The Adaptor Protein NumbL Is Involved in the Control of Glucolipotoxicity-Induced Pancreatic Beta Cell Apoptosis
Abstract
:1. Introduction
2. Results
2.1. Mig6 Dynamically Interacts with NumbL Protein
2.2. Downregulation of NumbL Prevents Glucolipotoxicity-Induced Beta Cell Apoptosis
2.3. Reducing NumbL Does Not Enhance Beta Cell Proliferation and Insulin Secretion
2.4. NumbL Reduction Does Not Activate Notch Signaling in 832/13 Cells
2.5. Downregulation of NumbL Prevents Glucolipotoxicity-Induced Activation of the NF-κB Pathway
2.6. NumbL Interacts with TRAF6 in a Context-Dependent Manner
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Human Islet Cell Culture
4.3. 832/13 Cell Culture and Transfection
4.4. Glucolipotoxicity Experiments with 832/13 Cells
4.5. Co-Immunoprecipitation of Mig6 Binding Partners
4.6. Apoptosis Assay (Cleaved Caspase-3 Activity Assay)
4.7. Proliferation Assay (EdU Incorporation)
4.8. Immunoblotting
4.9. Glucose-Stimulated Insulin Secretion (GSIS) Assay
4.10. Gene Expression Analysis
4.11. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, C.; Cohrs, C.M.; Stertmann, J.; Bozsak, R.; Speier, S. Human beta cell mass and function in diabetes: Recent advances in knowledge and technologies to understand disease pathogenesis. Mol. Metab. 2017, 6, 943–957. [Google Scholar] [CrossRef] [PubMed]
- Karaca, M.; Magnan, C.; Kargar, C. Functional pancreatic beta-cell mass: Involvement in type 2 diabetes and therapeutic intervention. Diabetes Metab. 2009, 35, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.B.; O’Donnell, A.C.; Stamateris, R.E.; Ha, B.; McCloskey, K.M.; Reynolds, P.R.; Arvan, P.; Alonso, L.C. Insulin demand regulates β cell number via the unfolded protein response. J. Clin. Investig. 2015, 125, 3831–3846. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, S.G.; Gromada, J.; Urano, F. Endoplasmic reticulum stress and pancreatic β-cell death. Trends Endocrinol. Metab. TEM 2011, 22, 266–274. [Google Scholar] [CrossRef] [PubMed]
- Laybutt, D.R.; Preston, A.M.; Akerfeldt, M.C.; Kench, J.G.; Busch, A.K.; Biankin, A.V.; Biden, T.J. Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes. Diabetologia 2007, 50, 752–763. [Google Scholar] [CrossRef] [PubMed]
- Poitout, V. Glucolipotoxicity of the pancreatic beta-cell: Myth or reality? Biochem. Soc. Trans. 2008, 36, 901–904. [Google Scholar] [CrossRef] [PubMed]
- Prentki, M.; Joly, E.; El-Assaad, W.; Roduit, R. Malonyl-CoA Signaling, Lipid Partitioning, and Glucolipotoxicity. Role Β-Cell Adapt. Fail. Etiol. Diabetes 2002, 51 (Suppl. S3), S405–S413. [Google Scholar] [CrossRef] [PubMed]
- Unger, R.H. Lipotoxicity in the Pathogenesis of Obesity-Dependent NIDDM: Genetic and Clinical Implications. Diabetes 1995, 44, 863–870. [Google Scholar] [CrossRef]
- Unger, R.H.; Grundy, S. Hyperglycaemia as an inducer as well as a consequence of impaired islet cell function and insulin resistance: Implications for the management of diabetes. Diabetologia 1985, 28, 119–121. [Google Scholar] [CrossRef]
