Insights into Insulin Resistance and Calcification in the Myocardium in Type 2 Diabetes: A Coronary Artery Analysis
Abstract
:1. Introduction
2. Results
2.1. ΔSUV in Myocardial Territories
2.2. CACs in Myocardial Territories
2.3. ΔSUV vs. CACs in Myocardial Territories
2.4. Effect of Insulin Treatment in Both T2D Myocardial Phenotypes
3. Discussion
3.1. ΔSUV in Myocardial Territories
3.2. CACs in Myocardial Territories
3.3. ΔSUV vs. CACs in Myocardial Territories
3.4. Effect of Insulin Treatment in Both T2D Myocardial Phenotypes
3.5. Limitations of the Present Study
4. Materials and Methods
4.1. Patient Characteristics
4.2. Imaging
4.3. Myocardial Segmentation
4.4. Phenotype Definition
4.5. Medication
4.6. Classification Task
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stumvoll, M.; Goldstein, B.J.; Van Haeften, T.W. Type 2 diabetes: Principles of pathogenesis and therapy. Lancet 2005, 365, 1333–1346. [Google Scholar] [CrossRef]
- American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2007, 30, S42–S47. [Google Scholar] [CrossRef]
- American Diabetes Association. Classification and diagnosis of diabetes: Standards of Medical Care in Diabetes-2020. Diabetes Care 2020, 43, S14–S31. [Google Scholar] [CrossRef]
- Boden, G. Effects of free fatty acids (FFA) on glucose metabolism: Significance for insulin resistance and type 2 diabetes. Exp. Clin. Endocrinol. Diabetes 2003, 111, 121–124. [Google Scholar] [CrossRef]
- Galicia-Garcia, U.; Benito-Vicente, A.; Jebari, S.; Larrea-Sebal, A.; Siddiqi, H.; Uribe, K.; Ostolaza, H.; Martín, C. Pathophysiology of Type 2 Diabetes Mellitus. Int. J. Mol. Sci. 2020, 21, 6275. [Google Scholar] [CrossRef] [PubMed]
- Andreadi, A.; Bellia, A.; Di Daniele, N.; Meloni, M.; Lauro, R.; Della-Morte, D.; Lauro, D. The molecular link between oxidative stress, insulin resistance, and type 2 diabetes: A target for new therapies against cardiovascular diseases. Curr. Opin. Pharmacol. 2022, 62, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Rocha, M.; Rovira-Llopis, S.; Bañuls, C.; Bellod, L.; Falcon, R.; Castello, R.; Morillas, C.; Herance, J.R.; Mijares, A.H.; Victor, V. Mitochondrial Dysfunction and Oxidative Stress in Insulin Resistance. Curr. Pharm. Des. 2013, 19, 5730–5741. [Google Scholar] [CrossRef]
- Rocha, M.; Apostolova, N.; Herance, J.R.; Rovira-Llopis, S.; Hernandez-Mijares, A.; Victor, V.M. Perspectives and Potential Applications of Mitochondria-Targeted Antioxidants in Cardiometabolic Diseases and Type 2 Diabetes. Med. Res. Rev. 2014, 34, 160–189. [Google Scholar] [CrossRef]
- Giacco, F.; Brownlee, M. Oxidative Stress and Diabetic Complications. Circ. Res. 2010, 107, 1058–1070. [Google Scholar] [CrossRef]
- Henriksen, E.J.; Diamond-Stanic, M.K.; Marchionne, E.M. Oxidative stress and the etiology of insulin resistance and type 2 diabetes. Free Radic. Biol. Med. 2011, 51, 993–999. [Google Scholar] [CrossRef] [Green Version]
- Greenland, P.; Blaha, M.J.; Budoff, M.J.; Erbel, R.; Watson, K.E. Coronary Calcium Score and Cardiovascular Risk. J. Am. Coll. Cardiol. 2018, 72, 434–447. [Google Scholar] [CrossRef]
- Riehle, C.; Abel, E.D. Insulin Signaling and Heart Failure. Circ. Res. 2016, 118, 1151–1169. [Google Scholar] [CrossRef] [PubMed]
