A Comparative Review of Pregnancy and Cancer and Their Association with Endoplasmic Reticulum Aminopeptidase 1 and 2
Abstract
:1. Introduction
2. Similarities
2.1. Proliferation
2.2. Cellular Invasion and Angiogenesis for Blood Supply
2.3. Immune Tolerance
3. Differences
3.1. Alteration in Degrees of Regulation
3.2. Microenvironment and Immune System
4. ERAP1 and ERAP2
4.1. ERAP Structure
4.2. ERAP1 and ERAP2 Function
5. ERAP1 and ERAP2 Correlation to Pregnancy and Cancer
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Crux, N.B.; Elahi, S. Human Leukocyte Antigen (HLA) and Immune Regulation: How Do Classical and Non-Classical HLA Alleles Modulate Immune Response to Human Immunodeficiency Virus and Hepatitis c Virus Infections? Front. Immunol. 2017, 8, 832. [Google Scholar] [CrossRef] [PubMed]
- Muralidhara, P.; Sood, V.; Vinayak Ashok, V.; Bansal, K. Pregnancy and Tumour: The Parallels and Differences in Regulatory T Cells. Front. Immunol. 2022, 13, 866937. [Google Scholar] [CrossRef] [PubMed]
- Holtan, S.G.; Creedon, D.J.; Haluska, P.; Markovic, S.N. Cancer and Pregnancy: Parallels in Growth, Invasion, and Immune Modulation and Implications for Cancer Therapeutic Agents. Mayo Clin. Proc. 2009, 84, 985–1000. [Google Scholar] [CrossRef] [PubMed]
- Saveanu, L.; Carroll, O.; Lindo, V.; Del Val, M.; Lopez, D.; Lepelletier, Y.; Greer, F.; Schomburg, L.; Fruci, D.; Niedermann, G.; et al. Concerted Peptide Trimming by Human ERAP1 and ERAP2 Aminopeptidase Complexes in the Endoplasmic Reticulum. Nat. Immunol. 2005, 6, 689–697. [Google Scholar] [CrossRef]
- Babaie, F.; Hosseinzadeh, R.; Ebrazeh, M.; Seyfizadeh, N.; Aslani, S.; Salimi, S.; Hemmatzadeh, M.; Azizi, G.; Jadidi-Niaragh, F.; Mohammadi, H. The Roles of ERAP1 and ERAP2 in Autoimmunity and Cancer Immunity: New Insights and Perspective. Mol. Immunol. 2020, 121, 7–19. [Google Scholar] [CrossRef]
- Clarke, C.A. Immunology of Pregnancy: Significance of Blood Group Incompatibility between Mother and Fœtus. Proc. R. Soc. Med. 1968, 61, 1213–1217. [Google Scholar] [CrossRef]
- Medawar, P.B.; Medawar, P.B. Some Immunological and Endocrinological Problems Raised by the Evolution of Viviparity in Vertebrates. Symp. Soc. Exp. Biol. 1953, 7, 320–338. [Google Scholar]
- Ulaner, G. Developmental Regulation of Telomerase Activity in Human Fetal Tissues during Gestation. Mol. Hum. Reprod. 1997, 3, 769–773. [Google Scholar] [CrossRef]
- Jafri, M.A.; Ansari, S.A.; Alqahtani, M.H.; Shay, J.W. Roles of Telomeres and Telomerase in Cancer, and Advances in Telomerase-Targeted Therapies. Genome Med. 2016, 8, 69. [Google Scholar] [CrossRef]
- Muschol-Steinmetz, C.; Friemel, A.; Kreis, N.-N.; Reinhard, J.; Yuan, J.; Louwen, F. Function of Survivin in Trophoblastic Cells of the Placenta. PLoS ONE 2013, 8, e73337. [Google Scholar] [CrossRef]
- Hiden, U.; Glitzner, E.; Hartmann, M.; Desoye, G. Insulin and the IGF System in the Human Placenta of Normal and Diabetic Pregnancies. J. Anat. 2009, 215, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Ferretti, C.; Bruni, L.; Dangles-Marie, V.; Pecking, A.P.; Bellet, D. Molecular Circuits Shared by Placental and Cancer Cells, and Their Implications in the Proliferative, Invasive and Migratory Capacities of Trophoblasts. Hum. Reprod. Update 2006, 13, 121–141. [Google Scholar] [CrossRef]
- Braicu, C.; Buse, M.; Busuioc, C.; Drula, R.; Gulei, D.; Raduly, L.; Rusu, A.; Irimie, A.; Atanasov, A.G.; Slaby, O.; et al. A Comprehensive Review on MAPK: A Promising Therapeutic Target in Cancer. Cancers 2019, 11, 1618. [Google Scholar] [CrossRef] [PubMed]