- Butler, A.E.; Janson, J.; Bonner-Weir, S.; Ritzel, R.; Rizza, R.A.; Butler, P.C. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 2003, 52, 102–110. [Google Scholar] [CrossRef] [Green Version]
- Cnop, M.; Welsh, N.; Jonas, J.-C.; Jörns, A.; Lenzen, S.; Eizirik, D.L. Mechanisms of Pancreatic β-Cell Death in Type 1 and Type 2 Diabetes. Many Differ. Few Similarities 2005, 54 (Suppl. S2), S97–S107. [Google Scholar] [CrossRef]
- Miettinen, P.J.; Ustinov, J.; Ormio, P.; Gao, R.; Palgi, J.; Hakonen, E.; Juntti-Berggren, L.; Berggren, P.O.; Otonkoski, T. Downregulation of EGF receptor signaling in pancreatic islets causes diabetes due to impaired postnatal beta-cell growth. Diabetes 2006, 55, 3299–3308. [Google Scholar] [CrossRef]
- Bagnati, M.; Ogunkolade, B.W.; Marshall, C.; Tucci, C.; Hanna, K.; Jones, T.A.; Bugliani, M.; Nedjai, B.; Caton, P.W.; Kieswich, J.; et al. Glucolipotoxicity initiates pancreatic beta-cell death through TNFR5/CD40-mediated STAT1 and NF-kappa B activation. Cell Death Dis. 2016, 7, e2329. [Google Scholar] [CrossRef] [PubMed]
- QiNan, W.; XiaGuang, G.; XiaoTian, L.; WuQuan, D.; Ling, Z.; Bing, C. Par-4/NF-kappaB Mediates the Apoptosis of Islet beta Cells Induced by Glucolipotoxicity. J. Diabetes Res. 2016, 2016, 4692478. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Lenardo, M.J.; Baltimore, D. 30 Years of NF-kappaB: A Blossoming of Relevance to Human Pathobiology. Cell 2017, 168, 37–57. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.J. Ubiquitin signalling in the NF-kappaB pathway. Nat. Cell Biol. 2005, 7, 758–765. [Google Scholar] [CrossRef] [PubMed]
- Miettinen, P.; Ormio, P.; Hakonen, E.; Banerjee, M.; Otonkoski, T. EGF receptor in pancreatic beta-cell mass regulation. Biochem. Soc. Trans. 2008, 36 Pt 3, 280–285. [Google Scholar] [CrossRef]
- Brand, S.J.; Tagerud, S.; Lambert, P.; Magil, S.G.; Tatarkiewicz, K.; Doiron, K.; Yan, Y. Pharmacological treatment of chronic diabetes by stimulating pancreatic beta-cell regeneration with systemic co-administration of EGF and gastrin. Pharmacol. Toxicol. 2002, 91, 414–420. [Google Scholar] [CrossRef]
- Chen, Y.C.; Colvin, E.S.; Griffin, K.E.; Maier, B.F.; Fueger, P.T. Mig6 haploinsufficiency protects mice against streptozotocin-induced diabetes. Diabetologia 2014, 57, 2066–2075. [Google Scholar] [CrossRef]
- Chen, Y.C.; Colvin, E.S.; Maier, B.F.; Mirmira, R.G.; Fueger, P.T. Mitogen-inducible gene 6 triggers apoptosis and exacerbates ER stress-induced beta-cell death. Mol. Endocrinol. 2013, 27, 162–171. [Google Scholar] [CrossRef]
- Colvin, E.S.; Ma, H.Y.; Chen, Y.C.; Hernandez, A.M.; Fueger, P.T. Glucocorticoid-induced suppression of beta-cell proliferation is mediated by Mig6. Endocrinology 2013, 154, 1039–1046. [Google Scholar] [CrossRef] [PubMed]
- Fiorentino, L.; Pertica, C.; Fiorini, M.; Talora, C.; Crescenzi, M.; Castellani, L.; Alemà, S.; Benedetti, P.; Segatto, O. Inhibition of ErbB-2 Mitogenic and Transforming Activity by RALT, a Mitogen-Induced Signal Transducer Which Binds to the ErbB-2 Kinase Domain. Mol. Cell. Biol. 2000, 20, 7735–7750. [Google Scholar] [CrossRef] [PubMed]