- Bonora, E.; Trombetta, M.; Dauriz, M.; Travia, D.; Cacciatori, V.; Brangani, C.; Negri, C.; Perrone, F.; Pichiri, I.; Stoico, V.; et al. Chronic complications in patients with newly diagnosed type 2 diabetes: Prevalence and related metabolic and clinical features: The Verona Newly Diagnosed Type 2 Diabetes Study (VNDS) 9. BMJ Open Diabetes Res. Care 2020, 8, e001549. [Google Scholar] [CrossRef] [PubMed]
- Gerber, B.L.; Ordoubadi, F.F.; Wijns, W.; Vanoverschelde, J.L.; Knuuti, M.J.; Janier, M. Positron emission tomography using(18)F-fluoro-deoxyglucose and euglycaemic hyperinsulinaemic glucose clamp: Optimal criteria for the prediction of recovery of post-ischaemic left ventricular dysfunction. Results from the European Community Concerted Action Multicenter study on use of(18)F-fluoro-deoxyglucose Positron Emission Tomography for the Detection of Myocardial Viability. Eur. Heart J. 2001, 22, 1691–1701. [Google Scholar]
- Iozzo, P.; Chareonthaitawee, P.; Dutka, D.; Betteridge, D.J.; Ferrannini, E.; Camici, P.G. Independent Association of Type 2 Diabetes and Coronary Artery Disease with Myocardial Insulin Resistance. Diabetes 2002, 51, 3020–3024. [Google Scholar] [CrossRef] [PubMed]
- Succurro, E.; Pedace, E.; Andreozzi, F.; Papa, A.; Vizza, P.; Fiorentino, T.V.; Perticone, F.; Veltri, P.; Cascini, G.L.; Sesti, G. Reduction in Global Myocardial Glucose Metabolism in Subjects with 1-Hour Postload Hyperglycemia and Impaired Glucose Tolerance. Diabetes Care 2020, 43, 669–676. [Google Scholar] [CrossRef]
- Succurro, E.; Vizza, P.; Papa, A.; Cicone, F.; Monea, G.; Tradigo, G.; Fiorentino, T.V.; Perticone, M.; Guzzi, P.H.; Sciacqua, A.; et al. Metabolic Syndrome Is Associated with Impaired Insulin-Stimulated Myocardial Glucose Metabolic Rate in Individuals with Type 2 Diabetes: A Cardiac Dynamic 18F-FDG-PET Study. Front. Cardiovasc. Med. 2022, 9, 1715. [Google Scholar] [CrossRef] [PubMed]
- Herance, J.R.; Simó, R.; Velasquez, M.A.; Paun, B.; García-Leon, D.; Aparicio, C.; Marés, R.; Simó-Servat, O.; Castell-Conesa, J.; Hernández, C.; et al. Phenotyping Type 2 Diabetes in Terms of Myocardial Insulin Resistance and Its Potential Cardiovascular Consequences: A New Strategy Based on 18 F-FDG PET/CT. J. Pers. Med. 2022, 12, 30. [Google Scholar] [CrossRef]
- Herance, J.R.; Martín-Saladich, Q.; Velásquez, M.A.; Hernandez, C.; Aparicio, C.; Ramirez-Serra, C.; Ferrer, R.; Giralt-Arnaiz, M.; González-Ballester, M.; Pericàs, J.M.; et al. Identification of Myocardial Insulin Resistance by Using Liver Tests: A Simple Approach for Clinical Practice. Int. J. Mol. Sci. 2022, 23, 8783. [Google Scholar] [CrossRef]
- De Souza, A.L.; Batista, G.A.; Alegre, S.M. Assessment of insulin sensitivity by the hyperinsulinemic euglycemic clamp: Comparison with the spectral analysis of photoplethysmography. J. Diabetes Complicat. 2017, 31, 128–133. [Google Scholar] [CrossRef]
- Wu, Y.; Ding, Y.; Tanaka, Y.; Zhang, W. Risk factors contributing to type 2 diabetes and recent advances in the treatment and prevention. Int. J. Med. Sci. 2014, 11, 1185–1200. [Google Scholar] [CrossRef] [Green Version]
- Fadini, G.P.; Pauletto, P.; Avogaro, A.; Rattazzi, M. The good and the bad in the link between insulin resistance and vascular calcification. Atherosclerosis 2007, 193, 241–244. [Google Scholar] [CrossRef]