- Costanzo, V.; Bardelli, A.; Siena, S.; Abrignani, S. Exploring the Links between Cancer and Placenta Development. Open Biol. 2018, 8, 180081. [Google Scholar] [CrossRef] [PubMed]
- Pollheimer, J.; Knöfler, M. Signalling Pathways Regulating the Invasive Differentiation of Human Trophoblasts: A Review. Placenta 2005, 26, S21–S30. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.-Q.; Zhang, L. Angiogenesis during Pregnancy: All Routes Lead to MAPKs. J. Physiol. 2017, 595, 4571–4572. [Google Scholar] [CrossRef]
- Hawkins, R.A.; White, G.; Bundred, N.J.; Dixon, J.M.J.; Miller, W.R.; Stewart, H.J.; Forrest, A.P.M. Prognostic Significance of Oestrogen and Progestogen Receptor Activities in Breast Cancer. Br. J. Surg. 1987, 74, 1009–1013. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Weinberg, R.A. Epithelial-Mesenchymal Transition: At the Crossroads of Development and Tumor Metastasis. Dev. Cell 2008, 14, 818–829. [Google Scholar] [CrossRef]
- Petty, A.P.; Garman, K.L.; Winn, V.D.; Spidel, C.M.; Lindsey, J.S. Overexpression of Carcinoma and Embryonic Cytotrophoblast Cell-Specific Mig-7 Induces Invasion and Vessel-like Structure Formation. Am. J. Pathol. 2007, 170, 1763–1780. [Google Scholar] [CrossRef]
- Maquoi, E.; van den Brûle, F.A.; Castronovo, V.; Foidart, J.-M. Changes in the Distribution Pattern of Galectin-1 and Galectin-3 in the Human Placenta Correlates with the Differentiation Pathways of Trophoblasts. Placenta 1997, 18, 433–439. [Google Scholar] [CrossRef]
- Tepekoy, F.; Akkoyunlu, G.; Demir, R. The Role of Wnt Signaling Members in the Uterus and Embryo during Pre-Implantation and Implantation. J. Assist. Reprod. Genet. 2015, 32, 337–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhan, T.; Rindtorff, N.; Boutros, M. Wnt Signaling in Cancer. Oncogene 2016, 36, 1461–1473. [Google Scholar] [CrossRef] [PubMed]
- Carmeliet, P. VEGF as a Key Mediator of Angiogenesis in Cancer. Oncology 2005, 69, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Wang, H.; Qin, H.; Yang, J.; Wang, Y.; Jiang, S.; Pan, Y. Vascular Endothelial Growth Factor Expression in Peripheral Blood of Patients with Pregnancy Induced Hypertension Syndrome and Its Clinical Significance. Pak. J. Med. Sci. 2014, 30, 634–637. [Google Scholar] [CrossRef]
- Riley, J.K.; Carayannopoulos, M.O.; Wyman, A.H.; Chi, M.; Ratajczak, C.K.; Moley, K.H. The PI3K/Akt Pathway Is Present and Functional in the Preimplantation Mouse Embryo. Dev. Biol. 2005, 284, 377–386. [Google Scholar] [CrossRef]
- Yang, J.; Nie, J.; Ma, X.; Wei, Y.; Peng, Y.; Wei, X. Targeting PI3K in Cancer: Mechanisms and Advances in Clinical Trials. Mol. Cancer 2019, 18, 26. [Google Scholar] [CrossRef]
- Fitzgerald, J.S.; Poehlmann, T.G.; Schleussner, E.; Markert, U.R. Trophoblast Invasion: The Role of Intracellular Cytokine Signalling via Signal Transducer and Activator of Transcription 3 (STAT3). Hum. Reprod. Update 2008, 14, 335–344. [Google Scholar] [CrossRef]
- Quintero-Fabián, S.; Arreola, R.; Becerril-Villanueva, E.; Torres-Romero, J.C.; Arana-Argáez, V.; Lara-Riegos, J.; Ramírez-Camacho, M.A.; Alvarez-Sánchez, M.E. Role of Matrix Metalloproteinases in Angiogenesis and Cancer. Front. Oncol. 2019, 9, 1370. [Google Scholar] [CrossRef]
- Chen, J.; Khalil, R.A. Matrix Metalloproteinases in Normal Pregnancy and Preeclampsia. Prog. Mol. Biol. Transl. Sci. 2017, 148, 87–165. [Google Scholar] [CrossRef]
- Haga, R.B.; Ridley, A.J. Rho GTPases: Regulation and Roles in Cancer Cell Biology. Small GTPases 2016, 7, 207–221. [Google Scholar] [CrossRef]