- Chapman, G.; Liu, L.; Sahlgren, C.; Dahlqvist, C.; Lendahl, U. High levels of Notch signaling down-regulate Numb and Numblike. J. Cell Biol. 2006, 175, 535–540. [Google Scholar] [CrossRef] [PubMed]
- Zhong, W.; Jiang, M.M.; Weinmaster, G.; Jan, L.Y.; Jan, Y.N. Differential expression of mammalian Numb, Numblike and Notch1 suggests distinct roles during mouse cortical neurogenesis. Development 1997, 124, 1887–1897. [Google Scholar] [CrossRef]
- Poitout, V.; Robertson, R.P. Glucolipotoxicity: Fuel excess and beta-cell dysfunction. Endocr. Rev. 2008, 29, 351–366. [Google Scholar] [CrossRef]
- Yingjie, L.; Jian, T.; Changhai, Y.; Jingbo, L. Numblike regulates proliferation, apoptosis, and invasion of lung cancer cell. Tumour Biol. 2013, 34, 2773–2780. [Google Scholar] [CrossRef]
- Hirai, M.; Arita, Y.; McGlade, C.J.; Lee, K.F.; Chen, J.; Evans, S.M. Adaptor proteins NUMB and NUMBL promote cell cycle withdrawal by targeting ERBB2 for degradation. J. Clin. Investig. 2017, 127, 569–582. [Google Scholar] [CrossRef]
- Eldor, R.; Yeffet, A.; Baum, K.; Doviner, V.; Amar, D.; Ben-Neriah, Y.; Christofori, G.; Peled, A.; Carel, J.C.; Boitard, C.; et al. Conditional and specific NF-kappaB blockade protects pancreatic beta cells from diabetogenic agents. Proc. Natl. Acad. Sci. USA 2006, 103, 5072–5077. [Google Scholar] [CrossRef]
- Melloul, D. Role of NF-kappaB in beta-cell death. Biochem. Soc. Trans. 2008, 36, 334–349. [Google Scholar] [CrossRef]
- Swarnkar, G.; Chen, T.H.; Arra, M.; Nasir, A.M.; Mbalaviele, G.; Abu-Amer, Y. NUMBL Interacts with TAK1, TRAF6 and NEMO to Negatively Regulate NF-kappaB Signaling During Osteoclastogenesis. Sci. Rep. 2017, 7, 12600. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Ma, Q.; Shi, H.; Huo, K. NUMBL interacts with TRAF6 and promotes the degradation of TRAF6. Biochem. Biophys. Res. Commun. 2010, 392, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Zarzycka, B.; Seijkens, T.; Nabuurs, S.B.; Ritschel, T.; Grommes, J.; Soehnlein, O.; Schrijver, R.; van Tiel, C.M.; Hackeng, T.M.; Weber, C.; et al. Discovery of small molecule CD40-TRAF6 inhibitors. J. Chem. Inf. Model 2015, 55, 294–307. [Google Scholar] [CrossRef] [PubMed]
- Park, E.; Kim, N.; Ficarro, S.B.; Zhang, Y.; Lee, B.I.; Cho, A.; Kim, K.; Park, A.K.J.; Park, W.Y.; Murray, B.; et al. Structure and mechanism of activity-based inhibition of the EGF receptor by Mig6. Nat. Struct. Mol. Biol. 2015, 22, 703–711. [Google Scholar] [CrossRef] [PubMed]
- Hostager, B.S.; Bishop, G.A. CD40-Mediated Activation of the NF-kappaB2 Pathway. Front. Immunol. 2013, 4, 376. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Matsumoto, M.; Kitagawa, K.; Kotake, Y.; Suzuki, S.; Shirasawa, S.; Nakayama, K.I.; Nakanishi, M.; Niida, H.; Kitagawa, M. Chk1 phosphorylates the tumour suppressor Mig-6, regulating the activation of EGF signalling. EMBO J. 2012, 31, 2365–2377. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, Q.C. Exploring the interactions of EGFR with phosphorylated Mig6 by molecular dynamics simulations and MM-PBSA calculations. J. Biol. 2018, 447, 118–125. [Google Scholar] [CrossRef]