- van der Bijl, N.; Joemai, R.M.S.; Geleijns, J.; Bax, J.J.; Schuijf, J.D.; de Roos, A.; Kroft, L.J.M. Assessment of Agatston Coronary Artery Calcium Score Using Contrast-Enhanced CT Coronary Angiography. Am. J. Roentgenol. 2012, 195, 1299–1305. [Google Scholar] [CrossRef] [PubMed]
- Oudkerk, M.; Stillman, A.E.; Halliburton, S.S.; Kalender, W.A.; Möhlenkamp, S.; McCollough, C.H. Coronary artery calcium screening: Current status and recommendations from the European Society of Cardiac Radiology and North American Society for Cardiovascular Imaging. Int. J. Cardiovasc. Imaging 2008, 24, 645–671. [Google Scholar] [CrossRef]
- Neves, P.O.; Andrade, J.; Monção, H. Coronary artery calcium score: Current status. Radiol. Bras. 2017, 50, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Budoff, M.J.; Young, R.; Burke, G.; Carr, J.J.; Detrano, R.C.; Folsom, A.R.; Kronmal, R.; Lima, J.A.C.; Liu, K.J.; McClelland, R.L.; et al. Ten-year association of coronary artery calcium with atherosclerotic cardiovascular disease (ASCVD) events: The multi-ethnic study of atherosclerosis (MESA). Eur. Heart J. 2018, 39, 2401. [Google Scholar] [CrossRef] [PubMed]
- Obisesan, O.H.; Osei, A.D.; Uddin SM, I.; Dzaye, O.; Blaha, M.J. An Update on Coronary Artery Calcium Interpretation at Chest and Cardiac CT. Radiol. Cardiothorac. Imaging 2021, 3, e200484. [Google Scholar] [CrossRef]
- Tsao, C.W.; Gona, P.N.; Salton, C.J.; Chuang, M.L.; Levy, D.; Manning, W.J.; O’Donnell, C.J. Left ventricular structure and risk of cardiovascular events: A framingham heart study cardiac magnetic resonance study. J. Am. Heart Assoc. 2015, 4, e002188. [Google Scholar] [CrossRef] [PubMed]
- Froment, R. Problemes Souleves Par La Chirurgie Coronarienne Directe. Acta Clin. Belg. 2016, 15, 213–224. [Google Scholar] [CrossRef]
- Olesen, P.; Nguyen, K.; Wogensen, L.; Ledet, T.; Rasmussen, L.M. Calcification of human vascular smooth muscle cells: Associations with osteoprotegerin expression and acceleration by high-dose insulin. Am. J. Physiol. Heart Circ. Physiol. 2007, 292, H1058–H1064. [Google Scholar] [CrossRef]
- Davenport, C.; Mahmood, W.A.; Forde, H.; Ashley, D.T.; Agha, A.; McDermott, J.; Sreenan, S.; Thompson, C.J.; McGrath, F.; McAdam, B.; et al. The effects of insulin and liraglutide on osteoprotegerin and vascular calcification in vitro and in patients with type 2 diabetes. Eur. J. Endocrinol. 2015, 173, 53–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rensing, K.L.; von der Thüsen, J.H.; Weijers, E.M.; Bloemendaal, F.H.; van Lammeren, G.W.; Vink, A. Endothelial insulin receptor expression in human atherosclerotic plaques: Linking micro- and macrovascular disease in diabetes? Atherosclerosis 2012, 222, 208–215. [Google Scholar] [CrossRef]
- Wang, C.C.L.; Sorribas, V.; Sharma, G.; Levi, M.; Draznin, B. Insulin attenuates vascular smooth muscle calcification but increases vascular smooth muscle cell phosphate transport: Insulin, VSMC phosphate transport and calcification. Atherosclerosis 2007, 195, e65–e75. [Google Scholar] [CrossRef] [PubMed]
- White, M.F. Insulin signaling in health and disease. Science 2003, 302, 1710–1711. [Google Scholar] [CrossRef]