- Cousin, J.; Cloninger, M. The Role of Galectin-1 in Cancer Progression and Synthetic Multivalent Systems for the Study of Galectin-1. Int. J. Mol. Sci. 2016, 17, 1566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blois, S.M.; Dveksler, G.; Vasta, G.R.; Freitag, N.; Blanchard, V.; Barrientos, G. Pregnancy Galectinology: Insights into a Complex Network of Glycan Binding Proteins. Front. Immunol. 2019, 10, 1166. [Google Scholar] [CrossRef]
- Goerge, T.; Barg, A.; Schnaeker, E.-M.; Poppelmann, B.; Shpacovitch, V.; Rattenholl, A.; Maaser, C.; Luger, T.A.; Steinhoff, M.; Schneider, S.W. Tumor-Derived Matrix Metalloproteinase-1 Targets Endothelial Proteinase-Activated Receptor 1 Promoting Endothelial Cell Activation. Cancer Res. 2006, 66, 7766–7774. [Google Scholar] [CrossRef]
- Schiessl, B.; Innes, B.A.; Bulmer, J.N.; Otun, H.A.; Chadwick, T.J.; Robson, S.C.; Lash, G.E. Localization of Angiogenic Growth Factors and Their Receptors in the Human Placental Bed throughout Normal Human Pregnancy. Placenta 2009, 30, 79–87. [Google Scholar] [CrossRef]
- Loegl, J.; Nussbaumer, E.; Hiden, U.; Majali-Martinez, A.; Ghaffari-Tabrizi-Wizy, N.; Cvitic, S.; Lang, I.; Desoye, G.; Huppertz, B. Pigment Epithelium-Derived Factor (PEDF): A Novel Trophoblast-Derived Factor Limiting Feto-Placental Angiogenesis in Late Pregnancy. Angiogenesis 2016, 19, 373–388. [Google Scholar] [CrossRef] [PubMed]
- ANSARI, D.; ALTHINI, C.; OHLSSON, H.; BAUDEN, M.; ANDERSSON, R. The Role of PEDF in Pancreatic Cancer. Anticancer Res. 2019, 39, 3311–3315. [Google Scholar] [CrossRef]
- Carvajal, L.; Gutiérrez, J.; Morselli, E.; Leiva, A. Autophagy Process in Trophoblast Cells Invasion and Differentiation: Similitude and Differences with Cancer Cells. Front. Oncol. 2021, 11, 637594. [Google Scholar] [CrossRef] [PubMed]
- Krstic, J.; Deutsch, A.; Fuchs, J.; Gauster, M.; Gorsek Sparovec, T.; Hiden, U.; Krappinger, J.C.; Moser, G.; Pansy, K.; Szmyra, M.; et al. (Dis)Similarities between the Decidual and Tumor Microenvironment. Biomedicines 2022, 10, 1065. [Google Scholar] [CrossRef] [PubMed]
- Crump, L.S.; Kines, K.T.; Richer, J.K.; Lyons, T.R. Breast Cancers Co-Opt Normal Mechanisms of Tolerance to Promote Immune Evasion and Metastasis. Am. J. Physiol. Cell Physiol. 2022, 323, C1475–C1495. [Google Scholar] [CrossRef]
- Koopman, L.A.; Kopcow, H.D.; Rybalov, B.; Boyson, J.E.; Orange, J.S.; Schatz, F.; Masch, R.; Lockwood, C.J.; Schachter, A.D.; Park, P.J.; et al. Human Decidual Natural Killer Cells Are a Unique NK Cell Subset with Immunomodulatory Potential. J. Exp. Med. 2003, 198, 1201–1212. [Google Scholar] [CrossRef] [PubMed]
- Arcuri, F.; Cintorino, M.; Carducci, A.; Papa, S.; Riparbelli, M.G.; Mangioni, S.; Di Blasio, A.M.; Tosi, P.; Viganoò, P. Human Decidual Natural Killer Cells as a Source and Target of Macrophage Migration Inhibitory Factor. Reproduction 2006, 131, 175–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hagemann, T.; Biswas, S.K.; Lawrence, T.; Sica, A.; Lewis, C.E. Regulation of Macrophage Function in Tumors: The Multifaceted Role of NF-ΚB. Blood 2009, 113, 3139–3146. [Google Scholar] [CrossRef] [PubMed]
- Ietta, F.; Ferro, E.A.V.; Bevilacqua, E.; Benincasa, L.; Maioli, E.; Paulesu, L. Role of the Macrophage Migration Inhibitory Factor (MIF) in the Survival of First Trimester Human Placenta under Induced Stress Conditions. Sci. Rep. 2018, 8, 12150. [Google Scholar] [CrossRef] [PubMed]
- Guda, M.R.; Rashid, M.A.; Asuthkar, S.; Jalasutram, A.; Caniglia, J.L.; Tsung, A.J.; Velpula, K.K. Pleiotropic Role of Macrophage Migration Inhibitory Factor in Cancer. Am. J. Cancer Res. 2019, 9, 2760–2773. [Google Scholar] [PubMed]
- Hunt, J.S.; Petroff, M.G.; McIntire, R.H.; Ober, C. HLA-G and Immune Tolerance in Pregnancy. FASEB J. 2005, 19, 681–693. [Google Scholar] [CrossRef]
