and Oocytes during Meiotic Interphase. Cell Growth Differ. 1994, 5, 1093–1103. [Google Scholar]
- Niu, N.; Mercado-Uribe, I.; Liu, J. Dedifferentiation into blastomere-like cancer stem cells via formation of polyploid giant cancer cells. Oncogene 2017, 36, 4887–4900. [Google Scholar] [CrossRef]
- Kwon, J.; Bakhoum, S.F. The Cytosolic DNA-Sensing cGAS-STING Pathway in Cancer. Cancer Discov. 2020, 10, 26–39. [Google Scholar] [CrossRef] [PubMed]
- Vainshelbaum, N.M.; Zayakin, P.; Kleina, R.; Giuliani, A.; Erenpreisa, J. Meta-Analysis of Cancer Triploidy: Rearrangements of Genome Complements in Male Human Tumors Are Characterized by XXY Karyotypes. Genes 2019, 10, 613. [Google Scholar] [CrossRef]
- Sedivy, J.M.; Kreiling, J.A.; Neretti, N.; De Cecco, M.; Criscione, S.W.; Hofmann, J.W.; Zhao, X.; Ito, T.; Peterson, A.L. Death by Transposition—The Enemy Within? Bioessays 2013, 35, 1035–1043. [Google Scholar] [CrossRef]
- Díaz-Carballo, D.; Gustmann, S.; Jastrow, H.; Acikelli, A.H.; Dammann, P.; Klein, J.; Dembinski, U.; Bardenheuer, W.; Malak, S.; Araúzo-Bravo, M.J.; et al. Atypical Cell Populations Associated with Acquired Resistance to Cytostatics and Cancer Stem Cell Features: The Role of Mitochondria in Nuclear Encapsulation. DNA Cell Biol. 2014, 33, 749–774. [Google Scholar] [CrossRef] [PubMed]
- Aarreberg, L.D.; Esser-Nobis, K.; Driscoll, C.; Shuvarikov, A.; Roby, J.A.; Gale, M., Jr. Interleukin-1β Induces mtDNA Release to Activate Innate Immune Signaling via cGAS-STING. Mol. Cell 2019, 74, 801–815.e6. [Google Scholar] [CrossRef]
- Kovacs, C.S.; Lanske, B.; Hunzelman, J.L.; Guo, J.; Karaplis, A.C.; Kronenberg, H.M. Parathyroid Hormone-Related Peptide (PTHrP) Regulates Fetal–placental Calcium Transport through a Receptor Distinct from the PTH/PTHrP Receptor. Proc. Natl. Acad. Sci. USA 1996, 93, 15233–15238. [Google Scholar] [CrossRef] [PubMed]
- Fais, S.; Marunaka, Y. The Acidic Microenvironment: Is It a Phenotype of All Cancers? A Focus on Multiple Myeloma and Some Analogies with Diabetes Mellitus. Cancers 2020, 12, 3226. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.H.; Macháty, Z.; Abeydeera, L.R.; Prather, R.S.; Day, B.N. Parthenogenetic Activation of Pig Oocytes with Calcium Ionophore and the Block to Sperm Penetration after Activation. Biol. Reprod. 1998, 58, 1357–1366. [Google Scholar] [CrossRef]
- Burwick, R.M.; Lokki, A.I.; Fleming, S.D.; Regal, J.F. Editorial: Innate Immunity in Normal and Adverse Pregnancy. Front. Immunol. 2021, 12, 646596. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-Y.; Yang, Y.M.; Stevens, B.M.; Noble, M. Inhibition of redox/Fyn/c-Cbl pathway function by Cdc42 controls tumour initiation capacity and tamoxifen sensitivity in basal-like breast cancer cells. EMBO Mol. Med. 2013, 5, 723–736. [Google Scholar] [CrossRef]
- Díaz-Carballo, D.; Saka, S.; Acikelli, A.H.; Homp, E.; Erwes, J.; Demmig, R.; Klein, J.; Schröer, K.; Malak, S.; D’Souza, F.; et al. Enhanced antitumoral activity of TLR7 agonists via activation of human endogenous retroviruses by HDAC inhibitors. Commun Biol. 2021, 4, 276. [Google Scholar] [CrossRef]
- Adibi, R.; Moein, S.; Gheisari, Y. Bisphosphonates Fight against Cancer Roots: Zoledronic Acid Targets Chemo-Resistant Polyploid Giant Cancer Cells. Res. Square 2022, 13, 419. [Google Scholar]