- Zittermann, A.; Koerfer, R. Protective and toxic effects of vitamin D on vascular calcification: Clinical implications. Mol. Aspects Med. 2008, 29, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Aloia, J.F.; Dhaliwal, R.; Shieh, A.; Mikhail, M.; Fazzari, M.; Ragolia, L.; Abrams, S.A. Vitamin D supplementation increases calcium absorption without a threshold effect. Am. J. Clin. Nutr. 2014, 99, 624–631. [Google Scholar] [CrossRef]
- Succurro, E.; Vizza, P.; Papa, A.; Miceli, S.; Cicone, F.; Fiorentino, T.V. Effects of 26 weeks of treatment with empagliflozin versus glimepiride on the myocardial glucose metabolic rate in patients with type 2 diabetes: The randomized, open-label, crossover, active-comparator FIORE trial. Diabetes Obes. Metab. 2022, 24, 2319–2330. [Google Scholar] [CrossRef]
- Lauritsen, K.M.; Nielsen, B.R.; Tolbod, L.P.; Johannsen, M.; Hansen, J.; Hansen, T.K.; Wiggers, H.; Møller, N.; Gormsen, L.C.; Søndergaard, E. SGLT2 Inhibition Does Not Affect Myocardial Fatty Acid Oxidation or Uptake, but Reduces Myocardial Glucose Uptake and Blood Flow in Individuals with Type 2 Diabetes: A Randomized Double-Blind, Placebo-Controlled Crossover Trial. Diabetes 2021, 70, 800–808. [Google Scholar] [CrossRef]
- Oldgren, J.; Laurila, S.; Åkerblom, A.; Latva-Rasku, A.; Rebelos, E.; Isackson, H.; Saarenhovi, M.; Eriksson, O.; Heurling, K.; Johansson, E.; et al. Effects of 6 weeks of treatment with dapagliflozin, a sodium-glucose co-transporter-2 inhibitor, on myocardial function and metabolism in patients with type 2 diabetes: A randomized, placebo-controlled, exploratory study. Diabetes Obes. Metab. 2021, 23, 1505–1517. [Google Scholar] [CrossRef]
- Limpijankit, T.; Jongjirasiri, S.; Unwanatham, N.; Rattanasiri, S.; Thakkinstian, A.; Laothamatas, J. Causal Relationship of Coronary Artery Calcium on Myocardial Infarction and Preventive Effect of Antiplatelet Therapy. Front. Cardiovasc. Med. 2022, 9, 871267. [Google Scholar] [CrossRef]
- Bax, J.J.; Visser, F.C.; Poldermans, D.; van Lingen, A.; Elhendy, A.; Boersma, E.; Visser, C.A. Feasibility, safety and image quality of cardiac FDG studies during hyperinsulinaemic-euglycaemic clamping. Eur. J. Nucl. Med. 2002, 29, 452–457. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Navarrete, J.M.; Novelle, M.G.; Catalán, V.; Ortega, F.; Moreno, M.; Gomez-Ambrosi, J.; Xifra, G.; Serrano, M.; Guerra, E.; Ricart, W.; et al. Insulin resistance modulates iron-related proteins in adipose tissue. Diabetes Care 2014, 37, 1092–1100. [Google Scholar] [CrossRef] [PubMed]
- Gayoso-Diz, P.; Otero-González, A.; Rodriguez-Alvarez, M.X.; Gude, F.; García, F.; De Francisco, A.; Quintela, A.G. Insulin resistance (HOMA-IR) cut-off values and the metabolic syndrome in a general adult population: Effect of gender and age: EPIRCE cross-sectional study. BMC Endocr. Disord. 2013, 13, 47. [Google Scholar] [CrossRef]
- Cerqueira, M.D.; Weissman, N.J.; Dilsizian, V.; Jacobs, A.K.; Kaul, S.; Laskey, W.K.; Pennell, D.J.; Rumberger, J.A.; Ryan, T.; Verani, M.S. Standardized myocardial sementation and nomenclature for tomographic imaging of the heart: A Statement for Healthcare Professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002, 105, 539–542. [Google Scholar] [PubMed]
- PMOD Technologies LLC. Available online: https://www.pmod.com/web/ (accessed on 20 December 2020).