- van der Meer, A.; Lukassen, H.G.M.; van Cranenbroek, B.; Weiss, E.H.; Braat, D.D.M.; van Lierop, M.J.; Joosten, I. Soluble HLA-G Promotes Th1-Type Cytokine Production by Cytokine-Activated Uterine and Peripheral Natural Killer Cells. MHR Basic Sci. Reprod. Med. 2006, 13, 123–133. [Google Scholar] [CrossRef]
- van Mourik, M.S.M.; Macklon, N.S.; Heijnen, C.J. Embryonic Implantation: Cytokines, Adhesion Molecules, and Immune Cells in Establishing an Implantation Environment. J. Leukoc. Biol. 2008, 85, 4–19. [Google Scholar] [CrossRef] [PubMed]
- Clark, D.A.; Keil, A.; Chen, Z.; Markert, U.; Manuel, J.; Gorczynski, R.M. Placental Trophoblast from Successful Human Pregnancies Expresses the Tolerance Signaling Molecule, CD200 (OX-2). Am. J. Reprod. Immunol. 2003, 50, 187–195. [Google Scholar] [CrossRef]
- Fest, S.; Aldo, P.B.; Abrahams, V.M.; Visintin, I.; Alvero, A.; Chen, R.; Chavez, S.L.; Romero, R.; Mor, G. Trophoblast? Macrophage Interactions: A Regulatory Network for the Protection of Pregnancy. Am. J. Reprod. Immunol. 2007, 57, 55–66. [Google Scholar] [CrossRef]
- Ancrile, B.B.; O’Hayer, K.M.; Counter, C.M. Oncogenic Ras-induced Expression of Cytokines: A New Target of Anti-Cancer Therapeutics. Mol. Interv. 2008, 8, 22–27. [Google Scholar] [CrossRef]
- Waugh, D.J.J.; Wilson, C. The Interleukin-8 Pathway in Cancer. Clin. Cancer Res. 2008, 14, 6735–6741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraccaroli, L.; Alfieri, J.; Larocca, L.; Calafat, M.; Mor, G.; Leiros, C.P.; Ramhorst, R. A Potential Tolerogenic Immune Mechanism in a Trophoblast Cell Line through the Activation of Chemokine-Induced T Cell Death and Regulatory T Cell Modulation. Hum. Reprod. 2008, 24, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Azenshtein, E.; Luboshits, G.; Shina, S.; Neumark, E.; Vigler, N.; Chaitchik, S.; Keydar, I.; Ben-Baruch, A. The CC Chemokine RANTES as a Potential Contributor to Breast Cancer Progression. Breast Cancer Res. 2001, 3, A5. [Google Scholar] [CrossRef]
- Hill, D.; Petrik, J.; Arany, E. Growth Factors and the Regulation of Fetal Growth. Diabetes Care 1998, 21, B60. [Google Scholar] [PubMed]
- Papa, V.; Pezzino, V.; Costantino, A.; Belfiore, A.; Giuffrida, D.; Frittitta, L.; Vannelli, G.B.; Brand, R.; Goldfine, I.D.; Vigneri, R. Elevated Insulin Receptor Content in Human Breast Cancer. J. Clin. Investig. 1990, 86, 1503–1510. [Google Scholar]
- Kalli, K.R.; Conover, C.A. The Insulin-like Growth Factor/Insulin System in Epithelial Ovarian Cancer. Front. Biosci. J. Virtual Libr. 2003, 8, d714–d722. [Google Scholar] [CrossRef]
- Feitelson, M.A.; Arzumanyan, A.; Kulathinal, R.J.; Blain, S.W.; Holcombe, R.F.; Mahajna, J.; Marino, M.; Martinez-Chantar, M.L.; Nawroth, R.; Sanchez-Garcia, I.; et al. Sustained Proliferation in Cancer: Mechanisms and Novel Therapeutic Targets. Semin. Cancer Biol. 2015, 35, S25–S54. [Google Scholar] [CrossRef]
- Zhao, H.; Kalish, F.; Schulz, S.; Yang, Y.; Wong, R.J.; Stevenson, D.K. Unique Roles of Infiltrating Myeloid Cells in the Murine Uterus during Early to Midpregnancy. J. Immunol. 2015, 194, 3713–3722. [Google Scholar] [CrossRef]
- Wang, X.-B.; Qi, Q.-R.; Wu, K.-L.; Xie, Q.-Z. Role of Osteopontin in Decidualization and Pregnancy Success. Reproduction 2018, 155, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Liu, Y.; Wang, X. The Roles of Glycodelin in Cancer Development and Progression. Front. Immunol. 2017, 8, 1685. [Google Scholar] [CrossRef]
- Lee, C.-L.; Lam, K.K.W.; Koistinen, H.; Seppala, M.; Kurpisz, M.; Fernandez, N.; Pang, R.T.K.; Yeung, W.S.B.; Chiu, P.C.N. Glycodelin-A as a Paracrine Regulator in Early Pregnancy. J. Reprod. Immunol. 2011, 90, 29–34. [Google Scholar] [CrossRef]