- Patro, R.; Duggal, G.; Love, M.I.; Irizarry, R.A.; Kingsford, C. Salmon Provides Fast and Bias-Aware Quantification of Transcript Expression. Nat. Methods 2017, 14, 417–419. [Google Scholar] [CrossRef]
- Soneson, C.; Love, M.I.; Robinson, M.D. Differential Analyses for RNA-Seq: Transcript-Level Estimates Improve Gene-Level Inferences. F1000Research 2015, 4, 1521. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor Package for Differential Expression Analysis of Digital Gene Expression Data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [PubMed]
- Blighe, K.; Rana, S.; Lewis, M. EnhancedVolcano: Publication-Ready Volcano Plots with Enhanced Colouring and Labeling; R Package Version 1.2.0; GitHub, Inc.: San Francisco, CA, USA, 2019. [Google Scholar]
- Wu, T.; Hu, E.; Xu, S.; Chen, M.; Guo, P.; Dai, Z.; Feng, T.; Zhou, L.; Tang, W.; Zhan, L.; et al. clusterProfiler 4.0: A Universal Enrichment Tool for Interpreting Omics Data. Innovation 2021, 2, 100141. [Google Scholar] [CrossRef] [PubMed]
- Sayols, S. Rrvgo: A Bioconductor Package to Reduce and Visualize Gene Ontology Terms. 2020. Available online: https://ssayols.github.io/rrvgo (accessed on 30 January 2023).
- Court, F.; Arnaud, P. An Annotated List of Bivalent Chromatin Regions in Human ES Cells: A New Tool for Cancer Epigenetic Research. Oncotarget 2017, 8, 4110–4124. [Google Scholar] [CrossRef] [PubMed]
- Villanueva, R.A.M.; Chen, Z.J. ggplot2: Elegant Graphics for Data Analysis (2nd Ed.). Measurement 2019, 17, 160–167. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- Bindea, G.; Mlecnik, B.; Hackl, H.; Charoentong, P.; Tosolini, M.; Kirilovsky, A.; Fridman, W.-H.; Pagès, F.; Trajanoski, Z.; Galon, J. ClueGO: A Cytoscape Plug-in to Decipher Functionally Grouped Gene Ontology and Pathway Annotation Networks. Bioinformatics 2009, 25, 1091–1093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Genes | Up/Down | D5 | D8 | D16 | D22 |
---|---|---|---|---|---|
IL1B | Up | 5.58 | 4.78 | 3.87 | NA |
IL6 | Up | 3.77 | 3.23 | 2.73 | NA |
CCL4L2 | Up | 2.89 | 3.46 | 6.21 | 4.87 |
CCL5 | Up | 2.05 | 1.76 | 2.95 | 1.7 |
NFKB1A | Up | 1.88 | 1.85 | 1.64 | NA |
NFKBκB | Up | NA | NA | 1.26 | NA |
CXCL10 | Up | 1.86 | 1.44 | NA | NA |
CASP1 | Up | 1.38 | NA | NA | NA |
RNF125 | Up | 1.29 | NA | 1.06 | NA |
AIM2 | Up | 1.14 | NA | NA | NA |
RELA | Up | 1.04 | NA | NA | NA |
DDX58 | Up | NA | 1.5 | 1.59 | NA |
POLR3G | Down | −1.25 | −2.07 | −1.47 | NA |
POLR3K | Down | −1.14 | NA | −1.02 | NA |
POLR2F | Down | −1.16 | −1.11 | −1.09 | NA |
POLR2L | Down | −1.09 | −1.11 | −1.11 | NA |
Antibody Against | Description | Specificity/Immunogen | Concentration Used | Product No. and Manufacturer |
---|---|---|---|---|
AURORA B | Rabbit polyclonal | A peptide derived from within residues 1–100 of human Aurora B. | 1:300 | ab2254, Abcam, Cambridge, UK |
⍺-Tubulin | Mouse monoclonal | Recognizes an epitope located at the C-terminal end of the ⍺-tubulin isoform in a variety of organisms. | 1:1000 | T5168, Sigma-Aldrich, St. Louis, MO, USA |
β-Actin | Mouse monoclonal | Synthetic peptide corresponding to human β-actin aa 1–100. | 1:500 1:2000 WB | ab8226, Abcam, Cambridge, UK |
CDC42 | Rabbit polyclonal | The details of the immunogen for this antibody are not available. | 1:100 1:500 WB | ab187643, Abcam, Cambridge, UK |