- Dunet, V.; Klein, R.; Allenbach, G.; Renaud, J.; Dekemp, R.A.; Prior, J.O. Myocardial blood flow quantification by Rb-82 cardiac PET/CT: A detailed reproducibility study between two semi-automatic analysis programs. J. Nucl. Cardiol. 2016, 23, 499–510. [Google Scholar] [CrossRef]
- Kubik, T.; Kałużyński, K.; Burger, C.; Passeri, A.; Margiacchi, S.; Saletti, P.; Bonini, R.; Lorenzini, E.; Sciagrà, R. Novel 3D heart left ventricle muscle segmentation method for PET-gated protocol and its verification. Ann. Nucl. Med. 2019, 33, 629–638. [Google Scholar] [CrossRef] [Green Version]
- Medicines A-Z—NHS. Available online: https://www.nhs.uk/medicines/ (accessed on 20 December 2022).
- The MathWorks Inc. MATLAB & Simulink. Available online: https://uk.mathworks.com/products/matlab.html (accessed on 23 January 2021).
mIR | mIS | mIS-mIR | p-Values | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RCA | LAD | LCX | RCA | LAD | LCX | RCA | LAD | LCX | RCA | LAD | LCX | |
ΔSUV | 0.82 | 0.38 | 0.52 | 9.33 | 7.49 | 8.60 | 8.51 | 7.11 | 8.08 | 8 × 10−8 | 1.4 × 10−7 | 1.0 × 10−7 |
CACs | 21.74 | 13.04 | 21.74 | 18.75 | 0 | 12.5 | −2.99 | −13.04 | −9.24 | 0.36 | 0.11 | 0.28 |
CACs/ΔSUV | 26.51 | 34.32 | 41.81 | 2.00 | 0 | 1.45 | −0.35 | −1.83 | −1.14 | - | - | - |
mIR | mIS | |
---|---|---|
Insulin intake | 62% have calcifications | 88% have calcifications |
No insulin intake | 85% have calcifications | 25% have calcifications |
mIR without Insulin | mIR with Insulin | mIR with/without | p-Values | |||||||||
RCA | LAD | LCX | RCA | LAD | LCX | RCA | LAD | LCX | RCA | LAD | LCX | |
ΔSUV | 0.33 | 0 | 0.22 | 1.21 | 0.72 | 0.75 | 0.88 | 0.72 | 0.53 | 0.76 | 1.00 | 0.60 |
CACs | 18.18 | 18.18 | 27.27 | 27.27 | 9.09 | 18.18 | 9.09 | −9.09 | −9.09 | 0.69 | 0.72 | 0.77 |
CACs/ΔSUV | 55.09 | - | 123.95 | 22.54 | 12.63 | 24.24 | 10.33 | −12.63 | −17.15 | - | - | - |
mIS without Insulin | mIS with Insulin | mIS with/without | p-Values | |||||||||
RCA | LAD | LCX | RCA | LAD | LCX | RCA | LAD | LCX | RCA | LAD | LCX | |
ΔSUV | 8.86 | 6.68 | 7.81 | 8.89 | 7.57 | 8.57 | 0.03 | 0.89 | 0.76 | 0.61 | 0.48 | 0.88 |
CACs | 11.11 | 0 | 0 | 25.00 | 0 | 25.00 | 13.89 | 0 | 25 | 0.52 | - | 0.13 |
CACs/ΔSUV | 1.25 | 0 | 0 | 2.81 | 0 | 2.92 | 463 | 0 | 32.89 | - | - | - |
Parameter | Median | IQR | |
---|---|---|---|
Age | 66 | ± | 7 |
HbA1c (%) | 7.30 | ± | 0.95 |
Creatine (mg/dL) | 0.74 | ± | 0.31 |
Bilirubin (mg/dL) | 0.54 | ± | 0.29 |
Sodium (mmol/L) | 138.25 | ± | 3.68 |
Potassium (mmol/L) | 4.23 | ± | 0.47 |
Calcium (mmol/L) | 9.6 | ± | 0.5 |
Aspartate aminotransferase (UI/L) | 23 | ± | 14 |