- Hattori, A.; Tsujimoto, M. Endoplasmic Reticulum Aminopeptidases: Biochemistry, Physiology, and Pathology. J. Biochem. 2013, 154, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Admon, A. ERAP1 Shapes Just Part of the Immunopeptidome. Hum. Immunol. 2019, 80, 296–301. [Google Scholar] [CrossRef] [PubMed]
- López de Castro, J.A. How ERAP1 and ERAP2 Shape the Peptidomes of Disease-Associated MHC-I Proteins. Front. Immunol. 2018, 9, 2463. [Google Scholar] [CrossRef] [PubMed]
- Andrés, A.M.; Dennis, M.Y.; Kretzschmar, W.W.; Cannons, J.L.; Lee-Lin, S.-Q.; Hurle, B.; Schwartzberg, P.L.; Williamson, S.H.; Bustamante, C.D.; Nielsen, R.; et al. Balancing Selection Maintains a Form of ERAP2 That Undergoes Nonsense-Mediated Decay and Affects Antigen Presentation. PLoS Genet. 2010, 6, e1001157. [Google Scholar] [CrossRef]
- Birtley, J.R.; Saridakis, E.; Stratikos, E.; Mavridis, I.M. The Crystal Structure of Human Endoplasmic Reticulum Aminopeptidase 2 Reveals the Atomic Basis for Distinct Roles in Antigen Processing. Biochemistry 2011, 51, 286–295. [Google Scholar] [CrossRef]
- Paladini, F.; Fiorillo, M.T.; Vitulano, C.; Tedeschi, V.; Piga, M.; Cauli, A.; Mathieu, A.; Sorrentino, R. An Allelic Variant in the Intergenic Region between ERAP1 and ERAP2 Correlates with an Inverse Expression of the Two Genes. Sci. Rep. 2018, 8, 10398. [Google Scholar] [CrossRef]
- Forloni, M.; Albini, S.; Limongi, M.Z.; Cifaldi, L.; Boldrini, R.; Nicotra, M.R.; Giannini, G.; Natali, P.G.; Giacomini, P.; Fruci, D. NF-ΚB, and Not MYCN, Regulates MHC Class I and Endoplasmic Reticulum Aminopeptidases in Human Neuroblastoma Cells. Cancer Res. 2010, 70, 916–924. [Google Scholar] [CrossRef]
- Papakyriakou, A.; Mpakali, A.; Stratikos, E. Can ERAP1 and ERAP2 Form Functional Heterodimers? A Structural Dynamics Investigation. Front. Immunol. 2022, 13, 863529. [Google Scholar] [CrossRef]
- Compagnone, M.; Cifaldi, L.; Fruci, D. Regulation of ERAP1 and ERAP2 Genes and Their Disfunction in Human Cancer. Hum. Immunol. 2019, 80, 318–324. [Google Scholar] [CrossRef]
- Evnouchidou, I.; Birtley, J.; Seregin, S.; Papakyriakou, A.; Zervoudi, E.; Samiotaki, M.; Panayotou, G.; Giastas, P.; Petrakis, O.; Georgiadis, D.; et al. A Common Single Nucleotide Polymorphism in Endoplasmic Reticulum Aminopeptidase 2 Induces a Specificity Switch That Leads to Altered Antigen Processing. J. Immunol. 2012, 189, 2383–2392. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Li, L.; Weimershaus, M.; Evnouchidou, I.; van Endert, P.; Bouvier, M. ERAP1-ERAP2 Dimers Trim MHC I-Bound Precursor Peptides; Implications for Understanding Peptide Editing. Sci. Rep. 2016, 6, 28902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cifaldi, L.; Romania, P.; Lorenzi, S.; Locatelli, F.; Fruci, D. Role of Endoplasmic Reticulum Aminopeptidases in Health and Disease: From Infection to Cancer. Int. J. Mol. Sci. 2012, 13, 8338–8352. [Google Scholar] [CrossRef] [PubMed]
- Yong, H.E.J.; Murthi, P.; Borg, A.; Kalionis, B.; Moses, E.K.; Brennecke, S.P.; Keogh, R.J. Increased Decidual mRNA Expression Levels of Candidate Maternal Pre-Eclampsia Susceptibility Genes Are Associated with Clinical Severity. Placenta 2014, 35, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Mistry, H.D.; Kurlak, L.O.; Broughton Pipkin, F. The Placental Renin–Angiotensin System and Oxidative Stress in Pre-Eclampsia. Placenta 2013, 34, 182–186. [Google Scholar] [CrossRef]
- Yao, Y.; Liu, N.; Zhou, Z.; Shi, L. Influence of ERAP1 and ERAP2 Gene Polymorphisms on Disease Susceptibility in Different Populations. Hum. Immunol. 2019, 80, 325–334. [Google Scholar] [CrossRef]