- Boopathy, G.T.K.; Lynn, J.L.S.; Wee, S.; Gunaratne, J.; Hong, W. Phosphorylation of Mig6 negatively regulates the ubiquitination and degradation of EGFR mutants in lung adenocarcinoma cell lines. Cell Signal 2018, 43, 21–31. [Google Scholar] [CrossRef]
- Tokumitsu, H.; Hatano, N.; Inuzuka, H.; Sueyoshi, Y.; Yokokura, S.; Ichimura, T.; Nozaki, N.; Kobayashi, R. Phosphorylation of Numb family proteins. Possible involvement of Ca2+/calmodulin-dependent protein kinases. J. Biol. Chem. 2005, 280, 35108–35118. [Google Scholar] [CrossRef]
- Hohmeier, H.E.; Mulder, H.; Chen, G.; Henkel-Rieger, R.; Prentki, M.; Newgard, C.B. Isolation of INS-1-derived cell lines with robust ATP-sensitive K+ channel-dependent and -independent glucose-stimulated insulin secretion. Diabetes 2000, 49, 424–430. [Google Scholar] [CrossRef]
- Basavarajappa, H.D.; Lee, B.; Lee, H.; Sulaiman, R.S.; An, H.; Magana, C.; Shadmand, M.; Vayl, A.; Rajashekhar, G.; Kim, E.Y.; et al. Synthesis and Biological Evaluation of Novel Homoisoflavonoids for Retinal Neovascularization. J. Med. Chem. 2015, 58, 5015–5027. [Google Scholar] [CrossRef] [Green Version]
- Salic, A.; Mitchison, T.J. A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc. Natl. Acad. Sci. USA 2008, 105, 2415–2420. [Google Scholar] [CrossRef] [PubMed]
- Hohmeier, H.E.; BeltrandelRio, H.; Clark, S.A.; Henkel-Rieger, R.; Normington, K.; Newgard, C.B. Regulation of insulin secretion from novel engineered insulinoma cell lines. Diabetes 1997, 46, 968–977. [Google Scholar] [CrossRef] [PubMed]
- Fueger, P.T.; Schisler, J.C.; Lu, D.; Babu, D.A.; Mirmira, R.G.; Newgard, C.B.; Hohmeier, H.E. Trefoil factor 3 stimulates human and rodent pancreatic islet beta-cell replication with retention of function. Mol. Endocrinol. 2008, 22, 1251–1259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basavarajappa, H.D.; Irimia, J.M.; Bauer, B.M.; Fueger, P.T. The Adaptor Protein NumbL Is Involved in the Control of Glucolipotoxicity-Induced Pancreatic Beta Cell Apoptosis. Int. J. Mol. Sci. 2023, 24, 3308. https://doi.org/10.3390/ijms24043308
Basavarajappa HD, Irimia JM, Bauer BM, Fueger PT. The Adaptor Protein NumbL Is Involved in the Control of Glucolipotoxicity-Induced Pancreatic Beta Cell Apoptosis. International Journal of Molecular Sciences. 2023; 24(4):3308. https://doi.org/10.3390/ijms24043308
Chicago/Turabian StyleBasavarajappa, Halesha D., Jose M. Irimia, Brandon M. Bauer, and Patrick T. Fueger. 2023. "The Adaptor Protein NumbL Is Involved in the Control of Glucolipotoxicity-Induced Pancreatic Beta Cell Apoptosis" International Journal of Molecular Sciences 24, no. 4: 3308. https://doi.org/10.3390/ijms24043308
APA StyleBasavarajappa, H. D., Irimia, J. M., Bauer, B. M., & Fueger, P. T. (2023). The Adaptor Protein NumbL Is Involved in the Control of Glucolipotoxicity-Induced Pancreatic Beta Cell Apoptosis. International Journal of Molecular Sciences, 24(4), 3308. https://doi.org/10.3390/ijms24043308