Alanine aminotransferase (UI/L) | 21 | ± | 18 |
Alkaline phosphatase (UI/L) | 73 | ± | 34 |
Gamma glutamyl transferase (UI/L) | 27 | ± | 22 |
Peptide C (ng/mL) | 1.81 | ± | 1.80 |
Leptin | 30.50 | ± | 34.93 |
Interleukin-6 (pg/mL) | 2.76 | ± | 3.04 |
SFRP-1 (ng/mL) | 0.71 | ± | 0.52 |
Whole-body IS | 1.55 | ± | 0.72 |
Medication | All (n = 42) | mIS (n = 16) | mIR (n = 26) | p-Value |
---|---|---|---|---|
Metformin/Pioglitazone | 27 (64%) | 10 (63%) | 17 (65%) | 1.00 |
Insulin | 21 (50%) | 8 (50%) | 13 (50%) | 1.00 |
Statins | 27 (64%) | 10 (63%) | 17 (65%) | 1.00 |
β-blockers | 29 (69%) | 13 (81%) | 16 (62%) | 0.30 |
DDP4-inhibitors | 19 (45%) | 5 (31%) | 14 (54%) | 0.21 |
VitD/Ca2+ usage helpers | 7 (17%) | 1 (6%) | 6 (23%) | 0.22 |
Calcium supplements | 3 (7%) | 3 (19%) | 0 (0%) | 0.049 |
Ca2+ channel blockers | 7 (17%) | 3 (19%) | 4 (15%) | 1.00 |
GLP-1agonists | 10 (24%) | 3 (19%) | 7 (27%) | 0.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín-Saladich, Q.; Simó, R.; Aguadé-Bruix, S.; Simó-Servat, O.; Aparicio-Gómez, C.; Hernández, C.; Ramirez-Serra, C.; Pizzi, M.N.; Roque, A.; González Ballester, M.A.; et al. Insights into Insulin Resistance and Calcification in the Myocardium in Type 2 Diabetes: A Coronary Artery Analysis. Int. J. Mol. Sci. 2023, 24, 3250. https://doi.org/10.3390/ijms24043250
Martín-Saladich Q, Simó R, Aguadé-Bruix S, Simó-Servat O, Aparicio-Gómez C, Hernández C, Ramirez-Serra C, Pizzi MN, Roque A, González Ballester MA, et al. Insights into Insulin Resistance and Calcification in the Myocardium in Type 2 Diabetes: A Coronary Artery Analysis. International Journal of Molecular Sciences. 2023; 24(4):3250. https://doi.org/10.3390/ijms24043250
Chicago/Turabian StyleMartín-Saladich, Queralt, Rafael Simó, Santiago Aguadé-Bruix, Olga Simó-Servat, Carolina Aparicio-Gómez, Cristina Hernández, Clara Ramirez-Serra, María Nazarena Pizzi, Albert Roque, Miguel A. González Ballester, and et al. 2023. "Insights into Insulin Resistance and Calcification in the Myocardium in Type 2 Diabetes: A Coronary Artery Analysis" International Journal of Molecular Sciences 24, no. 4: 3250. https://doi.org/10.3390/ijms24043250
APA StyleMartín-Saladich, Q., Simó, R., Aguadé-Bruix, S., Simó-Servat, O., Aparicio-Gómez, C., Hernández, C., Ramirez-Serra, C., Pizzi, M. N., Roque, A., González Ballester, M. A., & Herance, J. R. (2023). Insights into Insulin Resistance and Calcification in the Myocardium in Type 2 Diabetes: A Coronary Artery Analysis. International Journal of Molecular Sciences, 24(4), 3250. https://doi.org/10.3390/ijms24043250