- Johnson, M.P.; Roten, L.T.; Dyer, T.D.; East, C.E.; Forsmo, S.; Blangero, J.; Brennecke, S.P.; Austgulen, R.; Moses, E.K. The ERAP2 Gene Is Associated with Preeclampsia in Australian and Norwegian Populations. Hum. Genet. 2009, 126, 655–666. [Google Scholar] [CrossRef]
- Vanhille, D.L.; Hill, L.D.; Hilliard, D.D.; Lee, E.D.; Teves, M.E.; Srinivas, S.; Kusanovic, J.P.; Gomez, R.; Stratikos, E.; Elovitz, M.A.; et al. A Novel ERAP2 Haplotype Structure in a Chilean Population: Implications for ERAP2 Protein Expression and Preeclampsia Risk. Mol. Genet. Genom. Med. 2013, 1, 98–107. [Google Scholar] [CrossRef]
- Piekarska, K.; Radwan, P.; Tarnowska, A.; Wiśniewski, A.; Radwan, M.; Wilczyński, J.R.; Malinowski, A.; Nowak, I. ERAP, KIR, and HLA-C Profile in Recurrent Implantation Failure. Front. Immunol. 2021, 12, 4387. [Google Scholar] [CrossRef]
- Warthan, M.D.; Washington, S.L.; Franzese, S.E.; Ramus, R.M.; Kim, K.-R.; York, T.P.; Stratikos, E.; Strauss, J.F.; Lee, E.D. The Role of Endoplasmic Reticulum Aminopeptidase 2 in Modulating Immune Detection of Choriocarcinoma. Biol. Reprod. 2018, 98, 309–322. [Google Scholar] [CrossRef]
- Jiang, P.; Veenstra, R.N.; Seitz, A.; Nolte, I.M.; Hepkema, B.G.; Visser, L.; van den Berg, A.; Diepstra, A. Interaction between ERAP Alleles and HLA Class I Types Support a Role of Antigen Presentation in Hodgkin Lymphoma Development. Cancers 2021, 13, 414. [Google Scholar] [CrossRef] [PubMed]
- Gooden, M.; Lampen, M.; Jordanova, E.S.; Leffers, N.; Trimbos, J.B.; van der Burg, S.H.; Nijman, H.; van Hall, T. HLA-E Expression by Gynecological Cancers Restrains Tumor-Infiltrating CD8+ T Lymphocytes. Proc. Natl. Acad. Sci. USA 2011, 108, 10656–10661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papuchova, H.; Kshirsagar, S.; Xu, L.; Bougleux Gomes, H.A.; Li, Q.; Iyer, V.; Norwitz, E.R.; Strominger, J.L.; Tilburgs, T. Three Types of HLA-G+ Extravillous Trophoblasts That Have Distinct Immune Regulatory Properties. Proc. Natl. Acad. Sci. USA 2020, 117, 15772–15777. [Google Scholar] [CrossRef] [PubMed]
- Than, N.G.; Hahn, S.; Rossi, S.W.; Szekeres-Bartho, J. Fetal-Maternal Immune Interactions in Pregnancy. Front. Immunol. 2019, 10, 2729. [Google Scholar] [CrossRef]
- Seamon, K.; Kurlak, L.O.; Warthan, M.; Stratikos, E.; Strauss, J.F.; Mistry, H.D.; Lee, E.D. The Differential Expression of ERAP1/ERAP2 and Immune Cell Activation in Pre-Eclampsia. Front. Immunol. 2020, 11, 396. [Google Scholar] [CrossRef] [PubMed]
- Stratikos, E. Modulating Antigen Processing for Cancer Immunotherapy. OncoImmunology 2014, 3, e27568. [Google Scholar] [CrossRef]
- Yang, Z.; Tian, H.; Bie, F.; Xu, J.; Zhou, Z.; Yang, J.; Li, R.; Peng, Y.; Bai, G.; Tian, Y.; et al. ERAP2 Is Associated with Immune Infiltration and Predicts Favorable Prognosis in SqCLC. Front. Immunol. 2021, 12, 5539. [Google Scholar] [CrossRef]
- Mehta, A.M.; Jordanova, E.S.; van Wezel, T.; Uh, H.-W.; Corver, W.E.; Kwappenberg, K.M.C.; Verduijn, W.; Kenter, G.G.; van der Burg, S.H.; Fleuren, G.J. Genetic Variation of Antigen Processing Machinery Components and Association with Cervical Carcinoma. Genes Chromosom. Cancer 2007, 46, 577–586. [Google Scholar] [CrossRef]
- Yao, Y.; Wiśniewski, A.; Ma, Q.; Kowal, A.; Porębska, I.; Pawełczyk, K.; Yu, J.; Dubis, J.; Żuk, N.; Li, Y.; et al. Single Nucleotide Polymorphisms of the ERAP1 Gene and Risk of NSCLC: A Comparison of Genetically Distant Populations, Chinese and Caucasian. Arch. Immunol. Ther. Exp. 2016, 64, 117–122. [Google Scholar] [CrossRef]
- Lee, E.D. Endoplasmic Reticulum Aminopeptidase 2, a Common Immunological Link to Adverse Pregnancy Outcomes and Cancer Clearance? Placenta 2017, 56, 40–43. [Google Scholar] [CrossRef]