CDC42 | Mouse monoclonal | Specific for an epitope mapping between amino acids 166–182 at the C-terminus of CDC42 of human origin. | 1:50 | sc-8401, Santa Cruz, Dallas, TX, USA |
CDX2 | Rabbit monoclonal | A synthetic peptide corresponding to residues near the N-terminus of human CDX2. | 1:50 | MA5-14494, Thermo Fisher Scientific, Rockford, IL, USA |
EMI2 | Rabbit polyclonal | Recombinant protein corresponding to human EMI2. | 1:100 | PA5-55042, Invitrogen, Carlsbad, CA, USA |
F-ACTIN | Phalloidin-iFlour 594 conjugate. | 1:500 | ab176757, Abcam, Cambridge, UK | |
GAPDH | Mouse monoclonal | Raised against recombinant GAPDH of human origin. | 1:5000 WB | sc-47724, Santa Cruz, Dallas, TX, USA |
γ-H2AX | Rabbit polyclonal | Recognizes human and mouse γ-H2AX. | 1:200 | 4411-PC-100, Trevigen, Gaithersburg, MD, USA |
MOS (C237) | Rabbit polyclonal | Epitope mapping at the C-terminus. | 1:50 | sc-86, Santa Cruz, Dallas, TX, USA |
NANOG | Mouse monoclonal | Recombinant human Nanog. | 1:50 | N3038, Sigma-Aldrich, St. Louis, MO, USA |
OCT4 | Rabbit polyclonal | A peptide derived from within residues 300 to the C-terminus of human Oct4. | 1:200 | ab19857, Abcam, Cambridge, UK |
p-AMPKα1/2 (Thr183/172) | Rabbit polyclonal | Epitope corresponding to phosphorylated Thr172 of AMPKα1 of human origin. | 1:50 | sc-101630, Santa Cruz, Dallas, TX, USA |
pH3Ser10 | Mouse monoclonal | Recognizes phospho- S10 on histone H3. | 1:200 | ab14955, Abcam, Cambridge, UK |
P62/SQSTM1 | Rabbit polyclonal | A synthetic peptide corresponding to human SQSTM1/ p62 (C-terminal). | 1:500 WB | ab91526, Abcam, Cambridge, UK |
TEAD1 | Mouse monoclonal | Carrier-protein-conjugated synthetic peptide encompassing a sequence within the centre region of human TEAD1. | 1:100 | GT13112, Invitrogen, Carlsbad, CA, USA |
YAP1 | Rabbit polyclonal | Recombinant YAP1 protein expressed in bacteria. | 1:400 | PA-46189, Invitrogen, Carlsbad, CA, USA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salmina, K.; Vainshelbaum, N.M.; Kreishmane, M.; Inashkina, I.; Cragg, M.S.; Pjanova, D.; Erenpreisa, J. The Role of Mitotic Slippage in Creating a “Female Pregnancy-like System” in a Single Polyploid Giant Cancer Cell. Int. J. Mol. Sci. 2023, 24, 3237. https://doi.org/10.3390/ijms24043237
Salmina K, Vainshelbaum NM, Kreishmane M, Inashkina I, Cragg MS, Pjanova D, Erenpreisa J. The Role of Mitotic Slippage in Creating a “Female Pregnancy-like System” in a Single Polyploid Giant Cancer Cell. International Journal of Molecular Sciences. 2023; 24(4):3237. https://doi.org/10.3390/ijms24043237
Chicago/Turabian StyleSalmina, Kristine, Ninel Miriam Vainshelbaum, Madara Kreishmane, Inna Inashkina, Mark Steven Cragg, Dace Pjanova, and Jekaterina Erenpreisa. 2023. "The Role of Mitotic Slippage in Creating a “Female Pregnancy-like System” in a Single Polyploid Giant Cancer Cell" International Journal of Molecular Sciences 24, no. 4: 3237. https://doi.org/10.3390/ijms24043237
APA StyleSalmina, K., Vainshelbaum, N. M., Kreishmane, M., Inashkina, I., Cragg, M. S., Pjanova, D., & Erenpreisa, J. (2023). The Role of Mitotic Slippage in Creating a “Female Pregnancy-like System” in a Single Polyploid Giant Cancer Cell. International Journal of Molecular Sciences, 24(4), 3237. https://doi.org/10.3390/ijms24043237