- Lospinoso, K.; Dozmorov, M.; El Fawal, N.; Raghu, R.; Chae, W.-J.; Lee, E.D. Overexpression of ERAP2N in Human Trophoblast Cells Promotes Cell Death. Int. J. Mol. Sci. 2021, 22, 8585. [Google Scholar] [CrossRef]
- Cifaldi, L.; Romania, P.; Falco, M.; Lorenzi, S.; Meazza, R.; Petrini, S.; Andreani, M.; Pende, D.; Locatelli, F.; Fruci, D. ERAP1 Regulates Natural Killer Cell Function by Controlling the Engagement of Inhibitory Receptors. Cancer Res. 2015, 75, 824–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Amico, S.; D’Alicandro, V.; Compagnone, M.; Tempora, P.; Guida, G.; Romania, P.; Lucarini, V.; Melaiu, O.; Falco, M.; Algeri, M.; et al. ERAP1 Controls the Interaction of the Inhibitory Receptor KIR3DL1 with HLA-B51:01 by Affecting Natural Killer Cell Function. Front. Immunol. 2021, 12, 778103. [Google Scholar] [CrossRef] [PubMed]
- Temponeras, I.; Stamatakis, G.; Samiotaki, M.; Georgiadis, D.; Pratsinis, H.; Panayotou, G.; Stratikos, E. ERAP2 Inhibition Induces Cell-Surface Presentation by MOLT-4 Leukemia Cancer Cells of Many Novel and Potentially Antigenic Peptides. Int. J. Mol. Sci. 2022, 23, 1913. [Google Scholar] [CrossRef] [PubMed]
- Cifaldi, L.; Lo Monaco, E.; Forloni, M.; Giorda, E.; Lorenzi, S.; Petrini, S.; Tremante, E.; Pende, D.; Locatelli, F.; Giacomini, P.; et al. Natural Killer Cells Efficiently Reject Lymphoma Silenced for the Endoplasmic Reticulum Aminopeptidase Associated with Antigen Processing. Cancer Res. 2011, 71, 1597–1606. [Google Scholar] [CrossRef] [PubMed]
- Reeves, E.; Edwards, C.J.; Elliott, T.; James, E. Naturally Occurring ERAP1 Haplotypes Encode Functionally Distinct Alleles with Fine Substrate Specificity. J. Immunol. 2013, 191, 35–43. [Google Scholar] [CrossRef]
- Keller, M.; Ebstein, F.; Bürger, E.; Textoris-Taube, K.; Gorny, X.; Urban, S.; Zhao, F.; Dannenberg, T.; Sucker, A.; Keller, C.; et al. The Proteasome Immunosubunits, PA28 and ER-Aminopeptidase 1, Protect Melanoma Cells from Efficient MART-126-35-Specific T-Cell Recognition. Eur. J. Immunol. 2015, 45, 3257–3268. [Google Scholar] [CrossRef]
- Lim, Y.W.; Chen-Harris, H.; Mayba, O.; Lianoglou, S.; Wuster, A.; Bhangale, T.; Khan, Z.; Mariathasan, S.; Daemen, A.; Reeder, J.; et al. Germline Genetic Polymorphisms Influence Tumor Gene Expression and Immune Cell Infiltration. Proc. Natl. Acad. Sci. USA 2018, 115, E11701–E11710. [Google Scholar] [CrossRef]
- Manguso, R.T.; Pope, H.W.; Zimmer, M.D.; Brown, F.D.; Yates, K.B.; Miller, B.C.; Collins, N.B.; Bi, K.; LaFleur, M.W.; Juneja, V.R.; et al. In Vivo, CRISPR Screening Identifies Ptpn2 as a Cancer Immunotherapy Target. Nature 2017, 547, 413. [Google Scholar] [CrossRef]
- Nakashima, A.; Tsuda, S.; Kusabiraki, T.; Aoki, A.; Ushijima, A.; Shima, T.; Cheng, S.-B.; Sharma, S.; Saito, S. Current Understanding of Autophagy in Pregnancy. Int. J. Mol. Sci. 2019, 20, 2342. [Google Scholar] [CrossRef]
- Nakashima, A.; Cheng, S.-B.; Kusabiraki, T.; Motomura, K.; Aoki, A.; Ushijima, A.; Ono, Y.; Tsuda, S.; Shima, T.; Yoshino, O.; et al. Endoplasmic Reticulum Stress Disrupts Lysosomal Homeostasis and Induces Blockade of Autophagic Flux in Human Trophoblasts. Sci. Rep. 2019, 9, 11466. [Google Scholar] [CrossRef] [PubMed]
- Guan, W.; Nakata, K.; Sagara, A.; Iwamoto, C.; Endo, S.; Matsuda, R.; Matsumoto, S.; Ikenaga, N.; Shindo, K.; Moriyama, T.; et al. ERAP2 Is a Novel Target Involved in Autophagy and Activation of Pancreatic Stellate Cells via UPR Signaling Pathway. Pancreatology 2022, 22, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Yadav, R.K.; Chae, S.-W.; Kim, H.-R.; Chae, H.J. Endoplasmic Reticulum Stress and Cancer. J. Cancer Prev. 2014, 19, 75–88. [Google Scholar] [CrossRef] [PubMed]
- Blake, M.K.; O’Connell, P.; Pepelyayeva, Y.; Godbehere, S.; Aldhamen, Y.A.; Amalfitano, A. ERAP1 Is a Critical Regulator of Inflammasome-Mediated Proinflammatory and ER Stress Responses. BMC Immunol. 2022, 23, 9. [Google Scholar] [CrossRef] [PubMed]
Protein | Disease | Observation | Protein | Disease | Observation |
---|---|---|---|---|---|
ERAP1 | murine T-cell lymphoma | Lymphoma rejected following inhibition of ERAP1 (Compagnone et al.) [70] | ERAP1 | kidney renal clear cell carcinoma | ERAP1 found to be more expressed in this disease (Compagnone et al.) [70] |
ERAP1 | DAOY medulloblastoma | ERAP1 inhibition made disease more susceptible to NK cell-mediated killing (Compagnone et al.) [70] | ERAP1 | cervical intraepithelial neoplasia | ERAP1 expression partially or totally lost with this disease (Compagnone et al.) [70] |
ERAP1 | alloreactive and non alloreactive lymphoblastoids | ERAP1 inhibition enhanced NK cell-mediated killing (Compagnone et al.) [70] | ERAP1 | cervical squamous cell carcinoma | ERAP1 expression partially or totally lost with this disease (Compagnone et al.) [70] |
ERAP1 | murine colorectal carcinoma | Inhibition of ERAP1 led to tumor growth arrest and enhanced survival (Compagnone et al.) [70] | ERAP1 | esophageal carcinoma | ERAP1 expression lost or reduced and associated with depth of tumor invasion (Compagnone et al.) [70] |
ERAP1 | cervical carcinoma | ERAP1 was expressed at high levels and associated with worse overall survival (Compagnone et al.) [70] | ERAP1 | testicular germ cell carcinoma | ERAP1 less expressed in this disease (Compagnone et al.) [70] |
ERAP1 | non-small cell lung carcinoma | Several ERAP1 variants correlated with increased metastases and decreased survival (Compagnone et al.) [70] | ERAP1 | uveal melanoma | ERAP1 less expressed in this disease (Compagnone et al.) [70] |
ERAP1 | acute myeloid leukemia | ERAP1 found to be more expressed in this disease (Compagnone et al.) [70] | ERAP1 | adrenocortical carcinoma | ERAP1 less expressed in this disease (Compagnone et al.) [70] |
ERAP1 | stomach adenocarcinoma | ERAP1 found to be more expressed in this disease (Compagnone et al.) [70] | ERAP1 | Kidney renal clear cell carcinoma | ERAP1 found to be more expressed in this disease (Compagnone et al.) [70] |
ERAP1/ ERAP2 | human lymphoblastoid cell lines | SNP rs75862629 of ERAP2 resulted in down-modulation of ERAP2 coupled with higher expression of ERAP1 (Paladini, 2018) [67] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hur, B.; Wong, V.; Lee, E.D. A Comparative Review of Pregnancy and Cancer and Their Association with Endoplasmic Reticulum Aminopeptidase 1 and 2. Int. J. Mol. Sci. 2023, 24, 3454. https://doi.org/10.3390/ijms24043454
Hur B, Wong V, Lee ED. A Comparative Review of Pregnancy and Cancer and Their Association with Endoplasmic Reticulum Aminopeptidase 1 and 2. International Journal of Molecular Sciences. 2023; 24(4):3454. https://doi.org/10.3390/ijms24043454
Chicago/Turabian StyleHur, Brian, Veronica Wong, and Eun D. Lee. 2023. "A Comparative Review of Pregnancy and Cancer and Their Association with Endoplasmic Reticulum Aminopeptidase 1 and 2" International Journal of Molecular Sciences 24, no. 4: 3454. https://doi.org/10.3390/ijms24043454
APA StyleHur, B., Wong, V., & Lee, E. D. (2023). A Comparative Review of Pregnancy and Cancer and Their Association with Endoplasmic Reticulum Aminopeptidase 1 and 2. International Journal of Molecular Sciences, 24(4), 3454. https://doi.org/10.3390/ijms24043454